Skip to main content

Advertisement

Log in

Topical Nanotherapeutics for Treating MRSA-Associated Skin and Soft Tissue Infection (SSTIs)

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The emergence of methicillin-resistant Staphylococcus aureus (MRSA) imposes a major challenge for the treatment of infectious diseases with existing antibiotics. MRSA associated with superficial skin and soft tissue infections (SSTIs) is one of them, affecting the skin’s superficial layers, and it includes impetigo, folliculitis, cellulitis, furuncles, abscesses, surgical site infections, etc. The efficient care of superficial SSTIs caused by MRSA necessitates local administration of antibiotics, because oral antibiotics does not produce the required concentration at the local site. The topical administration of nanocarriers has been emerging in the area of drug delivery due to its advantages over conventional topical formulation. It enhances the solubility and permeation of the antibiotics into deeper layer of the skin. Apart from this, antibiotic resistance is something that needs to be combated on multiple fronts, and antibiotics encapsulated in nanocarriers help to do so by increasing the therapeutic efficacy in a number of different ways. The current review provides an overview of the resistance mechanism in S. aureus as well as various nanocarriers reported for the effective management of MRSA-associated superficial SSTIs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All the data was provided in the manuscript.

Abbreviations

SSTIs:

Skin and soft tissue infections

MRSA:

Methicillin-resistant Staphylococcus aureus

MSSA:

Methicillin-sensitive Staphylococcus aureus

MIC:

Minimum inhibitory concentration

MBC:

Minimum bactericidal concentration

CFU:

Colony-forming unit

ZP:

Zeta potential

ZI:

Zone of inhibition

PDI:

Polydispersity index

DMPC:

Dimyristoylphosphatidylcholine

DA:

Deoxycholic acid

EE:

Encapsulation efficiency

LE:

Loading efficiency

SEM:

Scanning electron microscopy

TGA:

Thermogravimetric analysis

TSS:

Toxic shock syndrome

PBPs:

Penicillin-binding protein

h:

Hour

RI:

Refractive index

EDX:

Energy-dispersive X-ray

EDS:

Elemental annotation via automated EDS

AFM:

Atomic force microscopy

CSLM:

Confocal laser scanning microscopy

FTIR:

Fourier-transform infrared spectroscopy

TEM:

Transmission electron microscopy

DSC:

Differential scanning calorimetry

XRD:

X-ray powder diffraction

ICP-MS:

Inductively coupled plasma mass spectrometry

AAS:

Atomic absorption spectroscopy

References

  1. Götz F, Bannerman T, Schleifer KH. The genera staphylococcus and macrococcus. The prokaryotes. 2006:5. Available from:/pmc/articles/PMC7120318

  2. Orenstein A. The discovery and naming of Staphylococcus aureus. Periodical 2011. Available from: www.antimicrobe.org

  3. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, Holland TL, Fowler Jr VG. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology. 2019 Apr;17(4):203–18. Available from: https://www.nature.com/articles/.s41579-018-0147-4

  4. Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Science Progress. 2002;85(1):57–72 (Available from: /pmc/articles/PMC2065735/).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Argudín MÁ, Mendoza MC, Rodicio MR. Food poisoning and Staphylococcus aureus enterotoxins. Toxins. 2010;2(7):1751–73 (Available from: /pmc/articles/PMC3153270/).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tong T, SY, Davis JS, Eichenberger E, Holland TL, Fowler Jr VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiol Rev. 2015;28(3):603–61 (Available from: /pmc/articles/ PMC4451395/).

    Article  CAS  Google Scholar 

  7. Chambers HF, DeLeo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Rev Microbiol. 2009;7(9):629–41 (Available from: /pmc/articles/ PMC2871281/).

    Article  CAS  Google Scholar 

  8. Chatterjee SS, Otto M. Improved understanding of factors driving methicillin-resistant Staphylococcus aureus epidemic waves. Clin Epidemiol. 2013;4:205–17.

