Skip to main content
Log in

A Quality by Design Approach for Developing SNEDDS Loaded with Vemurafenib for Enhanced Oral Bioavailability

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Vemurafenib (VMF) is a practically insoluble (< 0.1 μg/mL) and least bioavailable (1%) drug. To enhance its oral bioavailability and solubility, we formulated a reliable self-nano emulsifying drug delivery system (SNEDDS). A Quality by Design (QbD) approach was used to optimize the ratio of Capryol 90, Tween 80, and Transcutol HP. VMF-loaded SNEDDS was characterized for its size, polydispersity index (PDI), zeta potential, drug content, and transmittance. The in vitro release profile of the drug loaded in SNEDDS was compared to the free drug in two media, pH 6.8 and 1.2, and the data obtained were analyzed with different mathematical models. A reverse-phase ultra-pressure liquid chromatography (UPLC) technique with high sensitivity and selectivity was developed and validated for the quantification of VMF in analytical and bioanalytical samples. Dissolution efficiency for SNEDDS was estimated using different models, which proved that the developed novel SNEDDS formulation had a better in vitro dissolution profile than the free drug. A 2.13-fold enhanced oral bioavailability of VMF-loaded SNEDDS compared to the free drug demonstrates the superiority of the developed formulation. This work thus presents an overview of VMF-loaded SNEDDS as a promising alternative to improve the oral bioavailability of the drug.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bhalani DV, Nutan B, Kumar A, Singh Chandel AK. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines. 2022;10(9):2055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  3. Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in oral drug delivery. Front Pharmacol. 2021;12:618411.

  4. Kim G, McKee AE, Ning YM, Hazarika M, Theoret M, Johnson JR, et al. FDA approval summary: Vemurafenib for treatment of unresectable or metastatic melanoma with the BRAFV600E mutation. Clin Cancer Res. 2014;20(19):4994–5000.

    Article  CAS  PubMed  Google Scholar 

  5. Zelboraf® Tablets, Roche 2011. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202429Orig1s000ClinPharmR.pdf.

  6. Garbe C, Abusaif S, Eigentler TK. Vemurafenib. Recent Results Cancer Res. 2014;201:215–25.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma A, Shah SR, Illum H, Dowell J. Vemurafenib: Targeted inhibition of mutated BRAF for treatment of advanced melanoma and its potential in other malignancies. Drugs. 2012;72:2207–22.

    Article  CAS  PubMed  Google Scholar 

  8. Hagen BJ. Managing side effects of vemurafenib therapy for advanced melanoma. J Adv Pract Oncol. 2014;5(6):400.

    PubMed  PubMed Central  Google Scholar 

  9. Haroche J, Cohen-Aubart F, Emile JF, Arnaud L, Maksud P, Charlotte F, et al. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood, J Am Soc Hematol. 2013;121(9):1495–500.

    CAS  Google Scholar 

  10. Ellenberger DJ, Miller DA, Kucera SU, Williams RO III. Improved vemurafenib dissolution and pharmacokinetics as an amorphous solid dispersion produced by KinetiSol® processing. AAPS PharmSciTech. 2018;19(5):1957–70.

    Article  CAS  PubMed  Google Scholar 

  11. Bergström CA, Charman WN, Porter CJ. Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Adv Drug Deliv Rev. 2016;101:6–21.

    Article  PubMed  Google Scholar 

  12. Martinez SR, Gay MS, BDDCS LJADDR. The rule of 5 and drugability. 2016;176:139–48.

  13. Goldinger SM, Rinderknecht J, Dummer R, Kuhn FP, Yang KH, Lee L, et al. A single-dose mass balance and metabolite-profiling study of vemurafenib in patients with metastatic melanoma. Pharmacol Res Perspect. 2015;3(2):e00113.

  14. Craik CJB. NIH public access. 2008;23(1):1-7.

  15. Araujo F, Shrestha N, Shahbazi MA, Liu D, Herranz-Blanco B, Makila EM, et al. Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs. ACS nano. 2015;9(8):8291–302.

    Article  CAS  PubMed  Google Scholar 

  16. Juère E, Del Favero G, Masse F, Marko D, Popat A, Florek J, et al. Gastro-protective protein-silica nanoparticles formulation for oral drug delivery: In vitro release, cytotoxicity and mitochondrial activity. Eur J Pharm Biopharm. 2020;151:171–80.

    Article  PubMed  Google Scholar 

  17. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, et al. Vemurafenib: The first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov. 2012;11(11):873–86.

