Skip to main content

Advertisement

Log in

Sticking Detection by Repeated Compactions on a Single Tablet

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

“Sticking” during tablet manufacture is the term used to describe the accumulation of adhered tablet material on the punch over the course of several compaction cycles. The occurrence of sticking can affect tablet weight, image, and structural integrity and halt manufacturing operations. The earlier the risk of sticking is detected during R&D, the more options are available for mitigation and the less potential there is for significant delays and costs. The detection osf sticking, however, during the early stages of drug development is challenging due to the limitations of available material quantity. In this work, single tablet multi-compaction (STMC) and a highly sensitive laser reflection sensor are used to detect the propensity of sticking with ibuprofen powder blends. STMC can differentiate the various formulations and replicates the trends of sticking at different punch speeds. The results demonstrate the potential for STMC to be used as an extremely material sparing (requiring very few tablets) methodology for the assessment of sticking during early-stage development.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thomas JV. Evaluation and study on the adhesion of powder onto punch faces during tablet compaction. Drexel University; 2015.

  2. Danjo K, Kojima S, Chen CY, Sunada H, Otsuka A. Effect of water content on sticking during compression. Chem Pharm Bull. 1997;45(4):706–9.

    Article  CAS  Google Scholar 

  3. Wang JJ, Li T, Bateman SD, Erck R, Morris KR. Modeling of adhesion in tablet compression-I. Atomic force microscopy and molecular simulation. J Pharm Sci. 2003;92(4):798–814. https://doi.org/10.1002/jps.10339.

    Article  CAS  PubMed  Google Scholar 

  4. Waknis V, Chu E, Schlam R, Sidorenko A, Badawy S, Yin S, et al. Molecular basis of crystal morphology-dependent adhesion behavior of mefenamic acid during tableting. PharmRes. 2014;31:160–72. https://doi.org/10.1007/s11095-013-1149-6.

    Article  CAS  Google Scholar 

  5. Wang JJ, Guillot MA, Bateman SD, Morris KR. Modeling of adhesion in tablet compression II Compaction studies using a compaction simulator and an instrumented tablet press. J Pharm Sci. 2004;93(2):407–17. https://doi.org/10.1002/jps.10553.

    Article  CAS  PubMed  Google Scholar 

  6. Sendall FEJ, Staniforth JN. A study of powder adhesion to metal surfaces during compression of effervescent pharmaceutical tablets. J Pharm Pharm. 1986;38(7):489–93. https://doi.org/10.1111/j.2042-7158.1986.tb04620.x.

    Article  CAS  Google Scholar 

  7. McDermott TS, Farrenkopf J, Hlinak A, Neilly JP, Sauer D. A material sparing method for quantitatively measuring tablet sticking. Powder Technol. 2011;212(1):240–52. https://doi.org/10.1016/j.powtec.2011.05.023.

    Article  CAS  Google Scholar 

  8. Roberts M, Ford JL, MacLeod GS, Fell JT, Smith GW, Rowe PH, et al. Effect of lubricant type and concentration on the punch tip adherence of model ibuprofen formulations. J Pharm Pharmacol. 2004;56(3):299–305. https://doi.org/10.1211/0022357022827.

    Article  CAS  PubMed  Google Scholar 

  9. Mullarney MP, MacDonald BC, Hutchins A. Assessing tablet-sticking propensity by weighing accumulated powder on a removable punch tip. Pharm Technol. 2012;36(1):57–62.

    CAS  Google Scholar 

  10. Bejugam NK, Mutyam SK, Shankar GN. Tablet formulation of an active pharmaceutical ingredient with a sticking and filming problem: direct compression and dry granulation evaluations. Drug Dev Ind Pharm. 2013;41(2):333–41. https://doi.org/10.3109/03639045.2013.859266.

    Article  CAS  PubMed  Google Scholar 

  11. Roberts M, Ford JL, MacLeod GS, Fell JT, Smith GW, Rowe PH. Effects of surface roughness and chrome plating of punch tips on the sticking tendencies of model ibuprofen formulations. J Pharm Pharm. 2003;55(9):1223–8. https://doi.org/10.1211/0022357021684.

    Article  CAS  Google Scholar 

  12. Schumann S, Searle GD. The effects of chromium nitride ion bombardment treatment of tablet tooling on tablet adherence. Drug Dev Ind Pharm. 1992;18(10):1037–61. https://doi.org/10.3109/03639049209069314.

    Article  CAS  Google Scholar 

  13. Uchimoto T, Iwao Y, Yamamoto T, Sawaguchi K, Moriuchi T, Noguchi S, et al. Newly developed surface modification punches treated with alloying techniques reduce sticking during the manufacture of ibuprofen tablets. Int J Pharm. 2013;441(1–2):128–34. https://doi.org/10.1016/j.ijpharm.2012.12.006.