    Google Scholar 

  9. Abanmi A, Bakheshwain S, El Khizzi N, Zouman AR. Skin and soft tissue infection. Am Fam Physician. 2008;77:1415–20. Available from: www.aafp.org/afp

  10. Methicillin resistant Staphylococcus aureus. StatPearls [Internet]. StatPearls Publishin. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482221/

  11. Ki V, Rotstein C. Bacterial skin and soft tissue infections in adults: a review of their epidemiology, pathogenesis, diagnosis, treatment and site of care. Can J Infect Dis Med Microbiol. 2008 Mar 1;19(2):173–84. Available from: https://pubmed.ncbi.nlm.nih.gov/19352449/

  12. Fraunholz M, Sinha B. Intracellular Staphylococcus aureus: live-in and let die. Front Cell Infect Microbiol. 2012;2:43 (Available from: /pmc/articles/ PMC3417557/).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Daniel Lew P, S. Southwick F. Skin and soft tissue infections | Infectious diseases: a clinical short course, 4e | AccessMedicine. Available from: https://accessmedicine.mhmedical.com/content.aspx?bookid=2816&sectionid=240348679

  14. Pope D N. Methicillin-resistant Staphylococcus aureus skin and soft tissue infections. US pharmasict. Available from: https://www.uspharmacist.com/article/methicillin-resistant-staphylococcus-aureus-skin-and-soft-tissue-infections

  15. Pangilinan R, Tice A, Tillotson G. Topical antibiotic treatment for uncomplicated skin and skin structure infections: review of the literature. Expert review of anti-infective therapy. 2009 Oct 1;7(8):957–65. Available from: https://pubmed.ncbi.nlm.nih.gov/19803705/

  16. Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Controlled Release. 2016;240:77–92 (Available from: /pmc/articles/PMC4896846/).

    Article  CAS  Google Scholar 

  17. Prabhu P, Patravale V, Joshi M. Nanocarriers for effective topical delivery of anti-infectives. Curr Nanosci. 2012;8(4):491–503.

    Article  CAS  Google Scholar 

  18. Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem. 2015;2(84):577–601.

    Article  Google Scholar 

  19. Sriravali K, Jindal AB, Singh BP, Paul AT. Plant-associated endophytic fungi and its secondary metabolites against drug-resistant pathogenic microbes. Antimicrob Resist Underlying Mech Ther Approaches. 2022;3:253. https://doi.org/10.1007/978-981-16-3120-7_10.

    Article  Google Scholar 

  20. Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020;17(10):107.

    Article  Google Scholar 

  21. Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS microbiology reviews. 2017 May 1;41(3):430–49. Available from: https://academic.oup.com/femsre/article/41/3/430/3608758

  22. Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Investig. 2003;111(9):1265–73 (Available from: /pmc/articles/PMC154455/).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Costa SS, Viveiros M, Amaral L, Couto I. Multidrug efflux pumps in Staphylococcus aureus: an update. The open microbiology journal. 2013 Mar 22;7(1). Available from: /pmc/articles/PMC3617543/

  24. Mikkaichi T, Yeaman MR, Hoffmann A. MRSA Systems Immunobiology Group. Identifying determinants of persistent MRSA bacteremia using mathematical modeling. PLoS Comput Biol. 2019;15(7):e1007087. https://doi.org/10.1371/journal.pcbi.1007087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scicluna S, MC, Vella-Zarb L. Evolution of nanocarrier drug-delivery systems and recent advancements in covalent organic framework–drug systems. ACS Appl Nano Mater. 2020;3(4):3097–115. https://doi.org/10.1021/acsanm.9b02603.

    Article  CAS  Google Scholar 

  26. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. https://doi.org/10.1186/s12951-018-0392-8

  27. Cui M, Wiraja C, Chew SW, Xu C. Nanodelivery systems for topical management of skin disorders. Molecular Pharmaceutics. 2020 May 29;18(2):491–505. Available from: https://pubmed.ncbi.nlm.nih.gov/32470311/

  28. Wang W, Lu KJ, Yu CH, Huang QL, Du YZ. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnol. 2019;17(1):1–5. https://doi.org/10.1186/s12951-019-0514-y.

    Article  CAS  Google Scholar 

  29. Makabenta JM, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nature Reviews Microbiology. 2021 Jan;19(1):23–36. Available from: https://www.nature.com/articles/ s41579–020–0420–1

  30. Baptista P V., McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, et al. Nano-strategies to fight multidrug resistant bacteria—“a battle of the titans.” Front Microbiol. Available from: /pmc/articles/PMC6036605/

  31. Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. Nanoparticle-based local antimicrobial drug delivery. Advanced drug delivery reviews. 2018 Mar 1;127:46–57. Available from: https://pubmed.ncbi.nlm.nih.gov/28939377/

  32. Lee NY, Ko WC, Lee Hsueh PR., NY, Ko WC, Hsueh PR. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol. 2019;10:1153 (Available from: /pmc/articles/PMC6787836/).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gupta M, Agrawal U, Vyas SP. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin Drug Deliv. 2012;9(7):783–804. https://doi.org/10.1517/17425247.2012.686490.