    Article  CAS  PubMed  Google Scholar 

  18. Fleisher D, Li C, Zhou Y, Pao LH, Karim A. Drug, meal and formulation interactions influencing drug absorption after oral administration: clinical implications. Clin Pharmacokinet. 1999;36:233–54.

    Article  CAS  PubMed  Google Scholar 

  19. Dahan A, Hoffman A. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J Control Release. 2008;129(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  20. Kohli K, Chopra S, Dhar D, Arora S, Khar RK. Self-emulsifying drug delivery systems: An approach to enhance oral bioavailability. Drug Discov Today. 2010;15(21–22):958–65.

    Article  CAS  PubMed  Google Scholar 

  21. Jaiswal P, Aggarwal G. Bioavailability enhancdement of poorly soluble drugs by SMEDDS: a review. J Drug Deliv Ther. 2013;3(1). https://doi.org/10.22270/jddt.v3i1.360

  22. Wang Q, Wei C, Weng W, Bao R, Adu-Frimpong M, Toreniyazov E, et al. Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome. Int J Pharm. 2021;592:120036.

  23. Elsayad MK, Mowafy HA, Zaky AA, Samy AM. Chitosan caged liposomes for improving oral bioavailability of rivaroxaban: In vitro and in vivo evaluation. Pharm Dev Technol. 2021;26(3):316–27.

    Article  CAS  PubMed  Google Scholar 

  24. Yang T, Feng J, Zhang Q, Wu W, Mo H, Huang L, et al. l-Carnitine conjugated chitosan-stearic acid polymeric micelles for improving the oral bioavailability of paclitaxel. Drug Deliv. 2020;27(1):575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kushwaha AK, Vuddanda PR, Karunanidhi P, Singh SK, Singh S. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. Biomed Res Int. 2013;2013:584549. https://doi.org/10.1155/2013/584549

  26. Souto EB, Müller RH. Lipid nanoparticles: Effect on bioavailability and pharmacokinetic changes. Handb Exp Pharmacol. 2010;197:115–41.

    Article  CAS  Google Scholar 

  27. Zhuang CY, Li N, Wang M, Zhang XN, Pan WS, Peng JJ, et al. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm. 2010;394(1–2):179–85.

    Article  CAS  PubMed  Google Scholar 

  28. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49.

    Article  CAS  PubMed  Google Scholar 

  29. Bhagwat DA, Swami PA, Nadaf SJ, Choudhari PB, Kumbar VM, More HN, et al. Capsaicin loaded solid SNEDDS for enhanced bioavailability and anticancer activity: In-vitro, in-silico, and in-vivo characterization. J Pharm Sci. 2021;110(1):280–91.

    Article  CAS  PubMed  Google Scholar 

  30. Anwer MK, Iqbal M, Aldawsari MF, Alalaiwe A, Ahmed MM, Muharram MM, et al. Improved antimicrobial activity and oral bioavailability of delafloxacin by self-nanoemulsifying drug delivery system (SNEDDS). J Drug Deliv Sci Technol. 2021;64:102572.

  31. Wang L, Dong J, Chen J, Eastoe J, Li X. Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci. 2009;330(2):443–8.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Alvarez JC, Funck-Brentano E, Abe E, Etting I, Saiag P, Knapp AJJoP, et al. A LC/MS/MS micro-method for human plasma quantification of vemurafenib. Application to treated melanoma patients. J Pharm Biomed Anal. 2014;97:29–32.

  33. Rathod D, Fu Y, Patel K. BRD4 PROTAC as a novel therapeutic approach for the treatment of vemurafenib resistant melanoma: Preformulation studies, formulation development and in vitro evaluation. Eur J Pharm Sci. 2019;138:105039.

  34. Shah N, Iyer RM, Mair HJ, Choi D, Tian H, Diodone R, et al. Improved human bioavailability of vemurafenib, a practically insoluble drug, using an amorphous polymer-stabilized solid dispersion prepared by a solvent-controlled coprecipitation process. J Pharm Sci. 2013;102(3):967–81.

    Article  CAS  PubMed  Google Scholar 

  35. Ashfaq M, Shah S, Rasul A, Hanif M, Khan HU, Khames A, et al. Enhancement of the solubility and bioavailability of pitavastatin through a self-nanoemulsifying drug delivery system (SNEDDS). Pharmaceutics. 2022;14(3):482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borman P, Elder D. Q2 (R1) validation of analytical procedures: Text and methodology. Wiley: ICH Quality Guidelines; 2017. pp. 127–66.

