Skip to main content

Advertisement

Log in

Targeted Nanoparticles: the Smart Way for the Treatment of Colorectal Cancer

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is a widespread cancer that starts in the digestive tract. It is the third most common cause of cancer deaths around the world. The World Health Organization (WHO) estimates an expected death toll of over 1 million cases annually. The limited therapeutic options as well as the drawbacks of the existing therapies necessitate the development of non-classic treatment approaches. Nanotechnology has led the evolution of valuable drug delivery systems thanks to their ability to control drug release and precisely target a wide variety of cancers. This has also been extended to the treatment of CRC. Herein, we shed light on the pertinent research that has been performed on the potential applications of nanoparticles in the treatment of CRC. The various types of nanoparticles in addition to their properties, applications, targeting approaches, merits, and demerits are discussed. Furthermore, innovative therapies for CRC, including gene therapies and immunotherapies, are also highlighted. Eventually, the research gaps, the clinical potential of such delivery systems, and a future outlook on their development are inspired.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Douaiher J, Ravipati A, Grams B, Chowdhury S, Alatise O, Are C. Colorectal cancer—global burden, trends, and geographical variations. J Surg Oncol. 2017;115:619–30.

    Article  PubMed  Google Scholar 

  2. Mattiuzzi C, Sanchis-Gomar F, Lippi G. Concise update on colorectal cancer epidemiology. Ann Transl Med. 2019;7:609–609.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang C, Merlin D. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy. Nanomaterials. MDPI AG; 2020. p. 1–32.

  4. Tian Q, Liu Y, Zhang Y, Song Z, Yang J, Zhang J, et al. THBS2 is a biomarker for AJCC stages and a strong prognostic indicator in colorectal cancer. JBUON. 2018;23:1331–6.

    PubMed  Google Scholar 

  5. Bennedsgaard K, Ventzel L, Themistocleous AC, Bennett DL, Jensen AB, Jensen AR, et al. Long-term symptoms of polyneuropathy in breast and colorectal cancer patients treated with and without adjuvant chemotherapy. Cancer Med. 2020;9:5114–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duran G, Cruz R, Simoes AR, Barros F, Giráldez JM, Bernárdez B, et al. Efficacy and toxicity of adjuvant chemotherapy on colorectal cancer patients: how much influence from the genetics? J Chemother. 2020;32:310–22.

    Article  CAS  PubMed  Google Scholar 

  7. Alomrani A, Badran M, Harisa GI, ALshehry M, Alhariri M, Alshamsan A, et al. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer. Saudi Pharm J. 2019;27:603–11.

  8. Son HS, Lee WY, Lee WS, Yun SH, Chun HK. Compliance and effective management of the hand-foot syndrome in colon cancer patients receiving capecitabine as adjuvant chemotherapy. Yonsei Med J. 2009;50:796–802.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goldberg RM, Tabah-Fisch I, Bleiberg H, de Gramont A, Tournigand C, Andre T, et al. Pooled analysis of safety and efficacy of oxaliplatin plus fluorouracil/leucovorin administered bimonthly in elderly patients with colorectal cancer. J Clin Oncol. 2006;24:4085–91.

    Article  CAS  PubMed  Google Scholar 

  10. Arumov A, Trabolsi A, Schatz JH. Potency meets precision in nano-optimized chemotherapeutics. Trends Biotechnol. 2021;39:974–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Younis MA, Khalil IA, Harashima H. Gene therapy for hepatocellular carcinoma: highlighting the journey from theory to clinical applications. Adv Ther. 2020;3:2000087.

    Article  Google Scholar 

  12. Younis MA, Khalil IA, Elewa YHA, Kon Y, Harashima H. Ultra-small lipid nanoparticles encapsulating sorafenib and midkine-siRNA selectively-eradicate sorafenib-resistant hepatocellular carcinoma in vivo. J Control Release. 2021;331:335–49.

    Article  CAS  PubMed  Google Scholar 

  13. Abdellatif AAH, Younis MA, Alsowinea AF, Abdallah EM, Abdel-Bakky MS, Al-Subaiyel A, et al. Lipid nanoparticles technology in vaccines: shaping the future of prophylactic medicine. Colloids Surf B Biointerfaces. 2023;222: 113111.