    Article  CAS  PubMed  Google Scholar 

  34. Dey S, Datta S, Dasgupta S, Mazumder B, Pathak YV. Lipid nanoparticles for topical application of drugs for skin diseases. In Nanobiomaterials in galenic formulations and cosmetics. 2016 Jan 1 (pp. 327–361). William Andrew Publishing.

  35. Stefanov SR, Andonova VY. Lipid nanoparticulate drug delivery systems: recent advances in the treatment of skin disorders. Pharm. 2021;14(11):1083 (Available from: /pmc/articles/PMC8619682/).

    CAS  Google Scholar 

  36. Prayag KS, Paul AT, Ghorui SK, Jindal AB. Preparation and evaluation of quinapyramine sulphate-docusate sodium ionic complex loaded lipidic nanoparticles and its scale up using geometric similarity principle. J Pharm Sci. 2021;110(5):2241–9.

    Article  CAS  PubMed  Google Scholar 

  37. Jose A, Ninave KM, Karnam S, Venuganti VV. Temperature-sensitive liposomes for co-delivery of tamoxifen and imatinib for synergistic breast cancer treatment. J Liposome Res. 2019;29(2):153–62. https://doi.org/10.1080/08982104.2018.1502315.

    Article  CAS  PubMed  Google Scholar 

  38. Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: formulation development, stability issues, basic considerations and applications. J Control Release. 2018;28(270):203–25.

    Article  Google Scholar 

  39. Song Z, Sun H, Yang Y, Jing H, Yang L, Tong Y, Wei C, Wang Z, Zou Q, Zeng H. Enhanced efficacy and anti-biofilm activity of novel nanoemulsions against skin burn wound multi-drug resistant MRSA infections. Nanomed: Nanotechnol Biol Med. 2016;12(6):1543–55.

    Article  CAS  Google Scholar 

  40. Thakur T, K, Sharma G, Singh B, Jain A, Tyagi R, Chhibber S, Katare OP. Cationic-bilayered nanoemulsion of fusidic acid: an investigation on eradication of methicillin-resistant Staphylococcus aureus 33591 infection in burn wound. Nanomed. 2018;13(8):825–47.

    Article  CAS  Google Scholar 

  41. Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol. 2015;30(6):219.

    Google Scholar 

  42. Rukavina Z, Klarić MŠ, Filipović-Grčić J, Lovrić J, Vanić Ž. Azithromycin-loaded liposomes for enhanced topical treatment of methicillin-resistant Staphyloccocus aureus (MRSA) infections. Int J Pharm. 2018;553(1–2):109–19.

    Article  CAS  PubMed  Google Scholar 

  43. Hsu CY, Yang SC, Sung CT, Weng YH, Fang JY. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting. Int J Nanomed. 2017;12:8227.

    Article  CAS  Google Scholar 

  44. Hajiahmadi F, Alikhani MY, Shariatifar H, Arabestani MR, Ahmadvand D. The bactericidal effect of liposomal vancomycin as a topical combating system against methicillin-resistant Staphylococcus aureus skin wound infection in mice. Med J Islam Repub Iran. 2019;33:153 (Available from: /pmc/articles/PMC7137850/).

    PubMed  PubMed Central  Google Scholar 

  45. Hajiahmadi F, Alikhani MY, Shariatifar H, Arabestani MR, Ahmadvand D. The bactericidal effect of lysostaphin coupled with liposomal vancomycin as a dual combating system applied directly on methicillin-resistant Staphylococcus aureus infected skin wounds in mice. Int J Nanomed. 2019;29:5943–55 (Available from: /pmc/articles/PMC6683660/).

    Article  Google Scholar 

  46. Thapa RK, Kiick KL, Sullivan MO. Encapsulation of collagen mimetic peptide-tethered vancomycin liposomes in collagen-based scaffolds for infection control in wounds. Acta Biomater. 2020;1(103):115–28.