  37. Ich ICH. Topic Q2 (R1) validation of analytical procedures: text and methodology. Vol. 1994. Geneva: International Conference on Harmonization (ICH); 2005. p. 17.

  38. Cho HJ, Lee DW, Marasini N, Poudel BK, Kim JH, Ramasamy T, et al. Optimization of self-microemulsifying drug delivery system for telmisartan using Box-Behnken design and desirability function. J Pharm Pharmacol. 2013;65(10):1440–50.

    Article  CAS  PubMed  Google Scholar 

  39. Qian J, Meng H, Xin L, Xia M, Shen H, Li G, et al. Self-nanoemulsifying drug delivery systems of myricetin: Formulation development, characterization, and in vitro and in vivo evaluation. Colloids Surf B Biointerfaces. 2017;160:101–9.

    Article  CAS  PubMed  Google Scholar 

  40. Reddy DS, Shafi H, Bharti R, Roy T, Verma S, Raman SK, et al. Preparation and evaluation of low-dose calcitriol dry powder inhalation as host-directed adjunct therapy for tuberculosis. Pharm Res. 2022;39(10):2621–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Senapati PC, Sahoo SK, Sahu AN. Mixed surfactant based (SNEDDS) self-nanoemulsifying drug delivery system presenting efavirenz for enhancement of oral bioavailability. Biomed Pharmacother. 2016;80:42–51.

    Article  CAS  PubMed  Google Scholar 

  42. Ahsan MN, Verma PRP. Enhancement of in vitro dissolution and pharmacodynamic potential of olanzapine using solid SNEDDS. J Pharm Investig. 2018;48(3):269–78.

    Article  CAS  Google Scholar 

  43. Badran MM, Taha EI, Tayel MM, Al-Suwayeh SA. Ultra-fine self nanoemulsifying drug delivery system for transdermal delivery of meloxicam: Dependency on the type of surfactants. J Mol Liq. 2014;190:16–22.

    Article  CAS  Google Scholar 

  44. Kanwal T, Kawish M, Maharjan R, Ghaffar I, Ali HS, Imran M, et al. Design and development of permeation enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for ceftriaxone sodium improved oral pharmacokinetics. J Mol Liq. 2019;289:111098.

  45. Gautam S, Marwaha D, Singh N, Rai N, Sharma M, Tiwari P, et al. Self-assembled redox-sensitive polymeric nanostructures facilitate the intracellular delivery of paclitaxel for improved breast cancer therapy. Mol Pharmaceutics. 2023;20(4):1914–32.

    Article  CAS  Google Scholar 

  46. Panner Selvam R, Kulkarni PK, Naga Sravan Kumar Varma V. Porous polystyrene spheres loaded self nano-emulsifying systems of rosuvastatin calcium. RSC Adv. 2015;5:69642–50.

  47. Baloch J, Sohail MF, Sarwar HS, Kiani MH, Khan GM, Jahan S, et al. Self-nanoemulsifying drug delivery system (SNEDDS) for improved oral bioavailability of chlorpromazine: in vitro and in vivo evaluation. Medicina. 2019;55(5):210.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rahman MA, Iqbal Z, Hussain A. Formulation optimization and in vitro characterization of sertraline loaded self-nanoemulsifying drug delivery system (SNEDDS) for oral administration. J Pharm Investig. 2012;42:191–202.

    Article  CAS  Google Scholar 

  49. Attivi D, Ajana I, Astier A, Demoré B, Gibaud S. Development of microemulsion of mitotane for improvement of oral bioavailability. Drug Dev Ind Pharm. 2010;36(4):421–7.

    Article  CAS  PubMed  Google Scholar 

  50. US-FDA Dissolution data base [Internet]. US-FDA. Available from: https://www.accessdata.fda.gov/scripts/cder/dissolution/dsp_SearchResults.cfm.

  51. Date AA, Nagarsenker MS. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int J Pharm. 2007;329(1–2):166–72.

    Article  CAS  PubMed  Google Scholar 

  52. Villar AMS, Naveros BC, Campmany ACC, Trenchs MA, Rocabert CB, Bellowa LH. Design and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for enhanced dissolution of gemfibrozil. Int J Pharm. 2012;431(1–2):161–75.

