Skip to main content

Advertisement

Log in

Folic Acid–Chitosan Oligosaccharide Conjugates Decorated Nanodiamond as Potential Carriers for the Oral Delivery of Doxorubicin

  • Research Article
  • Advancements in Modified-release Oral Drug Delivery - Delivery throughout the Gastro-intestinal Tract
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Oral administration of doxorubicin (DOX) is preferred but challenged owing to poor permeability in the gastrointestinal tract (GIT), efflux of P-glycoprotein, short residence time in the intestine, and rapid hydrolysis. Herein, folic acid–chitosan oligosaccharide conjugate (FA-COS)-modified hydroxylated nanodiamond (ND-OH) was designed to enhance the oral bioavailability of DOX. The carboxyl surface of ND was modified into hydroxyl terminal group to increase the colloidal stability of the system under different pH conditions in GIT. FA-COS modification could prolong retention time, endow the drug with sustained release properties, and actively target intestinal FA receptors. In contrast to DOX/ND-OH, the particle size of DOX/ND-OH/FA-COS increased from 189.5 ± 2.8 to 224.5 ± 1.4 nm, and the zeta potential reversed from − 9.1 ± 0.2 to 14.8 ± 0.4 mV. At 48 h, DOX/ND-OH and DOX/ND-OH/FA-COS released 69.07 ± 5.70% and 35.87 ± 5.64%, respectively. FA-COS modification effectively enhanced the cytotoxicity and intracellular uptake of ND-OH/DOX by Caco-2 cells and prolonged intestinal retention in rats. The internalization of DOX/ND-OH and DOX/ND-OH/FA-COS was mainly mediated by energy-dependent clathrin- and caveolae-mediated endocytosis pathways. Pharmacokinetic study demonstrated that the AUC0−t of DOX/ND-OH and DOX/ND-OH/FA-COS was enhanced by 3.94- and 6.08-fold compared to DOX solution, respectively. These results illustrated that DOX/ND-OH/FA-COS could be an effective strategy to enhance the oral bioavailability of DOX.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Banna GL, Collova E, Gebbia V, Lipari H, Giuffrida P, Cavallaro S, et al. Anticancer oral therapy: emerging related issues. Cancer Treat Rev. 2010;36(8):595–605. https://doi.org/10.1016/j.ctrv.2010.04.005.

    Article  PubMed  Google Scholar 

  2. Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, et al. Hyaluronic acid-based nanoplatforms for Doxorubicin: a review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym. 2021;272:118491. https://doi.org/10.1016/j.carbpol.2021.118491.

    Article  CAS  PubMed  Google Scholar 

  3. Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology. 2010;115(2):155–62. https://doi.org/10.1159/000265166.

    Article  CAS  PubMed  Google Scholar 

  4. Chen C, Lu L, Yan S, Yi H, Yao H, Wu D, et al. Autophagy and doxorubicin resistance in cancer. Anticancer Drugs. 2018;29(1):1–9. https://doi.org/10.1097/cad.0000000000000572.

    Article  PubMed  Google Scholar 

  5. Sun Y, Wu H, Dong W, Zhou J, Zhang X, Liu L, et al. Molecular simulation approach to the rational design of self-assembled nanoparticles for enhanced peroral delivery of doxorubicin. Carbohydr Polym. 2019;218:279–88. https://doi.org/10.1016/j.carbpol.2019.04.095.

    Article  CAS  PubMed  Google Scholar 

  6. Bhutani U, Basu T, Majumdar S. Oral drug delivery: conventional to long acting new-age designs. Eur J Pharm Biopharm. 2021;162:23–42. https://doi.org/10.1016/j.ejpb.2021.02.008.

    Article  CAS  PubMed  Google Scholar 

  7. Moraes S, Marinho A, Lima S, Granja A, Araújo JP, Reis S, et al. Targeted nanostructured lipid carriers for doxorubicin oral delivery. Int J Pharm. 2021;592:120029. https://doi.org/10.1016/j.ijpharm.2020.120029.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Z, Shi J, Pan H, Liu M, Sang Y, Ai J, et al. Membrane-cloaked polydopamine modified mesoporous silica nanoparticles for cancer therapy. Nanotechnology. 2022;33(34). https://doi.org/10.1088/1361-6528/ac6fee

  9. Zheng N, Li J, Xu C, Xu L, Li S, Xu L. Mesoporous silica nanorods for improved oral drug absorption. Artif Cells Nanomed Biotechnol. 2018;46(6):1132–40. https://doi.org/10.1080/21691401.2017.1362414.

    Article  CAS  PubMed  Google Scholar 

  10. Yang Y, Chen Y, Li D, Lin S, Chen H, Wu W, et al. Linolenic acid conjugated chitosan micelles for improving the oral absorption of doxorubicin via fatty acid transporter. Carbohydr Polym. 2023;300:120233. https://doi.org/10.1016/j.carbpol.2022.120233.