    Article  Google Scholar 

  47. Souto EB, Baldim I, Oliveira WP, Rao R, Yadav N, Gama FM, Mahant S. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert opinion on drug delivery. 2020 Mar 3;17(3):357–77. Available from: https://pubmed.ncbi.nlm.nih.gov/32064958/

  48. Kalhapure RS, Sonawane SJ, Sikwal DR, Jadhav M, Rambharose S, Mocktar C, Govender T. Solid lipid nanoparticles of clotrimazole silver complex: an efficient nano antibacterial against Staphylococcus aureus and MRSA. Colloids Surf, B. 2015;1(136):651–8.

    Article  Google Scholar 

  49. Alalaiwe A, Wang PW, Lu PL, Chen YP, Fang JY, Yang SC. Synergistic anti-MRSA activity of cationic nanostructured lipid carriers in combination with oxacillin for cutaneous application. Frontiers in Microbiology. 2018 Jul 4;9:1493. Available from: www.frontiersin.org

  50. Zhang Z, Tsai PC, Ramezanli T, Michniak‐Kohn BB. Polymeric nanoparticles‐based topical delivery systems for the treatment of dermatological diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2013 May;5(3):205–18.. Available from: https://pubmed.ncbi.nlm.nih.gov/23386536/

  51. Boisgard AS, Lamrayah M, Dzikowski M, Salmon D, Kirilov P, Primard C, Pirot F, Fromy B, Verrier B. Innovative drug vehicle for local treatment of inflammatory skin diseases: ex vivo and in vivo screening of five topical formulations containing poly (lactic acid)(PLA) nanoparticles. Eur J Pharm Biopharm. 2017;1(116):51–60.

    Article  Google Scholar 

  52. Abdel-Mottaleb MM, Moulari B, Beduneau A, Pellequer Y, Lamprecht A. Nanoparticles enhance therapeutic outcome in inflamed skin therapy. Eur J Pharm Biopharm. 2012;82(1):151–7.

    Article  CAS  PubMed  Google Scholar 

  53. Eren Boncu T, Ozdemir N, Uskudar GA. Electrospinning of linezolid loaded PLGA nanofibers: effect of solvents on its spinnability, drug delivery, mechanical properties, and antibacterial activities. Drug Dev Ind Pharm. 2020;46(1):109–21. https://doi.org/10.1080/03639045.2019.1706550.

    Article  CAS  PubMed  Google Scholar 

  54. Amajuoyi JN, Ilomuanya MO, Asantewaa-Osei Y, Azubuike CP, Adeosun SO, Igwilo CI. Development of electrospun keratin/coenzyme Q10/poly vinyl alcohol nanofibrous scaffold containing mupirocin as potential dressing for infected wounds. Future J Pharma Sci. 2020;6(1):1–3. https://doi.org/10.1186/s43094-020-00043-z.

    Article  Google Scholar 

  55. Lee SJ, Park SA, Heo DN, Lee D, Jang HJ, Kim KS, Moon JH, Kwon IK. Preparation of electrospun fibrous scaffold containing silver sulfadiazine for biomedical applications. J Nanosci Nanotechnol. 2016;16(8):8554–8.

    Article  CAS  Google Scholar 

  56. Lee SJ, Heo DN, Moon JH, Park HN, Ko WK, Bae MS, Lee JB, Park SW, Kim EC, Lee CH, Jung BY. Chitosan/polyurethane blended fiber sheets containing silver sulfadiazine for use as an antimicrobial wound dressing. J Nanosci Nanotechnol. 2014;14(10):7488–94.

    Article  CAS  PubMed  Google Scholar 

  57. Fathi HA, Abdelkader A, AbdelKarim MS, Abdelaziz AA, El-Mokhtar MA, Allam A, Fetih G, El Badry M, Elsabahy M. Electrospun vancomycin-loaded nanofibers for management of methicillin-resistant Staphylococcus aureus-induced skin infections. Int J Pharm. 2020;30(586): 119620.

    Article  Google Scholar 

  58. Kalita S, Devi B, Kandimalla R, Sharma KK, Sharma A, Kalita K, Kataki AC, Kotoky J. Chloramphenicol encapsulated in poly-ε-caprolactone–pluronic composite: nanoparticles for treatment of MRSA-infected burn wounds. Int J Nanomed. 2015;10:2971 (Available from: /pmc/articles/PMC4404939/).

