Skip to main content

Advertisement

Log in

Potential Applications and Additive Manufacturing Technology-Based Considerations of Mesoporous Silica: A Review

  • Review Article
  • Novel Advances in 3-D Printing Technology in Drug Delivery
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Nanoporous materials are categorized as microporous (pore sizes 0.2–2 nm), mesoporous (pore sizes 2–50 nm), and macroporous (pore sizes 50–1000 nm). Mesoporous silica (MS) has gained a significant interest due to its notable characteristics, including organized pore networks, specific surface areas, and the ability to be integrated in a variety of morphologies. Recently, MS has been widely accepted by range of manufacturer and as drug carrier. Moreover, silica nanoparticles containing mesopores, also known as mesoporous silica nanoparticles (MSNs), have attracted widespread attention in additive manufacturing (AM). AM commonly known as three-dimensional printing is the formalized rapid prototyping (RP) technology. AM techniques, in comparison to conventional methods, aid in reducing the necessity for tooling and allow versatility in product and design customization. There are generally several types of AM processes reported including VAT polymerization (VP), powder bed fusion (PBF), sheet lamination (SL), material extrusion (ME), binder jetting (BJ), direct energy deposition (DED), and material jetting (MJ). Furthermore, AM techniques are utilized in fabrication of various classified fields such as architectural modeling, fuel cell manufacturing, lightweight machines, medical, and fabrication of drug delivery systems. The review concisely elaborates on applications of mesoporous silica as versatile material in fabrication of various AM-based pharmaceutical products with an elaboration on various AM techniques to reduce the knowledge gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data can be made available on request to corresponding authors.

Abbreviations

MSNs:

Mesoporous silica nanoparticles

AM:

Additive manufacturing

RP:

Rapid prototyping

VP:

VAT polymerization

PBF:

Powder bed fusion

SL:

Sheet lamination

ME:

Material extrusion

BJ:

Binder jetting

DED:

Direct energy deposition

MJ:

Material jetting

3D:

Three-dimensional

4D:

Four-dimensional

CAD:

Computer-aided design

CO2 :

Carbon dioxide

FDM:

Fused deposition modeling

(8):

Stereolithography

SLS:

Selective laser sintering

PBF:

Powder bed fusion

DLP:

Digital light processing

MS:

Mesoporous silica

IUPAC:

International Union of Pure and Applied Chemistry

DOX:

Doxorubicin

(69):

Polyethylene glycol

CLIP:

Continuous liquid interface production

TPP:

Two-photon polymerization

EBM:

Electron beam melting

(183):

Laminated object manufacturing

(96):

Ultrasonic additive manufacturing

HME:

Hot melt extrusion

FDM:

Fused deposition modeling

LENS:

Laser-engineered net shaping

References

  1. Chen L, Zhou X, He C. Mesoporous silica nanoparticles for tissue-engineering applications. WIREs Nanomed Nanobiotechnol. 2019;11(6):e1573.

    Article  Google Scholar 

  2. Zhang X, Zhang X, Xu A, Yu M, Xu Y, Xu Y, et al. Aptamer-gated mesoporous silica nanoparticles for N protein triggered release of remdesivir and treatment of novel coronavirus (2019-nCoV). Biosensors [Internet]. 2022;12(11).

  3. Yuan D, Ellis CM, Davis JJ. Mesoporous silica nanoparticles in bioimaging. Materials (Basel, Switzerland). 2020;13(17).

  4. Porrang S, Davaran S, Rahemi N, Allahyari S, Mostafavi E. How advancing are mesoporous silica nanoparticles? A comprehensive review of the literature. Int J Nanomed. 2022;17:1803–27.

    Article  Google Scholar 

  5. Balakrishnan HK, Doeven EH, Merenda A, Dumée LF, Guijt RM. 3D printing for the integration of porous materials into miniaturised fluidic devices: a review. Anal Chim Acta. 2021;1185:338796.

    Article  CAS  PubMed  Google Scholar 

  6. Nace S, Tiernan J, Ní Annaidh A, Holland D. Development and evaluation of a facile mesh-to-surface tool for customised wheelchair cushions. 3D Print Med. 2023;9(1):1–12.

    Article  Google Scholar 

  7. Mangla SK, Kazancoglu Y, Sezer MD, Top N, Sahin I. Optimizing fused deposition modelling parameters based on the design for additive manufacturing to enhance product sustainability. Comput Ind. 2023;145:103833.

    Article  Google Scholar 

  8. Priestley GC. Molecular aspects of dermatology: John Wiley & Sons; 1993.

  9. Wang L, Yu H, Hao Z, Tang W, Dou R. Fabrication of highly translucent yttria-stabilized zirconia ceramics using stereolithography-based additive manufacturing. Ceram Int. 2023.

  10. Lu J, Zhuo L. Additive manufacturing of titanium alloys via selective laser melting: fabrication, microstructure, post-processing, performance and prospect. Int J Refract Met Hard Mater. 2023:106110.

  11. Yao J, Hakkarainen M. Methacrylated wood flour-reinforced “all-wood” derived resin for digital light processing (DLP) 3D printing. Compos Commun. 2023:101506.

  12. Kumar S, Gopi T, Harikeerthana N, Gupta MK, Gaur V, Krolczyk GM, et al. Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control. J Intell Manuf. 2023;34(1):21–55.

    Article  Google Scholar 

  13. Koons GL, Kontoyiannis PD, Diaz-Gomez L, Elsarrag SZ, Scott DW, Diba M, et al. Influence of polymeric microparticle size and loading concentration on 3D printing accuracy and degradation behavior of composite scaffolds. 3D Print Addit Manuf. 2023.