    Article  CAS  PubMed  Google Scholar 

  11. Lim DG, Prim RE, Kim KH, Kang E, Park K, Jeong SH. Combinatorial nanodiamond in pharmaceutical and biomedical applications. Int J Pharm. 2016;514(1):41–51. https://doi.org/10.1016/j.ijpharm.2016.06.004.

    Article  CAS  PubMed  Google Scholar 

  12. Man HB, Kim H, Kim HJ, Robinson E, Liu WK, Chow EK, et al. Synthesis of nanodiamond-daunorubicin conjugates to overcome multidrug chemoresistance in leukemia. Nanomed Nanotechnol Biol Med. 2014;10(2):359–69. https://doi.org/10.1016/j.nano.2013.07.014.

    Article  CAS  Google Scholar 

  13. Perevedentseva E, Lin YC, Cheng CL. A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opin Drug Deliv. 2021;18(3):369–82. https://doi.org/10.1080/17425247.2021.1832988.

    Article  CAS  PubMed  Google Scholar 

  14. Huo M, Zhang Y, Zhou J, Zou A, Yu D, Wu Y, et al. Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug. Int J Pharm. 2010;394(1–2):162–73. https://doi.org/10.1016/j.ijpharm.2010.05.001.

    Article  CAS  PubMed  Google Scholar 

  15. Liu D, Qiao S, Cheng B, Li D, Chen J, Wu Q, et al. Enhanced oral delivery of curcumin via vitamin E TPGS modified nanodiamonds: a comparative study on the efficacy of non-covalent and covalent conjugated strategies. AAPS PharmSciTech. 2020;21(5):187. https://doi.org/10.1208/s12249-020-01721-0.

    Article  CAS  PubMed  Google Scholar 

  16. Lim DG, Jung JH, Ko HW, Kang E, Jeong SH. Paclitaxel-nanodiamond nanocomplexes enhance aqueous dispersibility and drug retention in cells. ACS Appl Mater Interfaces. 2016;8(36):23558–67. https://doi.org/10.1021/acsami.6b08079.

    Article  CAS  PubMed  Google Scholar 

  17. Neburkova J, Vavra J, Cigler P. Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Curr Opin Solid State Mate Sci. 2016;21(1). https://doi.org/10.1016/j.cossms.2016.05.008.

  18. Chow EK, Zhang X-Q, Chen M, Lam R, Robinson E, Huang H, et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med. 2011;3(73):73ra21. https://doi.org/10.1126/scitranslmed.3001713.

  19. Cheng B, Pan H, Liu D, Li D, Li J, Yu S, et al. Functionalization of nanodiamond with vitamin E TPGS to facilitate oral absorption of curcumin. Int J Pharm. 2018;540(1–2):162–70. https://doi.org/10.1016/j.ijpharm.2018.02.014.

    Article  CAS  PubMed  Google Scholar 

  20. Krueger A, Lang D. Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater. 2012;22(5):890–906. https://doi.org/10.1002/adfm.201102670.

    Article  CAS  Google Scholar 

  21. Tao W, Wang G, Wei J. The role of chitosan oligosaccharide in metabolic syndrome: a review of possible mechanisms. Mar Drugs. 2021;19(9). https://doi.org/10.3390/md19090501.

  22. Chourasia MK, Jain SK. Polysaccharides for colon targeted drug delivery. Drug Deliv. 2004;11(2):129–48. https://doi.org/10.1080/10717540490280778.

    Article  CAS  PubMed  Google Scholar 

  23. Chae SY, Jang MK, Nah JW. Influence of molecular weight on oral absorption of water soluble chitosans. J Control Release. 2005;102(2):383–94. https://doi.org/10.1016/j.jconrel.2004.10.012.

    Article  CAS  PubMed  Google Scholar 

  24. Muanprasat C, Chatsudthipong V. Chitosan oligosaccharide: biological activities and potential therapeutic applications. Pharmacol Ther. 2017;170:80–97. https://doi.org/10.1016/j.pharmthera.2016.10.013.

    Article  CAS  PubMed  Google Scholar 

  25. Liu W, Han Y, Xin X, Chen L, Liu Y, Liu C, et al. Biomimetic and temporal-controlled nanocarriers with ileum transporter targeting for achieving oral administration of chemotherapeutic drugs. J Nanobiotechnology. 2022;20(1):281. https://doi.org/10.1186/s12951-022-01460-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang F, Zhang D, Duan C, Jia L, Feng F, Liu Y, et al. Preparation and characterizations of a novel deoxycholic acid–O-carboxymethylated chitosan–folic acid conjugates and self-aggregates. Carbohydr Polym. 2011;84(3):1192–200. https://doi.org/10.1016/j.carbpol.2011.01.017.