    Article  CAS  PubMed  Google Scholar 

  53. Mishra K, Verma SK, Ratre P, Banjare L, Jain A, Thareja S, et al. In silico molecular interaction studies of chitosan polymer with aromatase inhibitor: Leads to letrozole nanoparticles for the treatment of breast cancer. Anticancer Agents Med Chem. 2021;21(9):1191–9.

    Article  CAS  PubMed  Google Scholar 

  54. Zhen Y, Thomas-Schoemann A, Sakji L, Boudou-Rouquette P, Dupin N, Mortier L, et al. An HPLC-UV method for the simultaneous quantification of vemurafenib and erlotinib in plasma from cancer patients. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;28:93–7.

    Article  Google Scholar 

  55. Nijenhuis CM. Clinical pharmacology of novel anticancer agents: Bioanalysis-clinical pharmacokinetics-mass balance studies: Utrecht University; 2016.

  56. Mardiyanto M, Fithri NA, Tandry M. Characterization and optimization of capryol-90, polysorbate-80, and peg-400 proportion in mefenamic acid self nanoemulsifying drug delivery system (SNEDDS) with simplex-lattice-design. Sci Technol Indones. 2018;3(4):164–72.

    Article  Google Scholar 

  57. Fitria A, Hanifah S, Chabib L, Uno AM, Munawwarah H, Atsil N, et al. Design and characterization of propolis extract loaded self-nano emulsifying drug delivery system as immunostimulant. Saudi Pharm J. 2021;29(6):625–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kawakami K, Yoshikawa T, Moroto Y, Kanaoka E, Takahashi K, Nishihara Y, et al. Microemulsion formulation for enhanced absorption of poorly soluble drugs: I. Prescription design J Control Release. 2002;81(1–2):65–74.

    Article  CAS  PubMed  Google Scholar 

  59. Hassan AK. Effective surfactants blend concentration determination for o/w emulsion stabilization by two nonionic surfactants by simple linear regression. Indian J Pharm Sci. 2015;77(4):461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pouton CW, Porter CJ. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6):625–37.

    Article  CAS  PubMed  Google Scholar 

  61. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64:175–93.

    Article  Google Scholar 

  62. Visetvichaporn V, Kim KH, Jung K, Cho YS, Kim DD. Formulation of self-microemulsifying drug delivery system (SMEDDS) by D-optimal mixture design to enhance the oral bioavailability of a new cathepsin K inhibitor (HL235). Int J Pharm. 2020;573:118772.

  63. Rao AL, Prasanthi T, Chakradhar JVUS, Mounika GNL, Triveni B, Bindu AH, et al. RP-HPLC method development and validation for the estimation of imipramine hydrochloride in pharmaceutical dosage form. JPMC. 2017;3(2):67.

    Google Scholar 

  64. Ahmad J, Mir SR, Kohli K, Amin S. Effect of oil and co-surfactant on the formation of Solutol HS 15 based colloidal drug carrier by Box-Behnken statistical design. Colloids Surf A Physicochem Eng Asp. 2014;453:68–77.

    Article  CAS  Google Scholar 

  65. Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9(6):304–16.

    Article  Google Scholar 

  66. Dholakiya A, Dudhat K, Patel J, Mori D. An integrated QbD based approach of SMEDDS and liquisolid compacts to simultaneously improve the solubility and processability of hydrochlorthiazide. J Drug Deliv Sci Technol. 2021;61:102162.

  67. Elnaggar YS, El-Massik MA, Abdallah OY. Self-nanoemulsifying drug delivery systems of tamoxifen citrate: design and optimization. Int J Pharm. 2009;380(1–2):133–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Sophisticated Analytical Instrument Facility (SAIF) of CSIR-CDRI, Lucknow. This is CSIR-CDRI Communication 10713.

Author information

Authors and Affiliations

Authors

Contributions

CJVUS perceived the study, designed and monitored the experiment, data analysis, and wrote the manuscript. NK, SS, and SV contributed in performing in vivo studies. HS, DVSR, and AK performed data analysis and compiled manuscript. RR and KM performed manuscript editing. MKC conceived the study, guided for the experiments, and supervised the drafting of the manuscript.

Corresponding author

Correspondence to Manish K. Chourasia.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

JVUS, C., Kothuri, N., Singh, S. et al. A Quality by Design Approach for Developing SNEDDS Loaded with Vemurafenib for Enhanced Oral Bioavailability. AAPS PharmSciTech 25, 14 (2024). https://doi.org/10.1208/s12249-023-02725-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02725-2

Keywords

Navigation