  14. Montaina L, Carcione R, Pescosolido F, Montalto M, Battistoni S, Tamburri E. Three-dimensional-printed polyethylene glycol diacrylate-polyaniline composites by in situ aniline photopolymerization: an innovative biomaterial for electrocardiogram monitoring systems. ACS Appl Electron Mater. 2023.

  15. Li X, Fan L, Li J. Extrusion-based 3D printing of high internal phase emulsions stabilized by co-assembled β-cyclodextrin and chitosan. Food Hydrocolloids. 2023;134:108036.

    Article  CAS  Google Scholar 

  16. Passamai VE, Katz S, Rodenak-Kladniew B, Alvarez V, Castro GR. Pectin-based inks development for 3D bioprinting of scaffolds. J Polym Res. 2023;30(1):35.

    Article  CAS  Google Scholar 

  17. Diaz-Gomez L, Gonzalez-Prada I, Millan R, Da Silva-Candal A, Bugallo-Casal A, Campos F, et al. 3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing. Carbohyd Polym. 2022;278:118924.

    Article  CAS  Google Scholar 

  18. Aati S, Aneja S, Kassar M, Leung R, Nguyen A, Tran S, et al. Silver-loaded mesoporous silica nanoparticles enhanced the mechanical and antimicrobial properties of 3D printed denture base resin. J Mech Behav Biomed Mater. 2022;134:105421.

    Article  CAS  PubMed  Google Scholar 

  19. Mishra R, Militky J, Venkataraman M. 7 - Nanoporous materials. In: Mishra R, Militky J, editors. Nanotechnology in Textiles: Woodhead Publishing; 2019. p. 311–53.

  20. Naikoo GA, Hassan IU, Dar RA, Ahmed W. Chapter 20 - Development of electrode materials for high-performance supercapacitors. In: Ahmed W, Booth M, Nourafkan E, editors. Emerging Nanotechnologies for Renewable Energy: Elsevier; 2021. p. 545–57.

  21. Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed Engl. 2007;46(40):7548–58.

    Article  PubMed  Google Scholar 

  22. Vallet-Regí M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem – Eur J. 2006;12(23):5934–43.

    Article  PubMed  Google Scholar 

  23. Horcajada P, Rámila A, Pérez-Pariente J, Vallet-Regí M. Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater. 2004;68(1):105–9.

    Article  CAS  Google Scholar 

  24. Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics [Internet]. 2018;10(3).

  25. Rimal B, Greenberg AK, Rom WN. Basic pathogenetic mechanisms in silicosis: current understanding. Curr Opin Pulm Med. 2005;11(2):169–73.

    Article  PubMed  Google Scholar 

  26. Almanaa TN, Aref M, Kakakhel MA, Elshopakey GE, Mahboub HH, Abdelazim AM, et al. Silica nanoparticle acute toxicity on male Rattus norvegicus Domestica: ethological behavior, hematological disorders, biochemical analyses, hepato-renal function, and antioxidant-immune response. Front Bioeng Biotechnol. 2022;10:868111.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mahmoud AM, Desouky EM, Hozayen WG, Bin-Jumah M, El-Nahass ES, Soliman HA, et al. Mesoporous silica nanoparticles trigger liver and kidney injury and fibrosis via altering TLR4/NF-κB, JAK2/STAT3 and Nrf2/HO-1 signaling in rats. Biomolecules. 2019;9(10).

  28. Wang J, Yu Y, Lu K, Yang M, Li Y, Zhou X, et al. Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes. Int J Nanomed. 2017;12:809–25.

    Article  CAS  Google Scholar 

  29. Hoang Thi TT, Cao VD, Nguyen TNQ, Hoang DT, Ngo VC, Nguyen DH. Functionalized mesoporous silica nanoparticles and biomedical applications. Mater Sci Eng, C Mater Biol Appl. 2019;99:631–56.

    Article  CAS  PubMed  Google Scholar 

  30. Guo Q, Yang G, Huang D, Cao W, Ge L, Li LJC, et al. Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by slow-hydrolysis catalyst. 2018;296:379–84.

  31. Parlett CM, Wilson K, Lee AF. Hierarchical porous materials: catalytic applications. Chem Soc Rev. 2013;42(9):3876–93.

    Article  CAS  PubMed  Google Scholar 

  32. Huo Q, Margolese DI, Ciesla U, Feng P, Gier TE, Sieger P, et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature. 1994;368(6469):317–21.

    Article  CAS  Google Scholar 

  33. Mitra S, Chakraborty S, Mukherjee S, Sau A, Das S, Chakraborty B, et al. A comparative study on the modulatory role of mesoporous silica nanoparticles MCM 41 and MCM 48 on growth and metabolism of dicot Vigna radiata. Plant Physiol Biochem. 2022;187:25–36.

    Article  CAS  PubMed  Google Scholar 

  34. Klichko Y, Liong M, Choi E, Angelos S, Nel AE, Stoddart JF, et al. Mesostructured silica for optical functionality, nanomachines, and drug delivery. J Am Ceram Soc. 2009;92(s1):s2–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kwon S, Singh RK, Perez RA, Abou Neel EA, Kim HW, Chrzanowski W. Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng. 2013;4:2041731413503357.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mamaeva V, Sahlgren C, Lindén M. Mesoporous silica nanoparticles in medicine–recent advances. Adv Drug Deliv Rev. 2013;65(5):689–702.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng K, El-Boubbou K, Landry CC. Binding of HIV-1 gp120 glycoprotein to silica nanoparticles modified with CD4 glycoprotein and CD4 peptide fragments. ACS Appl Mater Interfaces. 2012;4(1):235–43.

    Article  CAS  PubMed  Google Scholar 

  38. Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater. 2011;10(5):389–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ang CW, Tan L, Qu Z, West NP, Cooper MA, Popat A, et al. Mesoporous silica nanoparticles improve oral delivery of antitubercular bicyclic nitroimidazoles. ACS Biomater Sci Eng. 2022;8(10):4196–206.