    Article  CAS  PubMed  Google Scholar 

  14. Abdellatif AAH, Scagnetti G, Younis MA, Bouazzaoui A, Tawfeek HM, Aldosari BN, et al. Non-coding RNA-directed therapeutics in lung cancer: delivery technologies and clinical applications. Colloids Surf B Biointerfaces. 2023;229: 113466.

    Article  CAS  PubMed  Google Scholar 

  15. Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022;181: 114083.

    Article  CAS  PubMed  Google Scholar 

  16. Alzahrani S, Al Doghaither H, Al-Ghafari A. General insight into cancer: an overview of colorectal cancer (Review). Mol Clin Oncol. 2021;15:271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Balchen V, Simon K. Colorectal cancer development and advances in screening. Clin Interv Aging. 2016;11:967–76.

    Article  Google Scholar 

  18. Tanaka T. Colorectal carcinogenesis: review of human and experimental animal studies. J Carcinog. 2009;8:5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Armaghany T, Wilson JD, Chu Q, Mills G. Genetic alterations in colorectal cancer. Gastrointest Cancer Res. 2012;5:19–27.

    PubMed  PubMed Central  Google Scholar 

  20. Colorectal Cancer Early Detection, Diagnosis, and Staging [Internet]. Available from: https://seer.cancer.gov/csr/1975_2016/. Accessed 15 Nov 2023.

  21. Krasteva N, Georgieva M. Promising therapeutic strategies for colorectal cancer treatment based on nanomaterials. Pharmaceutics. 2022;14:1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pickhardt PJ, Pooler BD, Kim DH, Hassan C, Matkowskyj KA, Halberg RB. The natural history of colorectal polyps: overview of predictive static and dynamic features. Gastroenterol Clin North Am. W.B. Saunders; 2018. p. 515–36.

  23. Kundu M, Chatterjee S, Ghosh N, Manna P, Das J, Sil PC. Tumor targeted delivery of umbelliferone via a smart mesoporous silica nanoparticles controlled-release drug delivery system for increased anticancer efficiency. Mater Sci Eng C. 2020;116:111239.

  24. Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical q overview of the prototype polymeric drug SMANCS. J Control Release. 2001;74:47–61.

    Article  CAS  PubMed  Google Scholar 

  25. Shi Y, Shan S, Li C, Song X, Zhang C, Chen J, et al. Application of the tumor site recognizable and dual-responsive nanoparticles for combinational treatment of the drug-resistant colorectal cancer. Pharm Res. 2020;37:72.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Ma J, Qiu T, Tang M, Zhang X, Dong W. In vitro and in vivo combinatorial anticancer effects of oxaliplatin- and resveratrol-loaded N, O-carboxymethyl chitosan nanoparticles against colorectal cancer. Eur J Pharm Sci. 2021;163:105864.

  27. Nichols JW, Bae YH. EPR: evidence and fallacy. J Control Release. 2014;190:451–64.

    Article  CAS  PubMed  Google Scholar 

  28. Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev. 2011;63:170–83.

    Article  CAS  PubMed  Google Scholar 

  30. Anitha A, Maya S, Sivaram AJ, Mony U, Jayakumar R. Combinatorial nanomedicines for colon cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8:151–9.

    Article  CAS  PubMed  Google Scholar 

  31. Udompornmongkol P, Chiang BH. Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. J Biomater Appl. 2015;30:537–46.

    Article  CAS  PubMed  Google Scholar 

  32. Hu Y, He Y, Ji J, Zheng S, Cheng Y. Tumor targeted curcumin delivery by folate-modified MPEG-PCL self-assembly micelles for colorectal cancer therapy. Int J Nanomedicine. 2020;15:1239–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol. 2019;12:137.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yusefi M, Chan HY, Teow SY, Kia P, Lee-Kiun Soon M, Sidik NABC, et al. 5-fluorouracil encapsulated chitosan-cellulose fiber bionanocomposites: synthesis, characterization and in vitro analysis towards colorectal cancer cells. Nanomaterials. 2021;11:1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ge P, Niu B, Wu Y, Xu W, Li M, Sun H, et al. Enhanced cancer therapy of celastrol in vitro and in vivo by smart dendrimers delivery with specificity and biosafety. Chem Eng J. 2020;383:123228.