    Article  CAS  Google Scholar 

  27. Lim DG, Jung JH, Ko HW, Kang E, Jeong SH. Paclitaxel–nanodiamond nanocomplexes enhance aqueous dispersibility and drug retention in cells. ACS Appl Mater Interfaces. 2016;8(36):23558–67. https://doi.org/10.1021/acsami.6b08079.

    Article  CAS  PubMed  Google Scholar 

  28. Yang Q, He C, Xu Y, Liu B, Shao Z, Zhu Z, et al. Chitosan oligosaccharide copolymer micelles with double disulphide linkage in the backbone associated by H-bonding duplexes for targeted intracellular drug delivery. Polym Chem. 2015;6(9):1454–64. https://doi.org/10.1039/c4py01473a.

    Article  CAS  Google Scholar 

  29. Zhang K, Zhao Q, Qin S, Fu Y, Liu R, Zhi J, et al. Nanodiamonds conjugated upconversion nanoparticles for bio-imaging and drug delivery. J Colloid Interface Sci. 2019;537:316–24. https://doi.org/10.1016/j.jcis.2018.11.028.

    Article  CAS  PubMed  Google Scholar 

  30. Yang Y, Li Y, Chen K, Zhang L, Qiao S, Tan G, et al. Dual receptor-targeted and redox-sensitive polymeric micelles self-assembled from a folic acid-hyaluronic acid-SS-vitamin E succinate polymer for precise cancer therapy. Int J Nanomedicine. 2020;15:2885–902. https://doi.org/10.2147/ijn.S249205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li L, Liu Y, Wang J, Chen L, Zhang W, Yan X. Preparation, in vitro and in vivo evaluation of bexarotene nanocrystals with surface modification by folate-chitosan conjugates. Drug Deliv. 2016;23(1):79–87. https://doi.org/10.3109/10717544.2014.904455.

    Article  CAS  PubMed  Google Scholar 

  32. Li H, Li Z, Zhao J, Tang B, Chen Y, Hu Y, et al. Carboxymethyl chitosan-folic acid-conjugated Fe3O4@SiO2 as a safe and targeting antitumor nanovehicle in vitro. Nanoscale Res Lett. 2014;9(1):146. https://doi.org/10.1186/1556-276x-9-146.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee KD, Choi SH, Kim DH, Lee HY, Choi KC. Self-organized nanoparticles based on chitosan-folic acid and dextran succinate-doxorubicin conjugates for drug targeting. Arch Pharm Res. 2014;37(12):1546–53. https://doi.org/10.1007/s12272-014-0489-z.

    Article  CAS  PubMed  Google Scholar 

  34. Yang KK, Kong M, Wei YN, Liu Y, Cheng XJ, Li J, et al. Folate-modified–chitosan-coated liposomes for tumor-targeted drug delivery. J Mater Sci. 2012;48(4):1717–28. https://doi.org/10.1007/s10853-012-6930-0.

    Article  CAS  Google Scholar 

  35. Dramou P, Fizir M, Taleb A, Itatahine A, Dahiru NS, Mehdi YA, et al. Folic acid-conjugated chitosan oligosaccharide-magnetic halloysite nanotubes as a delivery system for camptothecin. Carbohyd Polym. 2018;197:117–27. https://doi.org/10.1016/j.carbpol.2018.05.071.

    Article  CAS  Google Scholar 

  36. Li X, Shao J, Qin Y, Shao C, Zheng T, Ye L. TAT-conjugated nanodiamond for the enhanced delivery of doxorubicin. J Mater Chem. 2011;21(22):7966. https://doi.org/10.1039/c1jm10653h.

    Article  CAS  Google Scholar 

  37. Yazdi JR, Tafaghodi M, Sadri K, Mashreghi M, Nikpoor AR, Nikoofal-Sahlabadi S, et al. Folate targeted PEGylated liposomes for the oral delivery of insulin: In vitro and in vivo studies. Colloids Surf B Biointerfaces. 2020;194:111203. https://doi.org/10.1016/j.colsurfb.2020.111203.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We are grateful for the financial support from the National Natural Science Foundation of China (No. 82073794) and the Natural Science Foundation of Liaoning Province (No. 2021-MS-310).

Author information

Authors and Affiliations

Authors

Contributions

Dandan Liu performed the experiments and analysis and drafted the work; Yupei Su participated in the experiments and the data analysis; Jixuan Chen participated in the experiments and the data analysis; Hao Pan designed the work and revised the paper; Weisan Pan designed and supervised the work.

Corresponding authors

Correspondence to Hao Pan or Weisan Pan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 51 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Su, Y., Chen, J. et al. Folic Acid–Chitosan Oligosaccharide Conjugates Decorated Nanodiamond as Potential Carriers for the Oral Delivery of Doxorubicin. AAPS PharmSciTech 24, 86 (2023). https://doi.org/10.1208/s12249-023-02545-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02545-4

Keywords

Navigation