    Article  CAS  PubMed  Google Scholar 

  40. Altememy D, Jafari M, Naeini K, Alsamarrai S, Khosravian P. In-vitro evaluation of metronidazole loaded mesoporous silica nanoparticles against trichomonas vaginalis. Int J Pharm Res. 2020;12:2773–80.

    Google Scholar 

  41. Sapino S, Ugazio E, Gastaldi L, Miletto I, Berlier G, Zonari D, et al. Mesoporous silica as topical nanocarriers for quercetin: characterization and in vitro studies. Eur J Pharm Biopharm: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2015;89:116–25.

    Article  CAS  Google Scholar 

  42. Wei Y, Yang W, Yang Z. An excellent universal catalyst support-mesoporous silica: preparation, modification and applications in energy-related reactions. Int J Hydrogen Energy. 2022;47(16):9537–65.

    Article  CAS  Google Scholar 

  43. Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, et al. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano. 2011;5(5):4131–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang M, Xu C, Wen L, Han MK, Xiao B, Zhou J, et al. A hyaluronidase-responsive nanoparticle-based drug delivery system for targeting colon cancer cells. Can Res. 2016;76(24):7208–18.

    Article  CAS  Google Scholar 

  45. Jadhav SA, Brunella V, Berlier G, Ugazio E, Scalarone D. Effect of multimodal pore channels on cargo release from mesoporous silica nanoparticles. J Nanomater. 2016;2016:1325174.

    Article  Google Scholar 

  46. Kim SN, Ko SA, Park CG, Lee SH, Huh BK, Park YH, et al. Amino-functionalized mesoporous silica particles for ocular delivery of brimonidine. Mol Pharm. 2018;15(8):3143–52.

    Article  CAS  PubMed  Google Scholar 

  47. Liao YT, Lee CH, Chen ST, Lai JY, Wu KC. Gelatin-functionalized mesoporous silica nanoparticles with sustained release properties for intracameral pharmacotherapy of glaucoma. J Mater Chem B. 2017;5(34):7008–13.

    Article  CAS  PubMed  Google Scholar 

  48. Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv. 2019;16(3):219–37.

    Article  CAS  PubMed  Google Scholar 

  49. Baghirov H, Karaman D, Viitala T, Duchanoy A, Lou YR, Mamaeva V, et al. Feasibility study of the permeability and uptake of mesoporous silica nanoparticles across the blood-brain barrier. PLoS ONE. 2016;11(8):e0160705.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gan Q, Zhu J, Yuan Y, Liu H, Qian J, Li Y, et al. A dual-delivery system of pH-responsive chitosan-functionalized mesoporous silica nanoparticles bearing BMP-2 and dexamethasone for enhanced bone regeneration. J Mater Chem B. 2015;3(10):2056–66.

    Article  CAS  PubMed  Google Scholar 

  51. Song Y, Li Y, Xu Q, Liu Z. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. Int J Nanomed. 2017;12:87–110.

    Article  CAS  Google Scholar 

  52. Nguyen CT, Webb RI, Lambert LK, Strounina E, Lee EC, Parat MO, et al. Bifunctional succinylated ε-polylysine-coated mesoporous silica nanoparticles for ph-responsive and intracellular drug delivery targeting the colon. ACS Appl Mater Interfaces. 2017;9(11):9470–83.

    Article  CAS  PubMed  Google Scholar 

  53. Bathfield M, Reboul J, Cacciaguerra T, Lacroix-Desmazes P, Gérardin C. Thermosensitive and drug-loaded ordered mesoporous silica: a direct and effective synthesis using PEO-b-PNIPAM block copolymers. Chem Mater. 2016;28(10):3374–84.

    Article  CAS  Google Scholar 

  54. Wang Y, Han N, Zhao Q, Bai L, Li J, Jiang T, et al. Redox-responsive mesoporous silica as carriers for controlled drug delivery: a comparative study based on silica and PEG gatekeepers. Eur J Pharm Sci: official journal of the European Federation for Pharmaceutical Sciences. 2015;72:12–20.

    Article  CAS  Google Scholar 

  55. Gayam SR, Venkatesan P, Sung YM, Sung SY, Hu SH, Hsu HY, et al. An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo. Nanoscale. 2016;8(24):12307–17.

    Article  CAS  PubMed  Google Scholar 

  56. Zou Z, He D, Cai L, He X, Wang K, Yang X, et al. Alizarin complexone functionalized mesoporous silica nanoparticles: a smart system integrating glucose-responsive double-drugs release and real-time monitoring capabilities. ACS Appl Mater Interfaces. 2016;8(13):8358–66.

    Article  CAS  PubMed  Google Scholar 

  57. Baeza A, Guisasola E, Ruiz-Hernández E, Vallet-Regí M. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem Mater. 2012;24(3):517–24.

    Article  CAS  Google Scholar 

  58. Paris JL, Villaverde G, Cabañas MV, Manzano M, Vallet-Regí M. From proof-of-concept material to PEGylated and modularly targeted ultrasound-responsive mesoporous silica nanoparticles. J Mater Chem B. 2018;6(18):2785–94.

    Article  CAS  PubMed  Google Scholar 

  59. Liu J, Detrembleur C, De Pauw-Gillet MC, Mornet S, Jérôme C, Duguet E. Gold nanorods coated with mesoporous silica shell as drug delivery system for remote near infrared light-activated release and potential phototherapy. Small. 2015;11(19):2323–32.

    Article  PubMed  Google Scholar 

  60. Nakamura T, Sugihara F, Matsushita H, Yoshioka Y, Mizukami S, Kikuchi K. Mesoporous silica nanoparticles for (19)F magnetic resonance imaging, fluorescence imaging, and drug delivery. Chem Sci. 2015;6(3):1986–90.