  36. Soe ZC, Poudel BK, Nguyen HT, Thapa RK, Ou W, Gautam M, et al. Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells. Asian J Pharm Sci. 2019;14:40–51.

    Article  PubMed  Google Scholar 

  37. Bai H, Wang J, Phan CU, Chen Q, Hu X, Shao G, et al. Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment. Nat Commun. 2021;12:759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pan DC, Krishnan V, Salinas AK, Kim J, Sun T, Ravid S, et al. Hyaluronic acid–doxorubicin nanoparticles for targeted treatment of colorectal cancer. Bioeng Transl Med. 2021;6:e10166.

  39. Afzal M, Ameeduzzafar, Alharbi KS, Alruwaili NK, Al-Abassi FA, Al-Malki AAL, et al. Nanomedicine in treatment of breast cancer – a challenge to conventional therapy. Semin Cancer Biol. 2021;69:279-92.

  40. Wang K, Shen R, Meng T, Hu F, Yuan H. Nano-drug delivery systems based on different targeting mechanisms in the targeted therapy of colorectal cancer. Molecules. 2022;27:2981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zappavigna S, Abate M, Cossu AM, Lusa S, Campani V, Scotti L, et al. Urotensin-II-targeted liposomes as a new drug delivery system towards prostate and colon cancer cells. J Oncol. 2019;2019:9293560.

    Article  PubMed  PubMed Central  Google Scholar 

  42. El Hallal R, Lyu N, Wang Y. Effect of cetuximab-conjugated gold nanoparticles on the cytotoxicity and phenotypic evolution of colorectal cancer cells. Molecules. 2021;26:567.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bhattacharya S. Anti-EGFR-mAb and 5-fluorouracil conjugated polymeric nanoparticles for colorectal cancer. Recent Pat Anticancer Drug Discov. 2020;16:84–100.

    Google Scholar 

  44. Wei Y, Gu X, Sun Y, Meng F, Storm G, Zhong Z. Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. J Control Release. 2020;319:407–15.

    Article  CAS  PubMed  Google Scholar 

  45. Jain A, Jain SK, Ganesh N, Barve J, Beg AM. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomedicine. 2010;6:179–90.

    Article  CAS  PubMed  Google Scholar 

  46. Ullah S, Azad AK, Nawaz A, Shah KU, Iqbal M, Albadrani GM, et al. 5-Fluorouracil-loaded folic-acid-fabricated chitosan nanoparticles for site-targeted drug delivery cargo. Polymers (Basel). 2022;14:2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee KJ, Ko EJ, Park YY, Park SS, Ju EJ, Park J, et al. A novel nanoparticle-based theranostic agent targeting LRP-1 enhances the efficacy of neoadjuvant radiotherapy in colorectal cancer. Biomaterials. 2020;255:120151.

  48. Ben Djemaa S, David S, Hervé-Aubert K, Falanga A, Galdiero S, Allard-Vannier E, et al. Formulation and in vitro evaluation of a siRNA delivery nanosystem decorated with gH625 peptide for triple negative breast cancer theranosis. Eur J Pharm Biopharm. 2018;131:99–108.

    Article  CAS  PubMed  Google Scholar 

  49. Leve F, Bonfim DP, Fontes G, Morgado-Díaz JA. Gold nanoparticles regulate tight junctions and improve cetuximab effect in colon cancer cells. Nanomedicine. 2019;14:1665–78.

    Article  Google Scholar 

  50. Khatami F, Matin MM, Danesh NM, Bahrami AR, Abnous K, Taghdisi SM. Targeted delivery system using silica nanoparticles coated with chitosan and AS1411 for combination therapy of doxorubicin and antimiR-21. Carbohydr Polym. 2021;266:118111.

  51. DuRoss AN, Landry MR, Thomas CR, Neufeld MJ, Sun C. Fucoidan-coated nanoparticles target radiation-induced P-selectin to enhance chemoradiotherapy in murine colorectal cancer. Cancer Lett. 2021;500:208–19.

    Article  CAS  PubMed  Google Scholar 

  52. Mary Lazer L, Sadhasivam B, Palaniyandi K, Muthuswamy T, Ramachandran I, Balakrishnan A, et al. Chitosan-based nano-formulation enhances the anticancer efficacy of hesperetin. Int J Biol Macromol. 2018;107:1988–98.

