Skip to main content
Log in

A Bayesian Approach to Kinetic Modeling of Accelerated Stability Studies and Shelf Life Determination

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Kinetic modeling of accelerated stability data serves an important purpose in the development of pharmaceutical products, providing support for shelf life claims and expediting the path to clinical implementation. In this context, a Bayesian kinetic modeling framework is considered, accommodating different types of nonlinear kinetics with temperature and humidity dependent rates of degradation and accounting for the humidity conditions within the packaging to predict the shelf life. In comparison to kinetic modeling based on nonlinear least-squares regression, the Bayesian approach allows for interpretable posterior inference, flexible error modeling and the opportunity to include prior information based on historical data or expert knowledge. While both frameworks perform comparably for high-quality data from well-designed studies, the Bayesian approach provides additional robustness when the data are sparse or of limited quality. This is illustrated by modeling accelerated stability data from two solid dosage forms and is further examined by means of artificial data subsets and simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. ICH Q3A(R2). Impurities in new drug substances Q3A(R2). ICH Harmonized Tripartite Guideline. Geneva, Switzerland; 2006

  2. ICH Q3B(R2). Impurities in new drug products Q3B(R2). ICH Harmonized Tripartite Guideline. Geneva, Switzerland; 2006

  3. ICH Q1E. Evaluation for stability data Q1E. ICH Harmonized Tripartite Guideline. Geneva, Switzerland; 2003

  4. Waterman KC, Adami RC. Accelerated aging: prediction of chemical stability of pharmaceuticals. Int J Pharm. 2005;293(1–2):101–25.

    Article  PubMed  CAS  Google Scholar 

  5. ICH Q1A(R2). Stability testing of new drug substances and products Q1A(R2). ICH Harmonized Tripartite Guideline. Geneva, Switzerland; 2003.

  6. Williams HE, Bright J, Roddy E, Poulton A, Cosgrove SD, Turner F, et al. A comparison of drug substance predicted chemical stability with ICH compliant stability studies. Drug Dev Ind Pharm. 2019;45(3):379–86.

    Article  PubMed  CAS  Google Scholar 

  7. Freed AL, Clement E, Timpano R. Regulatory responses to the use of various lean stability strategies in early drug development. Regul Rapp. 2014;11(7/8):5–8.

    Google Scholar 

  8. Genton D, Kesselring UW. Effect of temperature and relative humidity on nitrazepam stability in solid state. J Pharm Sci. 1977;66(5):676–80.

    Article  PubMed  CAS  Google Scholar 

  9. Waterman KC. The application of the accelerated stability assessment program (ASAP) to quality by design (QbD) for drug product stability. AAPS PharmSciTech. 2011;12(3):932–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Clénet D. Accurate prediction of vaccine stability under real storage conditions and during temperature excursions. Eur J Pharm Biopharm. 2018;125:76–84.

    Article  PubMed  Google Scholar 

  11. Scrivens G. Prediction of the long-term dissolution performance of an immediate-release tablet using accelerated stability studies. J Pharm Sci. 2019;108(1):506–15.

    Article  PubMed  CAS  Google Scholar 

  12. Waterman KC, MacDonald BC. Package selection for moisture protection for solid, oral drug products. J Pharm Sci. 2010;99(11):4437–52.

    Article  PubMed  CAS  Google Scholar 

  13. Chen Y. Packaging selection for solid oral dosage forms. In: Developing solid oral dosage forms. Elsevier; 2017. p. 637–651

  14. Li H, Nadig D, Kuzmission A, Riley CM. Prediction of the changes in drug dissolution from an immediate-release tablet containing two active pharmaceutical ingredients using an accelerated stability assessment program (ASAPPrime). AAPS Open. 2016;2:1–9.

    Article  Google Scholar 

  15. Neyra C, Clénet D, Bright M, Kensinger R, Hauser S. Predictive modeling for assessing the long-term thermal stability of a new fully-liquid quadrivalent meningococcal tetanus toxoid conjugated vaccine. Int J Pharm. 2021;609:121143.

    Article  PubMed  CAS  Google Scholar 

  16. Flavier K, McLellan J, Botoy T, Waterman KC. Accelerated shelf life modeling of appearance change in drug products using ASAPPrime. Pharm Dev Technol. 2022;27(6):740–8.

    Article  PubMed  CAS  Google Scholar 

  17. Campa C, Pronce T, Paludi M, Weusten J, Conway L, Savery J, et al. Use of stability modeling to support accelerated vaccine development and supply. Vaccines. 2021;9(10):1114.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Freethink Libratories. ASAPPrime. FreeThink Labratories; 2023. Available from: https://freethinktech.com.

  19. AKTS SA. AKTS-thermokinetics software. AKTS SA; 2023. Available from: https://www.akts.com.

  20. McBride WR, Villars DS. Application of statistics to reaction kinetics. Anal Chem. 1954;26(5):901–4.

    Article  CAS  Google Scholar 

  21. Garrett ER. Studies on the stability of furnagillin: III. Thermal degradation in the presence and absence of air. J Am Pharm Assoc. 1954;43(9):539–43.

    Article  CAS  Google Scholar 

  22. Tootill JPR. A slope-ratio design for accelerated storage tests. J Pharm Pharmacol. 1961;13:75–86.

    Article  Google Scholar 

  23. Carstensen JT, Su KS. Statistical aspects of Arrhenius plotting. Bull Parenter Drug Assoc. 1971;25(6):287–302.

    PubMed  CAS  Google Scholar 

  24. King SY, Kung MS, Fung HL. Statistical prediction of drug stability based on nonlinear parameter estimation. J Pharm ScI. 1984;73(5):657–62.