    Article  CAS  PubMed  Google Scholar 

  61. Chew T-L, Ahmad AL, Bhatia S. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2). Adv Coll Interface Sci. 2010;153(1):43–57.

    Article  CAS  Google Scholar 

  62. Zhang M, Wu Y, Feng X, He X, Chen L, Zhang Y. Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation. J Mater Chem. 2010;20(28):5835–42.

    Article  CAS  Google Scholar 

  63. Jang K-S, Kim H-J, Johnson JR, Kim W-G, Koros WJ, Jones CW, et al. Modified mesoporous silica gas separation membranes on polymeric hollow fibers. Chem Mater. 2011;23(12):3025–8.

    Article  CAS  Google Scholar 

  64. Sheng W, Wei W, Li J, Qi X, Zuo G, Chen Q, et al. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation. Appl Surf Sci. 2016;387:1116–24.

    Article  CAS  Google Scholar 

  65. Tseng H-H, Shiu P-T, Lin Y-S. Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation. Int J Hydrogen Energy. 2011;36(23):15352–63.

    Article  CAS  Google Scholar 

  66. Venedicto M, Carrier J, Na H, Chang C-Y, Radu DR, Lai C-Y. Disulfide-modified mesoporous silica nanoparticles for biomedical applications. Crystals. 2023;13(7):1067.

    Article  CAS  Google Scholar 

  67. Yao Q, Liu Y, Selvaratnam B, Koodali RT, Sun H. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. J Control Release. 2018;279:69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yousefiasl S, Manoochehri H, Makvandi P, Afshar S, Salahinejad E, Khosraviyan P, et al. Chitosan/alginate bionanocomposites adorned with mesoporous silica nanoparticles for bone tissue engineering. J Nanostruct Chem. 2023;13(3):389–403.

    Article  CAS  Google Scholar 

  69. Wei X, Chen Q, Bu L, Wan X, Jiao Z, Han Z, et al. Improved muscle regeneration into a joint prosthesis with mechano-growth factor loaded within mesoporous silica combined with carbon nanotubes on a porous titanium alloy. ACS Nano. 2022;16(9):14344–61.

    Article  CAS  PubMed  Google Scholar 

  70. Djayanti K, Maharjan P, Cho KH, Jeong S, Kim MS, Shin MC, et al. Mesoporous silica nanoparticles as a potential nanoplatform: therapeutic applications and considerations. Int J Mol Sci. 2023;24(7):6349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Su A, Al’Aref SJ. Chapter 1 - history of 3D printing. In: AlʼAref SJ, Mosadegh B, Dunham S, Min JK, editors. 3D printing applications in cardiovascular medicine. Boston: Academic Press; 2018. p. 1–10.

    Google Scholar 

  72. Jiménez M, del Romero LM, Domínguez M. Additive manufacturing technologies: an overview about 3D printing methods and future prospects. Complexity. 2019;2019:9656938.

    Article  Google Scholar 

  73. Savini A, Savini GJIIIHoH-T, Conference tS-CC. A short history of 3D printing, a technological revolution just started. 2015:1–8.

  74. Water JJ, Bohr A, Boetker J, Aho J, Sandler N, Nielsen HM, et al. Three-dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material. J Pharm Sci. 2015;104(3):1099–107.

    Article  PubMed  Google Scholar 

  75. Ballard DH, Trace AP, Ali S, Hodgdon T, Zygmont ME, DeBenedectis CM, et al. Clinical applications of 3D printing: primer for radiologists. Acad Radiol. 2018;25(1):52–65.

    Article  PubMed  Google Scholar 

  76. Davoudinejad A. Chapter 5 - Vat photopolymerization methods in additive manufacturing. In: Pou J, Riveiro A, Davim JP, editors. Additive Manufacturing: Elsevier; 2021. p. 159–81.

  77. Al Rashid A, Ahmed W, Khalid MY, Koç M. Vat photopolymerization of polymers and polymer composites: processes and applications. Addit Manuf. 2021;47:102279.

    CAS  Google Scholar 

  78. Sharma PK, Choudhury D, Yadav V, Murty USN, Banerjee S. 3D printing of nanocomposite pills through desktop vat photopolymerization (stereolithography) for drug delivery reasons. 3D Print Med. 2022;8(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Caudill CL, Perry JL, Tian S, Luft JC, DeSimone JM. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J Control Release: official journal of the Controlled Release Society. 2018;284:122–32.

    Article  CAS  Google Scholar 

  80. Johnson AR, Caudill CL, Tumbleston JR, Bloomquist CJ, Moga KA, Ermoshkin A, et al. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS ONE. 2016;11(9):e0162518.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Economidou SN, Lamprou DA, Douroumis D. 3D printing applications for transdermal drug delivery. Int J Pharm. 2018;544(2):415–24.

    Article  CAS  PubMed  Google Scholar 

  82. Do A-V, Worthington KS, Tucker BA, Salem AK. Controlled drug delivery from 3D printed two-photon polymerized poly(ethylene glycol) dimethacrylate devices. Int J Pharm. 2018;552(1):217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kadry H, Wadnap S, Xu C, Ahsan F. Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur J Pharm Sci. 2019;135:60–7.

    Article  CAS  PubMed  Google Scholar 

  84. Hong H, Seo YB, Kim DY, Lee JS, Lee YJ, Lee H, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials. 2020;232:119679.

    Article  CAS  PubMed  Google Scholar 

  85. Pham DT, Ji C. Design for stereolithography. Proc Inst Mech Eng C J Mech Eng Sci. 2000;214(5):635–40.

    Article  Google Scholar 

  86. Karakurt I, Aydoğdu A, Çıkrıkcı S, Orozco J, Lin L. Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: a controlled release study. Int J Pharm. 2020;584:119428.