    Article  CAS  PubMed  Google Scholar 

  53. Bagheri E, Abnous K, Farzad SA, Taghdisi SM, Ramezani M, Alibolandi M. Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer. Life Sci. 2020;261:118369.

  54. Xu M, Wen Y, Liu Y, Tan X, Chen X, Zhu X, et al. Hollow mesoporous ruthenium nanoparticles conjugated bispecific antibody for targeted anti-colorectal cancer response of combination therapy. Nanoscale. 2019;11:9661–78.

    Article  CAS  PubMed  Google Scholar 

  55. Mansoori B, Mohammadi A, Abedi-Gaballu F, Abbaspour S, Ghasabi M, Yekta R, et al. Hyaluronic acid-decorated liposomal nanoparticles for targeted delivery of 5-fluorouracil into HT-29 colorectal cancer cells. J Cell Physiol. 2020;235:6817–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen R, Huang Y, Wang L, Zhou J, Tan Y, Peng C, et al. Cetuximab functionalization strategy for combining active targeting and antimigration capacities of a hybrid composite nanoplatform applied to deliver 5-fluorouracil: toward colorectal cancer treatment. Biomater Sci. 2021;9:2279–94.

    Article  CAS  PubMed  Google Scholar 

  57. Jasmine MDC, Prabhu VV. Polymeric nanoparticles-the new face in Drug Delivery and Cancer Therapy. Malaya J Biosci. 2014;1:1–7.

    CAS  Google Scholar 

  58. Zielinska A, Carreiró F, Oliveira AM, Neves A, Pires B, Nagasamy Venkatesh D, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25:3731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hoosain FG, Choonara YE, Tomar LK, Kumar P, Tyagi C, Du Toit LC, et al. Bypassing P-glycoprotein drug efflux mechanisms: possible applications in pharmacoresistant schizophrenia therapy. Biomed Res Int. 2015;2015:484963.

  60. Zhang M, Kim YK, Cui P, Zhang J, Qiao J, He Y, et al. Folate-conjugated polyspermine for lung cancer–targeted gene therapy. Acta Pharm Sin B. 2016;6:336–43.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ravishankar K, Dhamodharan R. Advances in chitosan-based hydrogels: evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents. React Funct Polym. 2020;149:104517.

  62. Herdiana Y, Wathoni N, Shamsuddin S, Joni IM, Muchtaridi M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers (Basel). 2021;13:1717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shanmuganathan R, Edison TNJI, LewisOscar F, Kumar P, Shanmugam S, Pugazhendhi A. Chitosan nanopolymers: an overview of drug delivery against cancer. Int J Biol Macromol. 2019;130:727–36.

    Article  CAS  PubMed  Google Scholar 

  64. Tawfeek HM, Younis MA, Aldosari BN, Almurshedi AS, Abdelfattah A, Abdel-Aleem JA. Impact of the functional coating of silver nanoparticles on their in vivo performance and biosafety. Drug Dev Ind Pharm. 2023;49:349–56.

    Article  CAS  PubMed  Google Scholar 

  65. Abdellatif AAH, Abdelfattah A, Younis MA, Aldalaan SM, Tawfeek HM. Chitosan-capped silver nanoparticles with potent and selective intrinsic activity against the breast cancer cells. Nanotechnol Rev. 2023;12:20220546.

    Article  CAS  Google Scholar 

  66. Culy CR, Clemett D, Wiseman LR. Oxaliplatin A review of its pharmacological properties and clinical efficacy in metastatic colorectal cancer and its potential in other malignancies. Drugs. 2000;60:895–924.

    Article  CAS  PubMed  Google Scholar 

  67. Gaspar VM, Costa EC, Queiroz JA, Pichon C, Sousa F, Correia IJ. Folate-targeted multifunctional amino acid-chitosan nanoparticles for improved cancer therapy. Pharm Res. 2015;32:562–77.

    Article  CAS  PubMed  Google Scholar 

  68. Chen K, Cai H, Zhang H, Zhu H, Gu Z, Gong Q, et al. Stimuli-responsive polymer-doxorubicin conjugate: antitumor mechanism and potential as nano-prodrug. Acta Biomater. 2019;84:339–55.