    Article  PubMed  CAS  Google Scholar 

  25. Higuchi T, Havinga A, Busse LW. The kinetics of the hydrolysis of procaine. J Am Pharm Assoc. 1950;39(7):405–10.

    Article  CAS  Google Scholar 

  26. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17(3):407–33.

    Article  CAS  Google Scholar 

  27. Waterman KC, Carella AJ, Gumkowski MJ, Lukulay P, MacDonald BC, Roy MC, et al. Improved protocol and data analysis for accelerated shelf-life estimation of solid dosage forms. Pharm Res. 2007;24:780–90.

    Article  PubMed  CAS  Google Scholar 

  28. Rauk AP, Guo K, Hu Y, Cahya S, Weiss WF IV. Arrhenius time-scaled least squares: a simple, robust approach to accelerated stability data analysis for bioproducts. J Pharm Sci. 2014;103(8):2278–86.

    Article  PubMed  CAS  Google Scholar 

  29. Clancy D, Hodnett N, Orr R, Owen M, Peterson J. Kinetic model development for accelerated stability studies. AAPS PharmSciTech. 2017;18(4):1158–76.

    Article  PubMed  CAS  Google Scholar 

  30. Faya P, Seaman JW Jr, Stamey JD. Using accelerated drug stability results to inform long-term studies in shelf life determination. Stat Med. 2018;37(17):2599–615.

    Article  PubMed  Google Scholar 

  31. Qiu F, Scrivens G. Accelerated predictive stability (APS): fundamentals and pharmaceutical industry practices. London, United Kingdom: Academic Press; 2018.

    Google Scholar 

  32. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110(35):17315–28.

    Article  PubMed  CAS  Google Scholar 

  33. Clénet D, Imbert F, Probeck P, Rahman N, Ausar SF. Advanced kinetic analysis as a tool for formulation development and prediction of vaccine stability. J Pharm Sci. 2014;103(10):3055–64.

    Article  PubMed  Google Scholar 

  34. Clénet D, Hourquet V, Woinet B, Ponceblanc H, Vangelisti M. A spray freeze dried micropellet based formulation proof-of-concept for a yellow fever vaccine candidate. Eur J Pharm Biopharm. 2019;142:334–43.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vyazovkin S. Determining preexponential factor in model-free kinetic methods: how and why? Molecules. 2021;26(11):3077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Rodionova OE, Pomerantsev AL. Estimating the parameters of the arrhenius equation. Kinet Catal. 2005;46(3):305–8.

    Article  CAS  Google Scholar 

  37. Gelman A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 2006;1(3):515–34.

    Article  Google Scholar 

  38. Stan Development Team. Stan modeling language users guide and reference manual. Version 2.31; 2023. Available from: https://mc-stan.org.

  39. Chau J. gslnls: GSL nonlinear least-squares fitting. R-package version 1.1.1; 2021. Available from: https://CRAN.R-project.org/package=gslnls.

  40. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3(1):1–12.

    Article  Google Scholar 

  41. R Core Team. R: a language and environment for statistical computing.Vienna, Austria: R Foundation for Statistical Computing; 2023. Version 4.2. Available from: https://www.R-project.org/.

  42. Buck AL. New equations for computing vapor pressure and enhancement factor. J Appl Meteorol Climatol. 1981;20(12):1527–32.

    Article  Google Scholar 

  43. Waterman KC, Chen L, Waterman P, MacDonald BC, Monahan AP, Scrivens G. Modeling of in-use stability for tablets and powders in bottles. Drug Dev Ind Pharm. 2016;42(10):1571–8.

    Article  PubMed  CAS  Google Scholar 

  44. Ibrahim JG, Chen MH, Gwon Y, Chen F. The power prior: theory and applications. Stat Med. 2015;34(28):3724–49.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Waterman KC. Understanding and predicting pharmaceutical product shelf-life. Handbook of stability testing in pharmaceutical development: regulations, methodologies, and best practices. 2009;p. 115–135.

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors. All authors are employed by their affiliation as listed. The drug products used in the examples were provided by Janssen Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Contributions

• Joris Chau: Inception of the work from a statistical perspective, contributions to conception of the work and drafting and reviewing the work. • Stan Altan: Inception of the work from a statistical perspective and reviewing the work. • Anneleen Burggraeve: Modeling of the first example and reviewing the work. • Hans Coppenolle: Inception of the work from a statistical perspective and reviewing of the work. • Yimer Wasihun Kifle: Contributions to drafting and reviewing of the work. • Hana Prokopcova: Inception of the work from a chemistry perspective and reviewing the work. • Timothy Van Daele: Modeling of the second example and reviewing the work. • Hans Sterckx: Inception of the work from a chemical perspective, contributions to conception of the work and drafting and reviewing the work.

Corresponding author

Correspondence to Hans Sterckx.

Ethics declarations

Conflict of interest/Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 764 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chau, J., Altan, S., Burggraeve, A. et al. A Bayesian Approach to Kinetic Modeling of Accelerated Stability Studies and Shelf Life Determination. AAPS PharmSciTech 24, 250 (2023). https://doi.org/10.1208/s12249-023-02695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02695-5

Keywords

Navigation