    Article  CAS  PubMed  Google Scholar 

  87. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng. 2018;143:172–96.

    Article  CAS  Google Scholar 

  88. Dechet MA, Demina A, Römling L, Gómez Bonilla JS, Lanyi FJ, Schubert DW, et al. Development of poly(L-lactide) (PLLA) microspheres precipitated from triacetin for application in powder bed fusion of polymers. Addit Manuf. 2020;32:100966.

    CAS  Google Scholar 

  89. Heinl P, Müller L, Körner C, Singer RF, Müller FA. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008;4(5):1536–44.

    Article  CAS  PubMed  Google Scholar 

  90. Surmeneva MA, Surmenev RA, Chudinova EA, Koptioug A, Tkachev MS, Gorodzha SN, et al. Fabrication of multiple-layered gradient cellular metal scaffold via electron beam melting for segmental bone reconstruction. Mater Des. 2017;133:195–204.

    Article  CAS  Google Scholar 

  91. Goodridge R, Ziegelmeier S. 7 - Powder bed fusion of polymers. In: Brandt M, editor. Laser Additive Manufacturing: Woodhead Publishing; 2017. p. 181–204.

  92. Sharma AK, Bhandari R, Aherwar A, Rimašauskienė R. Matrix materials used in composites: a comprehensive study. Mater Today: Proc. 2020;21:1559–62.

    Google Scholar 

  93. Thakkar R, Jara MO, Swinnea S, Pillai AR, Maniruzzaman M. Impact of laser speed and drug particle size on selective laser sintering 3D printing of amorphous solid dispersions. Pharmaceutics. 2021;13(8):1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gibson I, Rosen D, Stucker B. Sheet lamination processes. In: Gibson I, Rosen D, Stucker B, editors. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. New York: Springer; 2015. p. 219–44.

    Chapter  Google Scholar 

  95. Devagiri JS, Paheding S, Niyaz Q, Yang X, Smith S. Augmented reality and artificial intelligence in industry: trends, tools, and future challenges. Expert Syst Appl. 2022:118002.

  96. Dehoff RR, Babu SS. Characterization of interfacial microstructures in 3003 aluminum alloy blocks fabricated by ultrasonic additive manufacturing. Acta Mater. 2010;58(13):4305–15.

    Article  CAS  Google Scholar 

  97. Yousif E, Haddad R. Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus. 2013;2:398.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Azad MA, Olawuni D, Kimbell G, Badruddoza AZM, Hossain MS, Sultana T. Polymers for extrusion-based 3D printing of pharmaceuticals: a holistic materials-process perspective. Pharmaceutics. 2020;12(2).

  99. Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2002;54(2):107–17.

    Article  CAS  Google Scholar 

  100. Macedo J, Samaro A, Vanhoorne V, Vervaet C, Pinto JF. Processability of poly(vinyl alcohol) based filaments with paracetamol prepared by hot-melt extrusion for additive manufacturing. J Pharm Sci. 2020;109(12):3636–44.

    Article  CAS  PubMed  Google Scholar 

  101. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Goyanes A, Fina F, Martorana A, Sedough D, Gaisford S, Basit AW. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm. 2017;527(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  103. Ferrari A, Baumann M, Coenen C, Frank D, Hennen L, Moniz AB, et al. Additive bio-manufacturing: 3D printing for medical recovery and human enhancement. 2018 2018//.

  104. Chang S-Y, Jin J, Yan J, Dong X, Chaudhuri B, Nagapudi K, et al. Development of a pilot-scale HuskyJet binder jet 3D printer for additive manufacturing of pharmaceutical tablets. Int J Pharm. 2021;605:120791.

    Article  CAS  PubMed  Google Scholar 

  105. Öblom H, Cornett C, Bøtker J, Frokjaer S, Hansen H, Rades T, et al. Data-enriched edible pharmaceuticals (DEEP) of medical cannabis by inkjet printing. Int J Pharm. 2020;589:119866.

    Article  PubMed  Google Scholar 

  106. Genina N, Janßen EM, Breitenbach A, Breitkreutz J, Sandler N. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2013;85(3 Pt B):1075–83.

    Article  CAS  Google Scholar 

  107. Hirshfield L, Giridhar A, Taylor LS, Harris MT, Reklaitis GV. Dropwise additive manufacturing of pharmaceutical products for solvent-based dosage forms. J Pharm Sci. 2014;103(2):496–506.

    Article  CAS  PubMed  Google Scholar 

  108. Kim K-H, Jung C-H, Jeong D-Y, Hyun S-K. Preventing evaporation products for high-quality metal film in directed energy deposition: a review. Metals [Internet]. 2021;11(2).

  109. Kim K-H, Jung C-H, Jeong D-Y, Hyun S-K. Preventing evaporation products for high-quality metal film in directed energy deposition: a review. Metals [Internet]. 2021;11(2).

  110. Graf B, Gumenyuk A, Rethmeier M. Laser metal deposition as repair technology for stainless steel and titanium alloys. Phys Procedia. 2012;39:376–81.

    Article  CAS  Google Scholar 

  111. Brueckner F, Riede M, Müller M, Marquardt F, Willner R, Seidel A, et al. Enhanced manufacturing possibilities using multi-materials in laser metal deposition. J Laser Appl. 2018;30(3):032308.

    Article  Google Scholar 

  112. Mostafaei A, Elliott AM, Barnes JE, Li F, Tan W, Cramer CL, et al. Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges. Prog Mater Sci. 2021;119:100707.

    Article  CAS  Google Scholar 

  113. Azizi Machekposhti S, Mohaved S, Narayan RJ. Inkjet dispensing technologies: recent advances for novel drug discovery. Expert Opin Drug Discov. 2019;14(2):101–13.