    Article  CAS  PubMed  Google Scholar 

  69. Xia P, Chen J, Liu Y, Fletcher M, Jensen BC, Cheng Z. Doxorubicin induces cardiomyocyte apoptosis and atrophy through cyclin-dependent kinase 2-mediated activation of forkhead box O1. J Biol Chem. 2020;295:4265–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang F, Cabe M, Nowak HA, Langert KA. Chitosan/poly(lactic-co-glycolic)acid nanoparticle formulations with finely-tuned size distributions for enhanced mucoadhesion. Pharmaceutics. 2022;14:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Upadhyay J, Shah K. Implementation of factorial experimental design in chitosan - tripolyphosphate nanoparticles development by ionotropic gelation. Int J Health Sci (Qassim). 2022;6:8529–43.

    Google Scholar 

  72. Chaichanasak N, Rojanapanthu P, Yoon Y, Gritsanapan W, Chirachanchai S, Sathirakul K, et al. Chitosan-based nanoparticles with damnacanthal suppress CRM1 expression. Oncol Lett. 2018;16:7029–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tang X, Zeng B, Gao J-K, Liu H-Q. Molecular mechanism of enhanced anticancer effect of nanoparticle formulated LY2835219 via p16-CDK4/6-pRb pathway in colorectal carcinoma cell line. J Nanomater. 2016;2016:2095878.

    Article  Google Scholar 

  74. Orkhan F, Melike U, Cihan G, Faruk DO, Samet B, Ilknur U, Alemdar J. RBD and ACE2 embedded chitosan nanoparticles as a prevention approach for SARS-COV 2. Biomed J Sci Tech Res. 2021;37:29193–7.

    Google Scholar 

  75. Zhou T, Liu Y, Lei K, Liu J, Hu M, Guo L, et al. A “Trojan Horse” strategy: the preparation of bile acid-modifying irinotecan hydrochloride nanoliposomes for liver-targeted anticancer drug delivery system study. Molecules. 2023;28:1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mikušová V, Mikuš P. Advances in chitosan-based nanoparticles for drug delivery. Int J Mol Sci. 2021;22:9652.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK. Chitosan nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics. 2021;13:1686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Min Y, Caster JM, Eblan MJ, Wang AZ. Clinical translation of nanomedicine. Chem Rev. 2015;115:11147–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.

    Article  CAS  PubMed  Google Scholar 

  80. Younis MA, Sato Y, Elewa YHA, Harashima H. Reprogramming activated hepatic stellate cells by siRNA-loaded nanocarriers reverses liver fibrosis in mice. J Control Release. 2023;361:592–603.

    Article  CAS  PubMed  Google Scholar 

  81. Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2:750–63.

    Article  CAS  PubMed  Google Scholar 

  82. Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. AAPS Journal. 2012;14:303–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. 2012;161:175–87.

    Article  CAS  PubMed  Google Scholar 

  84. JØlck RI, Feldborg LN, Andersen S, Moghimi SM, Andresen TL. Engineering liposomes and nanoparticles for biological targeting. Adv Biochem Eng Biotechnol. 2011;125:251–80.

  85. Sapra P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv. 2005;2:369–81.

    Article  CAS  PubMed  Google Scholar 

  86. Grieco P, Rovero P, Novellino E. Recent structure-activity studies of the peptide hormone urotensin-II, a potent vasoconstrictor. Curr Med Chem. 2004;11:969–79.

    Article  CAS  PubMed  Google Scholar 

  87. Maguire JJ, Davenport AP. Is urotensin-II the new endothelin? Br J Pharmacol. 2002;137:579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Takahashi K, Totsune K, Murakami O, Shibahara S. Expression of urotensin II and urotensin II receptor mRNAs in various human tumor cell lines and secretion of urotensin II-like immunoreactivity by SW-13 adrenocortical carcinoma cells. Peptides. 2001;22:1175–9.

    Article  CAS  PubMed  Google Scholar 

  89. Federico A, Zappavigna S, Romano M, Grieco P, Luce A, Marra M, et al. Urotensin-II receptor is over-expressed in colon cancer cell lines and in colon carcinoma in humans. Eur J Clin Invest. 2014;44:285–94.

    Article  CAS  PubMed  Google Scholar 

  90. Banu H, Sethi DK, Edgar A, Sheriff A, Rayees N, Renuka N, et al. Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J Photochem Photobiol B. 2015;149:116–28.