    Article  CAS  PubMed  Google Scholar 

  14. Bunker M, Zhang J, Blanchard R, Roberts CJ. Characterising the surface adhesive behavior of tablet tooling components by atomic force microscopy. Drug Dev Ind Pharm. 2011;37(8):875–85. https://doi.org/10.3109/03639045.2010.546402.

    Article  CAS  PubMed  Google Scholar 

  15. Podczeck F. Investigations into the reduction of powder adhesion to stainless steel surfaces by surface modification to aid capsule filling. Int J Pharm. 1999;178(1):93–100. https://doi.org/10.1016/S0378-5173(98)00363-9.

    Article  CAS  PubMed  Google Scholar 

  16. Roberts M, Ford JL, MacLeod GS, Fell JT, Smith GW, Rowe PH, et al. Effect of punch tip geometry and embossment on the punch tip adherence of a model ibuprofen formulation. J Pharm Pharmacol. 2004;56(7):947–50. https://doi.org/10.1211/0022357023736.

    Article  CAS  PubMed  Google Scholar 

  17. Aoki S, Danjo K. Effect of tableting conditions on the sticking of tablet using ibuprofen. Yakugaku Zasshi. 1998;118(11):511–8.

    Article  CAS  PubMed  Google Scholar 

  18. Simmons DM, Gierer DS. A material sparing test to predict punch sticking during formulation development. Drug Dev Ind Pharm. 2012;38(9):1054–60. https://doi.org/10.3109/03639045.2011.637933.

    Article  CAS  PubMed  Google Scholar 

  19. Högdin A: Drug substances: scale-up challenges. https://www.contractpharma.com/issues/2019-09-01/view_features/drug-substances-scale-up-challenges/ (2019). Accessed 7 Sep 2023.

  20. Alsirawan MB, Mohammad MA, Alkasmi B, Alhareth K, El-Hammadi M. Development and validation of a simple HPLC method for the determination of ibuprofen sticking onto punch faces. Int J Pharm Pharm Sci. 2013;5(SUPPL.4):227–31.

    CAS  Google Scholar 

  21. Wang Z, Shah UV, Olusanmi D, Narang AS, Hussain MA, Gamble JF, et al. Measuring the sticking of mefenamic acid powders on stainless steel surface. Int J Pharm. 2015;496(2):407–13. https://doi.org/10.1016/j.ijpharm.2015.09.067.

    Article  CAS  PubMed  Google Scholar 

  22. Al-Karawi C, Leopold CS. A comparative study on the sticking tendency of ibuprofen and ibuprofen sodium dihydrate to differently coated tablet punches. Eur J Pharm Biopharm. 2018;128:107–18. https://doi.org/10.1016/j.ejpb.2018.04.004.

    Article  CAS  PubMed  Google Scholar 

  23. Al-Karawi C, Kaiser T, Leopold CS. A novel technique for the visualization of tablet punch surfaces: characterization of surface modification, wear and sticking. Int J Pharm. 2017;530(1–2):440–54.

    Article  CAS  PubMed  Google Scholar 

  24. Paul S, Taylor LJ, Murphy B, Krzyzaniak J, Dawson N, Mullarney MP, et al. Mechanism and Kinetics of punch sticking of pharmaceuticals. J Pharm Sci. 2017;106(1):151–8. https://doi.org/10.1016/j.xphs.2016.07.015.

    Article  CAS  PubMed  Google Scholar 

  25. Paul S, Sun CC. Modulating sticking propensity of pharmaceuticals through excipient selection in a direct compression tablet formulation. Pharm Res. 2018;35(6):1–10. https://doi.org/10.1007/s11095-018-2396-3.

    Article  CAS  Google Scholar 

  26. Paul S, Taylor LJ, Murphy B, Krzyzaniak JF, Dawson N, Mullarney MP, et al. Powder properties and compaction parameters that influence punch sticking propensity of pharmaceuticals. Int J Pharm. 2017;521(1–2):374–83. https://doi.org/10.1016/j.ijpharm.2017.02.053.

    Article  CAS  PubMed  Google Scholar 

  27. Paul S, Wang C, Wang K, Sun CC. Reduced punch sticking propensity of acesulfame by salt formation: role of crystal mechanical property and surface chemistry. Mol Pharm. 2019;16(6):2700–7. https://doi.org/10.1021/acs.molpharmaceut.9b00247.

    Article  CAS  PubMed  Google Scholar 

  28. Gunawardana CA, Kong A, Wanapun D, Blackwood DO, Travis Powell C, Krzyzaniak JF, et al. Understanding the role of magnesium stearate in lowering punch sticking propensity of drugs during compression. Int J Pharm. 2023;640:123016. https://doi.org/10.1016/j.ijpharm.2023.123016.