    Article  CAS  PubMed  Google Scholar 

  114. Blynskaya EV, Tishkov SV, Alekseev KV, Vetcher AA, Marakhova AI, Rejepov DT. Polymers in technologies of additive and inkjet printing of dosage formulations. Polymers. 2022;14(13).

  115. Uddin MJ, Hassan J, Douroumis D. Thermal inkjet printing: prospects and applications in the development of medicine. Technologies. 2022;10:108. https://doi.org/10.3390/technologies10050108.

  116. Antoniou PE, Bamidis PD. Chapter 4 - 3D printing and virtual and augmented reality in medicine and surgery: tackling the content development barrier through co-creative approaches. In: Papadopoulos VN, Tsioukas V, Suri JS, editors. 3D Printing: Applications in Medicine and Surgery Volume 2: Elsevier; 2022. p. 77–99.

  117. Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: a review and prospective. Compos B Eng. 2017;110:442–58.

    Article  CAS  Google Scholar 

  118. Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I, Schlier L, et al. Additive manufacturing of ceramic-based materials. Adv Eng Mater. 2014;16(6):729–54.

    Article  CAS  Google Scholar 

  119. Singh N, Hameed P, Ummethala R, Manivasagam G, Prashanth KG, Eckert J. Selective laser manufacturing of Ti-based alloys and composites: impact of process parameters, application trends, and future prospects. Mater Today Adv. 2020;8:100097.

    Article  Google Scholar 

  120. Sathishkumar TP, Satheeshkumar S, Naveen J. Glass fiber-reinforced polymer composites – a review. J Reinf Plast Compos. 2014;33(13):1258–75.

    Article  CAS  Google Scholar 

  121. Alshahrani HA. Review of 4D printing materials and reinforced composites: behaviors, applications and challenges. J Sci Adv: Mater Dev. 2021;6(2):167–85.

    MathSciNet  Google Scholar 

  122. Shahrubudin N, Lee TC, Ramlan R. An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf. 2019;35:1286–96.

    Article  Google Scholar 

  123. Salmi M. Additive manufacturing processes in medical applications. Materials (Basel, Switzerland). 2021;14(1).

  124. Fielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater: official publication of the Academy of Dental Materials. 2012;28(2):113–22.

    Article  CAS  Google Scholar 

  125. van Noort R. The future of dental devices is digital. Dental Mater: official publication of the Academy of Dental Materials. 2012;28(1):3–12.

    Article  Google Scholar 

  126. Petrovic V, Vicente Haro Gonzalez J, Jordá Ferrando O, Delgado Gordillo J, Ramón Blasco Puchades J, Portolés Griñan L. Additive layered manufacturing: sectors of industrial application shown through case studies. Int J Prod Res. 2011;49(4):1061–79.

    Article  Google Scholar 

  127. Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–41.

    Article  CAS  PubMed  Google Scholar 

  128. Taylor AD, Kim EY, Humes VP, Kizuka J, Thompson LT. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. J Power Sources. 2007;171(1):101–6.

    Article  CAS  Google Scholar 

  129. Blakey-Milner B, Gradl P, Snedden G, Brooks M, Pitot J, Lopez E, et al. Metal additive manufacturing in aerospace: a review. Mater Des. 2021;209:110008.

    Article  CAS  Google Scholar 

  130. Uddin MJ, Scoutaris N, Economidou SN, Giraud C, Chowdhry BZ, Donnelly RF, et al. 3D printed microneedles for anticancer therapy of skin tumours. Mater Sci Eng, C. 2020;107:110248.

    Article  CAS  Google Scholar 

  131. Kadry H, Al-Hilal TA, Keshavarz A, Alam F, Xu C, Joy A, et al. Multi-purposable filaments of HPMC for 3D printing of medications with tailored drug release and timed-absorption. Int J Pharm. 2018;544(1):285–96.

    Article  CAS  PubMed  Google Scholar 

  132. Yang Y, Wang H, Li H, Ou Z, Yang G. 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release. Eur J Pharm Sci: official journal of the European Federation for Pharmaceutical Sciences. 2018;115:11–8.

    Article  CAS  Google Scholar 

  133. Khaled SA, Alexander MR, Irvine DJ, Wildman RD, Wallace MJ, Sharpe S, et al. Extrusion 3D printing of paracetamol tablets from a single formulation with tunable release profiles through control of tablet geometry. AAPS PharmSciTech. 2018;19(8):3403–13.

    Article  CAS  PubMed  Google Scholar 

  134. Cui M, Yang Y, Jia D, Li P, Li Q, Chen F, et al. Effect of novel internal structures on printability and drug release behavior of 3D printed tablets. J Drug Deliv Sci Technol. 2019;49:14–23.

    Article  CAS  Google Scholar 

  135. Tagami T, Ando M, Nagata N, Goto E, Yoshimura N, Takeuchi T, et al. Fabrication of naftopidil-loaded tablets using a semisolid extrusion-type 3D printer and the characteristics of the printed hydrogel and resulting tablets. J Pharm Sci. 2019;108(2):907–13.

    Article  CAS  PubMed  Google Scholar 

  136. Gültekin HE, Tort S, Acartürk F. An effective technology for the development of immediate release solid dosage forms containing low-dose drug: fused deposition modeling 3D printing. Pharm Res. 2019;36(9):128.

    Article  PubMed  Google Scholar 

  137. Gioumouxouzis CI, Baklavaridis A, Katsamenis OL, Markopoulou CK, Bouropoulos N, Tzetzis D, et al. A 3D printed bilayer oral solid dosage form combining metformin for prolonged and glimepiride for immediate drug delivery. Eur J Pharm Sci: official journal of the European Federation for Pharmaceutical Sciences. 2018;120:40–52.