    Article  CAS  PubMed  Google Scholar 

  91. Mackey MA, El-Sayed MA. Chemosensitization of cancer cells via gold nanoparticle-induced cell cycle regulation. Photochem Photobiol. 2014;90:306–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cui L, Her S, Dunne M, Borst GR, De Souza R, Bristow RG, et al. Significant radiation enhancement effects by gold nanoparticles in combination with cisplatin in triple negative breast cancer cells and tumor xenografts. Radiat Res. 2017;187:147–60.

    Article  CAS  PubMed  Google Scholar 

  93. Zhao X, Pan J, Li W, Yang W, Qin L, Pan Y. Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels. Int J Nanomedicine. 2018;13:6207–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Agabeigi R, Rasta SH, Rahmati-Yamchi M, Salehi R, Alizadeh E. Novel chemo-photothermal therapy in breast cancer using methotrexate-loaded folic acid conjugated Au@SiO2 nanoparticles. Nanoscale Res Lett. 2020;15:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu D, Sun J, Zhu J, Zhou H, Zhang X, Zhang Y. Expression and clinical significance of colorectal cancer stem cell marker EpCAMhigh/CD44+ in colorectal cancer. Oncol Lett. 2014;7:1544–8.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Qian Y, Qiu M, Wu Q, Tian Y, Zhang Y, Gu N, et al. Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles. Sci Rep. 2014;4:7490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kao HW, Lin YY, Chen CC, Chi KH, Tien DC, Hsia CC, et al. Biological characterization of cetuximab-conjugated goldnanoparticles in a tumor animal model. Nanotechnology. 2014;25:295102.

  98. Andrade LM, Martins EMN, Versiani AF, Reis DS, da Fonseca FG, Souza IP de, et al. The physicochemical and biological characterization of a 24-month-stored nanocomplex based on gold nanoparticles conjugated with cetuximab demonstrated long-term stability, EGFR affinity and cancer cell death due to apoptosis. Mater Sci Eng C. 2020;107:110203.

  99. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev. 1998;98:2045–76.

    Article  CAS  PubMed  Google Scholar 

  100. Weng W, Feng J, Qin H, Ma Y. Molecular therapy of colorectal cancer: progress and future directions. Int J Cancer. 2015;136:493–502.

    Article  CAS  PubMed  Google Scholar 

  101. Normanno N, Tejpar S, Morgillo F, De Luca A, Van Cutsem E, Ciardiello F. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol. 2009;6:519–27.

    Article  CAS  PubMed  Google Scholar 

  102. Waddell T, Cunningham D. Evaluation of regorafenib in colorectal cancer and GIST. Lancet. 2013;381:273–5.

    Article  PubMed  Google Scholar 

  103. Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelderblom H, et al. Effi cacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381:295–302.

    Article  CAS  PubMed  Google Scholar 

  104. Mir O, Brodowicz T, Italiano A, Wallet J, Blay JY, Bertucci F, et al. Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2016;17:1732–42.

    Article  CAS  PubMed  Google Scholar 

  105. Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 2017;17:79–92.

    Article  CAS  PubMed  Google Scholar 

  106. Xiong M, Lei Q, You X, Gao T, Song X, Xia Y, et al. Mannosylated liposomes improve therapeutic effects of paclitaxel in colon cancer models. J Microencapsul. 2017;34:513–21.

    Article  CAS  PubMed  Google Scholar 

  107. Fan NJ, Chen HM, Song W, Zhang ZY, Zhang MD, Feng LY, et al. Macrophage mannose receptor 1 and S100A9 were identified as serum diagnostic biomarkers for colorectal cancer through a label-free quantitative proteomic analysis. Cancer Biomark. 2016;16:235–43.

    Article  PubMed  Google Scholar 

  108. García-Fernández A, Aznar E, Martínez-Máñez R, Sancenón F. New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers. Small. 2020;16:e1902242.

  109. Kankala RK, Han YH, Na J, Lee CH, Sun Z, Wang S Bin, et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv Mater. 2020;32:e1907035.