    Article  CAS  PubMed  Google Scholar 

  29. Samiei L, Kelly K, Taylor L, Forbes B, Collins E, Rowland M. The influence of electrostatic properties on the punch sticking propensity of pharmaceutical blends. Powder Technol. 2017;305:509–17. https://doi.org/10.1016/j.powtec.2016.10.018.

    Article  CAS  Google Scholar 

  30. Capece M. The role of particle surface area and adhesion force in the sticking behavior of pharmaceutical powders. J Pharm Sci. 2019;108(12):3803–13. https://doi.org/10.1016/j.xphs.2019.08.019.

    Article  CAS  PubMed  Google Scholar 

  31. Thomas J, Zavaliangos A. An in-line, high sensitivity, non-contact sensor for the detection of initiation of sticking. J Pharm Innov. 2020;15(1):66–72. https://doi.org/10.1007/s12247-018-9367-4.

    Article  Google Scholar 

  32. Tsosie H, Thomas J, Strong J, Zavaliangos A. Scanning electron microscope observations of powder sticking on punches during a limited number (N<5) of compactions of acetylsalicylic acid. Pharm Res. 2017;34(10):2012–24. https://doi.org/10.1007/s11095-017-2186-3.

    Article  CAS  PubMed  Google Scholar 

  33. Mollereau G, Mazel V, Busignies V, Tchoreloff P, Mouveaux F, Rivière P. Image analysis quantification of sticking and picking events of pharmaceutical powders compressed on a rotary tablet press simulator. Pharm Res. 2013;30(9):2303–14. https://doi.org/10.1007/s11095-013-1074-8.

    Article  CAS  PubMed  Google Scholar 

  34. Neilly J, Vogt A, Dziki W. Characterization of sticking residue on tablet punch faces by scanning electron microscopy and X-ray mapping. Microsc Microanal. 2009;15(S2):18–9. https://doi.org/10.1017/S1431927609097165.

    Article  Google Scholar 

  35. Swaminathan S, Ramey B, Hilden J, Wassgren C. Characterizing the powder punch-face adhesive interaction during the unloading phase of powder compaction. Powder Technol. 2017;315:410–21. https://doi.org/10.1016/j.powtec.2017.04.003.

    Article  CAS  Google Scholar 

  36. Shunichi N, Masui K, Shiraki T. Prediction of tableting problems such as capping and sticking: theoretical calculations. J Pharm Sci. 1977;66(2):254–9. https://doi.org/10.1002/jps.2600660229.

    Article  Google Scholar 

  37. Goodhart FW, Mayorga G, Ninger FC. Measurement of lower punch pulldown force and its significance. J Pharm Sci. 1969;58(2):248–51. https://doi.org/10.1002/jps.2600580226.

    Article  CAS  PubMed  Google Scholar 

  38. Waimer F, Krumme M, Danz P, Tenter U, Schmidt PC. A novel method for the detection of sticking of tablets. Pharm Dev Technol. 1999;4(3):359–67. https://doi.org/10.1081/PDT-100101371.

    Article  CAS  PubMed  Google Scholar 

  39. Lam KK, Newton JM. Influence of particle size on the adhesion behaviour of powders, after application of an initial press-on force. Powder Technol. 1992;73(2):117–25. https://doi.org/10.1016/0032-5910(92)80072-5.

    Article  CAS  Google Scholar 

  40. Kakimi K, Niwa T, Danjo K. Influence of compression pressure and velocity on tablet sticking. Chem Pharm Bull. 2010;58(12):1565–8.

    Article  CAS  Google Scholar 

  41. Mitrovej A, Augsburger LL. Adhesion of tablets in a rotary tablet press I. Instrumentation and preliminary study of variables affecting adhesion. Drug Dev Ind Pharm. 1980;6(4):331–77. https://doi.org/10.3109/03639048009068709.

    Article  Google Scholar 

  42. Danjo K, Kamiya K, Otsuka A. Effect of temperature on the sticking of low melting point materials. Chem Pharm Bull. 1993;41(8):1423–7. https://doi.org/10.1248/cpb.41.1423.

    Article  CAS  Google Scholar 

  43. Parekh BV, Saddik JS, Patel DB, Dave RH. Evaluating the effect of glidants on tablet sticking propensity of ketoprofen using powder rheology. Int J Pharm. 2023;635:122710. https://doi.org/10.1016/j.ijpharm.2023.122710.

    Article  CAS  PubMed  Google Scholar 

  44. Nakamura S, Otsuka N, Yoshino Y, Sakamoto T, Yuasa H. Predicting the occurrence of sticking during tablet production by shear testing of a pharmaceutical powder. Chem Pharm Bull. 2016;64(5):512–6. https://doi.org/10.1248/cpb.c15-00992.