    CAS  Google Scholar 

  59. Hasan N, Cao J, Lee J, Hlaing SP, Oshi MA, Naeem M, Ki MH, Lee BL, Jung Y, Yoo JW. Bacteria-targeted clindamycin loaded polymeric nanoparticles: effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing. Pharmaceutics. 2019 May 15;11(5):236. Available from: https://www.mdpi.com/1999-4923/11/5/236/htm

  60. Kalita S, Kandimalla R, Devi B, Kalita B, Kalita K, Deka M, Kataki AC, Sharma A, Kotoky J. Dual delivery of chloramphenicol and essential oil by poly-ε-caprolactone–pluronic nanocapsules to treat MRSA-Candida co-infected chronic burn wounds. RSC advances. 2017;7(3):1749–58. Available from: https://pubs.rsc.org/en/content/articlehtml/2017/ra/c6ra26561h

  61. Ito K, Saito A, Fujie T, Nishiwaki K, Miyazaki H, Kinoshita M, Saitoh D, Ohtsubo S, Takeoka S. Sustainable antimicrobial effect of silver sulfadiazine-loaded nanosheets on infection in a mouse model of partial-thickness burn injury. Acta Biomater. 2015;15(24):87–95.

    Article  Google Scholar 

  62. Mohammed WH, Ali WK, Al-Awady MJ. Evaluation of in vitro drug release kinetics and antibacterial activity of vancomycin HCl-loaded nanogel for topical application. J Pharm Sci Res. 2018;10(11):2747–56.

    CAS  Google Scholar 

  63. Thakur K, Sharma G, Singh B, Chhibber S, Patil AB, Katare OP. Chitosan-tailored lipidic nanoconstructs of Fusidic acid as promising vehicle for wound infections: an explorative study. Int J Biol Macromol. 2018;1(115):1012–25.

    Article  Google Scholar 

  64. Thakur K, Sharma G, Singh B, Chhibber S, Katare OP. Nano-engineered lipid-polymer hybrid nanoparticles of fusidic acid: an investigative study on dermatokinetics profile and MRSA-infected burn wound model. Drug Deliv Transl Res. 2019;15(9):748–63. https://doi.org/10.1007/s13346-019-00616-3.

    Article  CAS  Google Scholar 

  65. Golmohammadi R, Najar-Peerayeh S, Tohidi Moghadam T, Hosseini SM. Synergistic antibacterial activity and wound healing properties of selenium-chitosan-mupirocin nanohybrid system: an in vivo study on rat diabetic staphylococcus aureus wound infection model. Scientific reports. 2020 Feb 18;10(1):1–0. Available from: https://www.nature.com/ articles/s41598–020–59510–5

  66. Shah A, Ashames AA, Buabeid MA, Murtaza G. Synthesis, in vitro characterization and antibacterial efficacy of moxifloxacin-loaded chitosan-pullulan-silver-nanocomposite films. J Drug Deliv Sci Technol. 2020;1(55): 101366.

    Article  Google Scholar 

  67. Zafari M, Adibi M, Chiani M, Bolourchi N, Barzi SM, Nosrati MS, Bahari Z, Shirvani P, Noghabi KA, Ebadi M, Rahimirad N. Effects of cefazolin-containing niosome nanoparticles against methicillin-resistant Staphylococcus aureus biofilm formed on chronic wounds. Biomed Mater. 2021;16(3):035001. https://doi.org/10.1088/1748-605X/abc7f2.

    Article  CAS  PubMed  Google Scholar 

  68. D Dandagi P, Naik V, Gadad A, Mastiholimath V, Shedbal S, Rangoli S, Kazi T. Formulation and evaluation of linezolid niosomal gel for topical drug delivery. World J. Pharm. Res. 2020;9:674–90. Available from: www.wjpr.net

  69. Makhmalzade BS, Chavoshy F. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J Adv Pharm Technol Res. 2018;9(1):2 (Available from: /pmc/articles/PMC5801582/).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chiappetta DA, Degrossi J, Teves S, D’Aquino M, Bregni C, Sosnik A. Triclosan-loaded poloxamine micelles for enhanced topical antibacterial activity against biofilm. Eur J Pharm Biopharm. 2008;69(2):535–45.