  110. Wang Y, Huang HY, Yang L, Zhang Z, Ji H. Cetuximab-modified mesoporous silica nano-medicine specifically targets EGFR-mutant lung cancer and overcomes drug resistance. Sci Rep. 2016;6:25468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Brar B, Ranjan K, Palria A, Kumar R, Ghosh M, Sihag S, et al. Nanotechnology in colorectal cancer for precision diagnosis and therapy. Front Nanotechnol. 2021;3:699266.

  112. Stang J, Haynes M, Carson P, Moghaddam M. A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Trans Biomed Eng. 2012;59:2431–8.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Blick SKA, Scott LJ, Ciardiello F, Magrassi F, Lanzara A, Galizia G. Cetuximab: A review of its use in squamous cell carcinoma of the head and neck and metastatic colorectal cancer. Drugs. 2007;67:2585–607.

    Article  CAS  PubMed  Google Scholar 

  114. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005;23:1147–57.

    Article  CAS  PubMed  Google Scholar 

  115. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351:337–45.

    Article  CAS  PubMed  Google Scholar 

  116. Danafar H, Sharafi A, Kheiri Manjili H, Andalib S. Sulforaphane delivery using mPEG–PCL co-polymer nanoparticles to breast cancer cells. Pharm Dev Technol. 2017;22:642–51.

    Article  CAS  PubMed  Google Scholar 

  117. Zamani M, Shirinzadeh A, Aghajanzadeh M, Andalib S, Danafar H. In vivo study of mPEG–PCL as a nanocarriers for anti-inflammatory drug delivery of simvastatin. Pharm Dev Technol. 2019;24:663–70.

    Article  CAS  PubMed  Google Scholar 

  118. Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, et al. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale. 2011;3:1558–67.

    Article  CAS  PubMed  Google Scholar 

  119. Gou M, Wei X, Men K, Wang B, Luo F, Zhao X, et al. PCL/PEG copolymeric nanoparticles: potential nanoplatforms for anticancer agent delivery. Curr Drug Targets. 2011;12:1131–50.

    Article  CAS  PubMed  Google Scholar 

  120. Xue J, Liu Y, Wan L, Zhu Y. Comprehensive analysis of differential gene expression to identify common gene signatures in multiple cancers. Med Sci Monit. 2020;26:e919953-1–13.

  121. Younis MA, Khalil IA, Abd Elwakil MM, Harashima H. A multifunctional lipid-based nanodevice for the highly specific codelivery of sorafenib and midkine siRNA to hepatic cancer cells. Mol Pharm. 2019;16:4031–44.

    Article  CAS  PubMed  Google Scholar 

  122. Belete TM. The current status of gene therapy for the treatment of cancer. Biologics. 2021;15:67–77.

    PubMed  PubMed Central  Google Scholar 

  123. Nakamura T, Sato Y, Yamada Y, Abd Elwakil MM, Kimura S, Younis MA, et al. Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv Drug Deliv Rev. 2022;188: 114417.

    Article  CAS  PubMed  Google Scholar 

  124. Khalil IA, Younis MA, Kimura S, Harashima H. Lipid nanoparticles for cell-specific in Vivo Targeted Delivery of Nucleic Acids. Biol Pharm Bull. 2020;43:584–95.

    Article  CAS  PubMed  Google Scholar 

  125. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B. Natural Killer (NK) Cell–mediated cytotoxicity: differential use of TRAIL and fas ligand by immature and mature primary human NK cells. J Exp Med. 1998;188:2375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Deng D, Shah K. TRAIL of hope meeting resistance in cancer. Trends Cancer. 2020;6:989–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lemke J, von Karstedt S, Zinngrebe J, Walczak H. Getting TRAIL back on track for cancer therapy. Cell Death Differ. 2014;21:1350–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pishavar E, Ramezani M, Hashemi M. Co-delivery of doxorubicin and TRAIL plasmid by modified PAMAM dendrimer in colon cancer cells, in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2019;45:1931–9.

    Article  CAS  PubMed  Google Scholar 

  129. Ju H-Q, Lu Y-X, Wu Q-N, Liu J, Zeng Z-L, Mo H-Y, et al. Disrupting G6PD-mediated Redox homeostasis enhances chemosensitivity in colorectal cancer. Oncogene. 2017;36:6282–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Younis MA, Sato Y, Elewa YHA, Kon Y, Harashima H. Self-homing nanocarriers for mRNA delivery to the activated hepatic stellate cells in liver fibrosis. J Control Release. 2023;353:685–98.