    Article  CAS  Google Scholar 

  138. Pereira BC, Isreb A, Forbes RT, Dores F, Habashy R, Petit JB, et al. ‘Temporary Plasticiser’: a novel solution to fabricate 3D printed patient-centred cardiovascular ‘polypill’ architectures. Eur J Pharm Bioph: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2019;135:94–103.

    Article  CAS  Google Scholar 

  139. Li Q, Guan X, Cui M, Zhu Z, Chen K, Wen H, et al. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int J Pharm. 2018;535(1–2):325–32.

    Article  CAS  PubMed  Google Scholar 

  140. Chai X, Chai H, Wang X, Yang J, Li J, Zhao Y, et al. Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Sci Rep. 2017;7(1):2829.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Tian P, Yang F, Xu Y, Lin MM, Yu LP, Lin W, et al. Oral disintegrating patient-tailored tablets of warfarin sodium produced by 3D printing. Drug Dev Ind Pharm. 2018;44(12):1918–23.

    Article  CAS  PubMed  Google Scholar 

  142. Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1–2):101–7.

    Article  CAS  PubMed  Google Scholar 

  143. Uddin MJ, Scoutaris N, Economidou SN, Giraud C, Chowdhry BZ, Donnelly RF, et al. 3D printed microneedles for anticancer therapy of skin tumours. Mater Sci Eng, C Mater Biol Appl. 2020;107:110248.

    Article  CAS  PubMed  Google Scholar 

  144. Tappa K, Jammalamadaka U, Ballard DH, Bruno T, Israel MR, Vemula H, et al. Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept study. PLoS ONE. 2017;12(8):e0182929.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Vaz VM, Kumar L. 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech. 2021;22(1):49.

    Article  CAS  PubMed  Google Scholar 

  146. Cho H, Jammalamadaka U, Tappa K, Egbulefu C, Prior J, Tang R, et al. 3D Printing of poloxamer 407 nanogel discs and their applications in adjuvant ovarian cancer therapy. Mol Pharm. 2019;16(2):552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Weisman JA, Ballard DH, Jammalamadaka U, Tappa K, Sumerel J, DʼAgostino HB, et al. 3D Printed antibiotic and chemotherapeutic eluting catheters for potential use in interventional radiology: in vitro proof of concept study. Acad Radiol. 2019;26(2):270–4.

    Article  PubMed  Google Scholar 

  148. Kotz F, Quick AS, Risch P, Martin T, Hoose T, Thiel M, et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Adv Mater (Deerfield Beach, Fla). 2021;33(9):e2006341.

    Article  Google Scholar 

  149. Shukrun Farrell E, Schilt Y, Moshkovitz MY, Levi-Kalisman Y, Raviv U, Magdassi S. 3D printing of ordered mesoporous silica complex structures. Nano Lett. 2020;20(9):6598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pawar AA, Saada G, Cooperstein I, Larush L, Jackman JA, Tabaei SR, et al. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Sci Adv. 2016;2(4):e1501381.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zafar MJ, Zhu D, Zhang Z. 3D Printing of bioceramics for bone tissue engineering. Materials (Basel, Switzerland). 2019;12(20).

  152. Li C, Jiang C, Deng Y, Li T, Li N, Peng M, et al. RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties. Sci Rep. 2017;7:41331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bai X, Ding G, Zhang K, Wang W, Zhou N, Fang D, et al. Stereolithography additive manufacturing and sintering approaches of SiC ceramics. Open Ceramics. 2021;5:100046.

    Article  CAS  Google Scholar 

  154. Chang S, Li L, Lu L, Fuh JYH. Selective laser sintering of porous silica enabled by carbon additive. Materials (Basel, Switzerland). 2017;10(11).

  155. Genina N, Hadi B, Löbmann K. Hot melt extrusion as solvent-free technique for a continuous manufacturing of drug-loaded mesoporous silica. J Pharm Sci. 2018;107(1):149–55.

    Article  CAS  PubMed  Google Scholar 

  156. Katsiotis CS, Strømme M, Welch K. Processability of mesoporous materials in fused deposition modeling for drug delivery of a model thermolabile drug. Int J Pharm: X. 2023;5:100149.

    CAS  PubMed  Google Scholar 

  157. Ng P, Pinho AR, Gomes MC, Demidov Y, Krakor E, Grume D, et al. Fabrication of antibacterial, osteo-inductor 3D printed aerogel-based scaffolds by incorporation of drug laden hollow mesoporous silica microparticles into the self-assembled silk fibroin biopolymer. Macromol Biosci. 2022;22(4):2100442.

    Article  CAS  Google Scholar 

  158. de Oliveira RS, Funk NL, dos Santos J, de Oliveira TV, de Oliveira EG, Petzhold CL, et al. Bioadhesive 3D-printed skin drug delivery polymeric films: from the drug loading in mesoporous silica to the manufacturing process. Pharmaceutics. 2023;15(1):20.

    Article  Google Scholar 

  159. Wickström H, Hilgert E, Nyman JO, Desai D, Şen Karaman D, de Beer T, et al. Inkjet printing of drug-loaded mesoporous silica nanoparticles-a platform for drug development. Molecules. 2017;22(11).

  160. Katagiri K, Yamazaki S-I, Inumaru K, Koumoto K. Anti-reflective coatings prepared via layer-by-layer assembly of mesoporous silica nanoparticles and polyelectrolytes. Polym J. 2015;47(2):190–4.

    Article  CAS  Google Scholar 

  161. Ribeiro SM, Fratucelli ÉD, Bueno PC, de Castro MKV, Francisco AA, Cavalheiro AJ, et al. Antimicrobial and antibiofilm activities of Casearia sylvestris extracts from distinct Brazilian biomes against Streptococcus mutans and Candida albicans. BMC Complement Altern Med. 2019;19:1–16.