    Article  CAS  PubMed  Google Scholar 

  71. Thakur K, Mahajan A, Sharma G, Singh B, Raza K, Chhibber S, Katare OP. Implementation of quality by design (QbD) approach in development of silver sulphadiazine loaded egg oil organogel: an improved dermatokinetic profile and therapeutic efficacy in burn wounds. Int J Pharm. 2020;25(576): 118977.

    Article  Google Scholar 

  72. Argenziano M, Banche G, Luganini A, Finesso N, Allizond V, Gulino GR, Khadjavi A, Spagnolo R, Tullio V, Giribaldi G, Guiot C. Vancomycin-loaded nanobubbles: a new platform for controlled antibiotic delivery against methicillin-resistant Staphylococcus aureus infections. Int J Pharm. 2017;523(1):176–88.

    Article  CAS  PubMed  Google Scholar 

  73. Kalita S, Kandimalla R, Bhowal AC, Kotoky J, Kundu S. Functionalization of β-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening. Scientific reports. 2018 Apr 10;8(1):1–3. Available from: https://www.nature.com/articles/s41598-018-22736-5

  74. Shah A, Buabeid MA, Arafa ES, Hussain I, Li L, Murtaza G. The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin. Int J Pharm. 2019;10(564):22–38.

    Article  Google Scholar 

  75. Malekzadeh M, Yeung KL, Halali M, Chang Q. Preparation and antibacterial behaviour of nanostructured Ag@SiO2–penicillin with silver nanoplates. New Journal of Chemistry. 2019;43(42):16612–20.Available from: https://pubs.rsc.org/en/content/articlehtml/2019/nj/c9nj03727f

  76. Chakravarty I, Kundu S. Oligodynamic boons of daptomycin and noble metal nanoparticles packaged in an anti-MRSA topical gel formulation. Curr Pharm Biotechnol. 2019;20(9):707–18.

    Article  CAS  PubMed  Google Scholar 

  77. Peng Y, Song C, Yang C, Guo Q, Yao M. Low molecular weight chitosan-coated silver nanoparticles are effective for the treatment of MRSA-infected wounds. Int J Nanomed. 2017;12:295 (Available from: /pmc/articles/PMC5221798/).

    Article  CAS  Google Scholar 

  78. Mekkawy AI, El-Mokhtar MA, Nafady NA, Yousef N, Hamad MA, El-Shanawany SM, Ibrahim EH, Elsabahy M. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Int J Nanomed. 2017;12:759 (Available from: /pmc/articles/PMC5271388/).

    Article  CAS  Google Scholar 

  79. Lee SJ, Heo DN, Moon JH, Ko WK, Lee JB, Bae MS, Park SW, Kim JE, Lee DH, Kim EC, Lee CH. Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydrate Polym. 2014;111:530–7.

    Article  CAS  Google Scholar 

  80. Richter K, Facal P, Thomas N, Vandecandelaere I, Ramezanpour M, Cooksley C, Prestidge CA, Coenye T, Wormald PJ, Vreugde S. Taking the silver bullet colloidal silver particles for the topical treatment of biofilm-related infections. ACS Appl Mater Interfaces. 2017;9(26):21631–8. https://doi.org/10.1021/acsami.7b03672.

    Article  CAS  PubMed  Google Scholar 

  81. Jadhav K, Dhamecha D, Bhattacharya D, Patil M. Green and ecofriendly synthesis of silver nanoparticles: characterization, biocompatibility studies and gel formulation for treatment of infections in burns. J Photochem Photobiol, B. 2016;1(155):109–15.

    Article  Google Scholar 

  82. Qais FA, Shafiq A, Khan HM, Husain FM, Khan RA, Alenazi B, Alsalme A, Ahmad I. Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorganic chemistry and applications. 2019 Oct;2019.

  83. Younis NS, El Semary NA, Mohamed ME. Silver nanoparticles green synthesis via cyanobacterium Phormidium sp.: characterization, wound healing, antioxidant, antibacterial, and anti-inflammatory activities. Eur Rev Med Pharmacol Sci. 2021;25(7):3083–96.

    CAS  PubMed  Google Scholar 

  84. Vijayakumar S, Malaikozhundan B, Parthasarathy A, Saravanakumar K, Wang MH, Vaseeharan B. Nano biomedical potential of biopolymer chitosan-capped silver nanoparticles with special reference to antibacterial, antibiofilm, anticoagulant and wound dressing material. J Cluster Sci. 2020;31:355–66. https://doi.org/10.1007/s10876-019-01649-x.