    Article  CAS  PubMed  Google Scholar 

  131. Gao Y, Men K, Pan C, Li J, Wu J, Chen X, et al. Functionalized DMP-039 hybrid nanoparticle as a novel mRNA vector for efficient cancer suicide gene therapy. Int J Nanomedicine. 2021;16:5211–32.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Vascotto F, Petschenka J, Walzer KC, Vormehr M, Brkic M, Strobl S, et al. Intravenous delivery of the toll-like receptor 7 agonist SC1 confers tumor control by inducing a CD8+ T cell response. Oncoimmunology. 2019;8: e1601480.

    Article  Google Scholar 

  133. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics — developing a new class of drugs. Nat Rev Drug Discov. 2014;13:759–80.

    Article  CAS  PubMed  Google Scholar 

  134. Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512:324–7.

    Article  CAS  PubMed  Google Scholar 

  135. Reinhard K, Rengstl B, Oehm P, Michel K, Billmeier A, Hayduk N, et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science. 1979;2020(367):446–53.

    Google Scholar 

  136. Huang P-W, Chang JW-C. Immune checkpoint inhibitors win the 2018 Nobel Prize. Biomed J. 2019;42:299–306.

  137. Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH. A review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol. 2020;27:87–97.

    Article  Google Scholar 

  138. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:651–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ni Q, Zhang F, Liu Y, Wang Z, Yu G, Liang B, et al. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. Sci Adv. 2020;6:eaaw6071.

  140. Cheng K, Zhao R, Li Y, Qi Y, Wang Y, Zhang Y, et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat Commun. 2021;12:2041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chang M, Hou Z, Jin D, Zhou J, Wang M, Wang M, et al. Colorectal tumor microenvironment‐activated bio‐decomposable and metabolizable Cu2O@CaCO3 nanocomposites for synergistic oncotherapy. Adv Mater. 2020;32:e2004647.

  142. Ginghină O, Hudiță A, Zaharia C, Tsatsakis A, Mezhuev Y, Costache M, et al. Current landscape in organic nanosized materials advances for improved management of colorectal cancer patients. Materials. 2021;14:2440.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Sun J, Zhao J, Jiang F, Wang L, Xiao Q, Han F, et al. Identification of novel protein biomarkers and drug targets for colorectal cancer by integrating human plasma proteome with genome. Genome Med. 2023;15:75.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Modi S, Anderson BD. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol Pharm. 2013;10:3076–89.

    Article  CAS  PubMed  Google Scholar 

  145. Yalikong A, Li X-Q, Zhou P-H, Qi Z-P, Li B, Cai S-L, et al. A triptolide loaded HER2-targeted nano-drug delivery system significantly suppressed the proliferation of HER2-positive and BRAF mutant colon cancer. Int J Nanomedicine. 2021;16:2323–35.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA. Minireview: nanoparticles and the immune system. Endocrinology. 2010;151:458–65.

    Article  CAS  PubMed  Google Scholar 

  147. Molinari C, Marisi G, Passardi A, Matteucci L, De Maio G, Ulivi P. Heterogeneity in colorectal cancer: a challenge for personalized medicine? Int J Mol Sci. 2018;19:3733.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Abdellatif AA, Younis MA, Alsharidah M, Al Rugaie O, Tawfeek HM. Biomedical applications of quantum dots: overview, challenges, and clinical potential. Int J Nanomedicine. 2022;17:1951–70.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

• Ahmed A. H. Abdellatif: conceptualization; design; validation; supervision; writing the original draft of the manuscript.

• Abdulmajeed S. Alshubrumi: data collection; presentation; visualization; writing the original draft of the manuscript.

• Mahmoud A. Younis: conceptualization; design; visualization, writing review and editing.

Corresponding authors

Correspondence to Ahmed A. H. Abdellatif or Mahmoud A. Younis.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellatif, A.A.H., Alshubrumi, A.S. & Younis, M.A. Targeted Nanoparticles: the Smart Way for the Treatment of Colorectal Cancer. AAPS PharmSciTech 25, 23 (2024). https://doi.org/10.1208/s12249-024-02734-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02734-9

Keywords

Navigation