    Article  CAS  Google Scholar 

  45. Toyoshima K, Yasumura M, Ohnishi N, Ueda Y. Quantitative evaluation of tablet sticking by surface roughness measurement. Int J Pharm. 1988;46(3):211–5. https://doi.org/10.1016/0378-5173(88)90080-4.

    Article  CAS  Google Scholar 

  46. Saniocki I, Sakmann A, Leopold CS. How suitable is the measurement of take-off forces for detection of sticking during direct compression of various ibuprofen tablet formulations? Pharm Dev Technol. 2013;18(1):257–65. https://doi.org/10.3109/10837450.2012.712538.

    Article  CAS  PubMed  Google Scholar 

  47. Hertz H. Ueber die Berührung fester elastischer Körper. Journal Für Die Reine und Angewandte Mathematik. 1882;1882(92):156–71. https://doi.org/10.1515/crll.1882.92.156.

    Article  Google Scholar 

  48. Tablet Breaking Force <1217>. United States Pharmacopea and National Formulary (USP37–NF32). United State Pharmacopea Convention; 2015. p 1146-8.

  49. Fell JT, Newton JM. Determination of tablet strength by the diametral-compression test. J Pharm Sci. 1970;59(5):688–91. https://doi.org/10.1002/jps.2600590523.

    Article  CAS  PubMed  Google Scholar 

  50. Zavaliangos A, Laptev A. The densification of powder mixtures containing soft and hard components under static and cyclic pressure. Acta Materialia. 2000;48(10):2565–70. https://doi.org/10.1016/S1359-6454(00)00066-5.

    Article  CAS  Google Scholar 

  51. Huang C-Y, Daehn GS. Densification of composite powder compacts in pressure cycling. Acta Materialia. 1996;44(3):1035–45. https://doi.org/10.1016/1359-6454(95)00230-8.

    Article  CAS  Google Scholar 

  52. Sawicki A, Swidzinski W. Cyclic compaction of soils, grains and powders. Powder Technol. 1995;85(2):97–104. https://doi.org/10.1016/0032-5910(95)03013-Y.

    Article  CAS  Google Scholar 

  53. Jiang G, Wu W, Daehn GS, Wagoner RH. Experimental and numerical investigation of idealized consolidation: part II: cyclic compaction. Acta Materialia. 2000;48(17):4331–5. https://doi.org/10.1016/S1359-6454(00)00207-X.

    Article  CAS  Google Scholar 

  54. Jiang G, Daehn GS, Lannutti JJ, Fu Y, Wagoner RH. Effects of lubrication and aspect ratio on the consolidation of metal matrix composites under cyclic pressure. Acta Materialia. 2001;49(8):1471–7. https://doi.org/10.1016/S1359-6454(01)00026-X.

    Article  CAS  Google Scholar 

  55. Bechard SR, Down GRB. Infrared imaging of pharmaceutical materials undergoing compaction. Pharm Res. 1992;9(4):521–8. https://doi.org/10.1023/A:1015896414765.

    Article  CAS  PubMed  Google Scholar 

  56. Zavaliangos A, Galen S, Cunningham J, Winstead D. Temperature evolution during compaction of pharmaceutical powders. J Pharm Sci. 2008;97(8):3291–304. https://doi.org/10.1002/jps.21229.

    Article  CAS  PubMed  Google Scholar 

  57. Klinzing GR, Zavaliangos A, Cunningham J, Mascaro T, Winstead D. Temperature and density evolution during compaction of a capsule shaped tablet. Comput Chem Eng. 2010;34(7):1082–91. https://doi.org/10.1016/j.compchemeng.2010.04.012.

    Article  CAS  Google Scholar 

  58. Narurkar AN, Purkaystha AR, Sheen P-C. Effect of various factors on the corrosion and rusting of tooling material used for tablet manufacturing. Drug Dev Ind Pharm. 1985;11(8):1487–95. https://doi.org/10.3109/03639048509057681.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Elizabeth Moroz from GlaxoSmithKline for help with this project and the Material Science Department at GlaxoSmithKline for access to instrumentation.

Funding

The authors would like to thank GlaxoSmithKline for their financial support on this project. Phuong Bui was also partially funded by the Department of Education scholarship under award number P200A150240.

Author information

Authors and Affiliations

Authors

Contributions

J.T. designed the custom components that enabled the STMC with rotation mechanism and executed the experiments. P.B. executed initial experiments for proof of concept including the effect of punch rotation. J.T. and A.Z. were responsible for the conceptual idea of the technique. A.Z. was responsible for the planning for the work and the discussion of mechanism.

Corresponding author

Correspondence to Antonios Zavaliangos.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, J., Bui, P. & Zavaliangos, A. Sticking Detection by Repeated Compactions on a Single Tablet. AAPS PharmSciTech 24, 237 (2023). https://doi.org/10.1208/s12249-023-02694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02694-6

Keywords

Navigation