    Article  CAS  Google Scholar 

  85. Romero-Urbina DG, Lara HH, Velázquez-Salazar JJ, Arellano-Jiménez MJ, Larios E, Srinivasan A, Lopez-Ribot JL, Yacamán MJ. Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles. Beilstein journal of nanotechnology. 2015 Dec 15;6(1):2396–405. Available from: https://www.beilstein-journals.org/bjnano/articles/6/246

  86. Rujitanaroj PO, Pimpha N, Supaphol P. Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polym. 2008;49(21):4723–32.

    Article  CAS  Google Scholar 

  87. Kumar S, Majhi RK, Singh A, Mishra M, Tiwari A, Chawla S, Guha P, Satpati B, Mohapatra H, Goswami L, Goswami C. Carbohydrate-coated gold–silver nanoparticles for efficient elimination of multidrug resistant bacteria and in vivo wound healing. ACS Appl Mater Interfaces. 2019;11(46):42998–3017. https://doi.org/10.1021/acsami.9b17086.

    Article  CAS  PubMed  Google Scholar 

  88. Punjabi K, Mehta S, Chavan R, Chitalia V, Deogharkar D, Deshpande S. Efficiency of biosynthesized silver and zinc nanoparticles against multi-drug resistant pathogens. Front Microbiol. 2018;20(9):2207.

    Article  Google Scholar 

  89. Ramadan MA, Shawkey AE, Rabeh MA, Abdellatif AO. Promising antimicrobial activities of oil and silver nanoparticles obtained from Melaleuca alternifolia leaves against selected skin-infecting pathogens. J Herbal Med. 2020;1(20): 100289.

    Article  Google Scholar 

  90. Das A, Kumar A, Patil NB, Viswanathan C, Ghosh D. Preparation and characterization of silver nanoparticle loaded amorphous hydrogel of carboxymethylcellulose for infected wounds. Carbohyd Polym. 2015;5(130):254–61.

    Article  Google Scholar 

  91. Guerrero DJ, Bonilla JJ, López CC, Sáez RG. Encapsulation of silver nanoparticles in polylactic acid or poly (lactic-co-glycolic acid) and their antimicrobial and cytotoxic activities. J Nanosci Nanotechnol. 2019;19(11):6933–41.

    Article  CAS  PubMed  Google Scholar 

  92. Wei SC, Chang L, Huang CC, Chang HT. Dual-functional gold nanoparticles with antimicrobial and proangiogenic activities improve the healing of multidrug-resistant bacteria-infected wounds in diabetic mice. Biomaterials science. 2019;7(11):4482–90. Available from: https://pubs.rsc.org/en/content/articlehtml/2019/bm/c9bm00772e

  93. Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, Goswami C, Sonawane A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomed: Nanotechnol Biol Med. 2014;10(6):1195–208.

    Article  CAS  Google Scholar 

  94. Han HW, Patel KD, Kwak JH, Jun SK, Jang TS, Lee SH, Knowles JC, Kim HW, Lee HH, Lee JH. Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria. Biomolecules. 2021 Jul 14;11(7):1028. Available from: https://www.mdpi.com/2218-273X/11/7/1028/htm

Download references

Acknowledgements

The authors are thankful to the Department of Pharmacy, BITS-Pilani, Pilani Campus, Rajasthan, and the Department of Agriculture and Environmental Sciences, NIFTEM, Kundli, for providing facilities and support.

Funding

The DST-SEED (SP/YO/385/2018), New Delhi, and BITS-Pilani, Pilani campus for providing financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and supervision: Atish T. Paul and Bhim Pratap Singh.

Writing — original draft: Karnam Sriravali

Review and editing: Anil B. Jindal and Charu Agnihotri

Corresponding authors

Correspondence to Bhim Pratap Singh or Atish T. Paul.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karnam, S., Jindal, A.B., Agnihotri, C. et al. Topical Nanotherapeutics for Treating MRSA-Associated Skin and Soft Tissue Infection (SSTIs). AAPS PharmSciTech 24, 108 (2023). https://doi.org/10.1208/s12249-023-02563-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02563-2

Keywords

Navigation