    Article  CAS  Google Scholar 

  162. Di W, Shuai Y, Bo W, Wei T, Jinpeng H, Qian G, et al. A bifunctional zoledronate sustained-release system in scaffold: tumor therapy and bone repair. Colloids Surf, B. 2023;222:113064.

    Article  CAS  Google Scholar 

  163. Schmidt LM, Dos Santos J, de Oliveira TV, Funk NL, Petzhold CL, Benvenutti EV, et al. Drug-loaded mesoporous silica on carboxymethyl cellulose hydrogel: development of innovative 3D printed hydrophilic films. Int J Pharm. 2022;620:121750.

    Article  CAS  PubMed  Google Scholar 

  164. de Oliveira TV, de Oliveira RS, Dos Santos J, Funk NL, Petzhold CL, Beck RCR. Redispersible 3D printed nanomedicines: an original application of the semisolid extrusion technique. Int J Pharm. 2022;624:122029.

    Article  PubMed  Google Scholar 

  165. Zhang C, Yuan Y, Zeng Y, Chen J. DLP 3D printed silica-doped HAp ceramic scaffolds inspired by the trabecular bone structure. Ceram Int. 2022;48(19, Part A):27765–73.

    Article  CAS  Google Scholar 

  166. Zou W, Wang Z, Qian Z, Xu J, Zhao N. Digital light processing 3D-printed silica aerogel and as a versatile host framework for high-performance functional nanocomposites. Adv Sci. 2022;9(36):2204906.

    Article  CAS  Google Scholar 

  167. Zhang Q, Zhou X, Du H, Ha Y, Xu Y, Ao R, et al. Bifunctional hydrogel-integrated 3D printed scaffold for repairing infected bone defects. ACS Biomater Sci Eng. 2023;9(8):4583–96.

    Article  CAS  PubMed  Google Scholar 

  168. Richter RF, Ahlfeld T, Gelinsky M, Lode A. Composites consisting of calcium phosphate cements and mesoporous bioactive glasses as a 3D plottable drug delivery system. Acta Biomater. 2023;156:146–57.

    Article  CAS  PubMed  Google Scholar 

  169. Xu Y, Hu Y, Feng P, Yang W, Shuai C. Drug loading/release and bioactivity research of a mesoporous bioactive glass/polymer scaffold. Ceram Int. 2019;45(14):18003–13.

    Article  CAS  Google Scholar 

  170. Visscher LE, Dang HP, Knackstedt MA, Hutmacher DW, Tran PA. 3D printed polycaprolactone scaffolds with dual macro-microporosity for applications in local delivery of antibiotics. Mater Sci Eng, C Mater Biol Appl. 2018;87:78–89.

    Article  CAS  PubMed  Google Scholar 

  171. Vanmunster L, D’Haeyer C, Coucke P, Braem A, Van Hooreweder B. Mechanical behavior of Ti6Al4V produced by laser powder bed fusion with engineered open porosity for dental applications. J Mech Behav Biomed Mater. 2022;126:104974.

    Article  CAS  PubMed  Google Scholar 

  172. Guo W, Liu W, Xu L, Feng P, Zhang Y, Yang W, et al. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds. J Mater Sci Technol. 2020;46:237–47.

    Article  CAS  Google Scholar 

  173. Shuai C, Chen X, He C, Chen M, Peng S, Yang W. Fe-doped mesoporous silica catalyzes ascorbic acid oxidation for tumor-specific therapy in scaffold. Colloids Surf, B. 2023;225:113251.

    Article  CAS  Google Scholar 

  174. Šoltys M, Akhlasová S, Zadražil A, Kovačík P, Štěpánek F. Manufacturing of multi-drug formulations with customised dose by solvent impregnation of mesoporous silica tablets. AAPS PharmSciTech. 2019;20(1):25.

    Article  PubMed  Google Scholar 

  175. Mendes LS, Saska S, Martines MA, Marchetto R. Nanostructured materials based on mesoporous silica and mesoporous silica/apatite as osteogenic growth peptide carriers. Mater Sci Eng, C Mater Biol Appl. 2013;33(7):4427–34.

    Article  CAS  PubMed  Google Scholar 

  176. Serra T, Mateos-Timoneda MA, Planell JA, Navarro M. 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine. Organogenesis. 2013;9(4):239–44.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Zhang J, Vo AQ, Feng X, Bandari S, Repka MA. Pharmaceutical additive manufacturing: a novel tool for complex and personalized drug delivery systems. AAPS PharmSciTech. 2018;19(8):3388–402.

    Article  CAS  PubMed  Google Scholar 

  178. Snyder GH, Cotteleer M, Kotek B. 3D opportunity in medical technology: additive manufacturing comes to life. A Deloitte series on additive manufacturing. 2014.

  179. Cui M, Pan H, Su Y, Fang D, Qiao S, Ding P, et al. Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. Acta Pharmaceutica Sinica B. 2021;11(8):2488–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, et al. Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med. 2009;6(1):36–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by CMU Proactive Researcher Scheme (2023), Chiang Mai University “Contract No. 933/2566”.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SS and BGP; methodology, JV and IS; software, JV and IS; validation, SS and BGP; formal analysis, JJ; investigation, JV and IS; resources, SS; data curation, SS; writing original draft preparation, JV and IS; writing review and editing, SS; visualization, BGP; supervision, BGP and SS; and project administration, SS and BGP. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Sudarshan Singh or Bhupendra G. Prajapati.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, J., Singh, S., Shah, I. et al. Potential Applications and Additive Manufacturing Technology-Based Considerations of Mesoporous Silica: A Review. AAPS PharmSciTech 25, 6 (2024). https://doi.org/10.1208/s12249-023-02720-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02720-7

Keywords

Navigation