Skip to main content

Advertisement

Log in

Evaluation of an Anhydrous Permeation-Enhancing Vehicle for Percutaneous Absorption of Hormones

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The efficiency and safety of hormone delivery through the skin partly depend on the appropriate choice of vehicle and the type of formulation. The present study reports the skin cytotoxicity, irritancy, and safety of a newly developed anhydrous permeation-enhancing base (APEB) and the percutaneous absorption of progesterone, testosterone, estriol, and estradiol in APEB formulations. Using the human skin EpiDerm model, cell death was not observed after 4 h of exposure to APEB and was 48% after 24 h, indicating its mild to non-irritating property. APEB did not change the expression level of skin cell proliferation markers including PCNA, MCL-1, iNOS, and NFκB proteins, and apoptosis was minimal after 8-h exposure. The in vivo skin irritation and sensitization evaluation of APEB using a Human Repeat Insult Patch Test showed no adverse reaction of any kind during the course of the study. These results indicate the safety of APEB on skin tissues. The hormone percutaneous absorption was performed using human cadaver abdomen skin tissues and the Franz diffusion system, and hormone concentrations were determined by ELISA. Absorption was observed as early as 2 h of application and accumulated after 24 h to 2851 ± 66 ng/cm2, 2338 ± 594 ng/cm2, 55 ± 25 ng/cm2, and 341 ± 122 ng/cm2 for progesterone, testosterone, estriol, and estradiol, respectively. A steady flux rate of absorption of the hormones was observed within 24 h of application. These results suggest that APEB can be used as a vehicle to deliver these hormones through the skin and into the bloodstream for hormone replacement therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shuster M. Biology for a changing world, with physiology. New York: W.H. Freeman; 2014.

    Google Scholar 

  2. Henzl MR, Loomba PK. Transdermal delivery of sex steroids for hormone replacement therapy and contraception. A review of principles and practice. J Reprod Med. 2003;48:525–40 (PMID: 12953327).

    CAS  PubMed  Google Scholar 

  3. Beck KL, Anderson MC, Kirk JK. Transdermal estrogens in the changing landscape of hormone replacement therapy. Postgraduate Med. 2017;129:632–6. https://doi.org/10.1080/00325481.2017.1334507.

    Article  Google Scholar 

  4. Davey DA. Menopausal hormone therapy: a better and safer future. Climacteric. 2018;21:454–61. https://doi.org/10.1080/13697137.2018.1439915.

    Article  CAS  PubMed  Google Scholar 

  5. Velazquez I, Alter BP. Androgens and liver tumors: Fanconi’s anemia and non-Fanconi’s conditions. Am J Hematol. 2004;77:257–67. https://doi.org/10.1002/ajh.20183.

    Article  CAS  PubMed  Google Scholar 

  6. Abadilla KA, Dobs AS. Topical testosterone supplementation for the treatment of male hypogonadism. Drugs. 2012;72:1591–603. https://doi.org/10.2165/11635620-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  7. Lumsden MA, Davies M, Sarri G. Guideline development group for menopause: diagnosis and management (NICE Clinical Guideline No. 23). Diagnosis and Management of Menopause: The National Institute of Health and Care Excellence (NICE) Guideline. JAMA Intern Med. 2016;176:1205–6. https://doi.org/10.1001/jamainternmed.2016.2761.

    Article  PubMed  Google Scholar 

  8. Pinkerton JV. Concerns about safety and efficacy of compounded bioidentical hormone therapy. Menopause. 2021;28:847–9. https://doi.org/10.1097/GME.0000000000001813.

    Article  PubMed  Google Scholar 

  9. Beshay SM, Rivera G, Balthasar J, Florea N. Efficacy and clinical value of commonly compounded hormone replacement therapy: a literature review. Int J Pharm Compd. 2015;19:6–12 (PMID: 25902622).

    PubMed  Google Scholar 

  10. Stanczyk FZ, Matharu H, Winer SA. Bioidentical hormones. Climacteric. 2021;24:38–45. https://doi.org/10.1080/13697137.2020.1862079.

    Article  CAS  PubMed  Google Scholar 

  11. VERSABASE® ANHYDROUS HRT (30–5056) And VERSABASE® CREAM (30–3641) Available at: https://www.pccarx.com/Products/ProductCatalog?pid=30-5056. And https://www.pccarx.com/products/VERSABASE%C2%AECREAM/30-3641/PROPRIETARYBASES. Accessed November 24, 2021.

  12. Bassani AS, Banov D, Carvalho M. Evaluation of the in vitro human skin percutaneous absorption of progesterone in Versabase® using the Franz skin finite dose model. J Women’s Health Care. 2017;6:1000384. https://doi.org/10.4172/2167-0420.1000384.

    Article  Google Scholar 

  13. Allen LV Jr. Progesterone 50 mg/g in VersaBase Cream. US Pharm. 2017;42:47–8.

    Google Scholar 

  14. Needham S, Needham S. Case study: absorption of testosterone cream via scrotal delivery. Int J Pharm Compd. 2018;22:466–8.

    PubMed  Google Scholar 

  15. Glaser RL, Zava DT, Wurtzbacher D. 4. Pilot study: Absorption and efficacy of multiple hormones delivered in a single cream applied to the mucous membranes of the labia and vagina. Gynecol Obstet Invest. 2008;66:111–8. https://doi.org/10.1159/000128599.

    Article  CAS  PubMed  Google Scholar 

  16. Faller C, Bracher M, Dami N, Roguet R. Predictive ability of reconstructed human epidermis equivalents for the assessment of skin irritation of cosmetics. Toxicol In Vitro. 2002;16:557–72. https://doi.org/10.1016/s0887-2333(02)00053-x.

    Article  CAS  PubMed  Google Scholar 

  17. Bassani AS, Banov D, Phan H. Characterization of the percutaneous absorption of ketoprofen using the Franz skin finite dose model. Postgraduate Med. 2016;128:262–7. https://doi.org/10.1080/00325481.2016.1144448.

    Article  Google Scholar 

  18. Jain P, Sonti S, Garruto J, Mehta R, Banga AK. Formulation optimization, skin irritation, and efficacy characterization of a novel skin-lightening agent. J Cosmet Dermatol. 2012;11:101–10. https://doi.org/10.1111/j.1473-2165.2012.00610.x.

    Article  PubMed  Google Scholar 

  19. Ip K, Song G, Banov D, Bassani AS, Valdez BC. In vitro evaluation of Naltrexone HCl 1% Topical Cream in XemaTop™ for psoriasis. Arch Dermatol Res. 2020;312:145–54. https://doi.org/10.1007/s00403-019-01981-2.

    Article  CAS  PubMed  Google Scholar 

  20. Rietschel RL, Fowler JF, editors. Fisher’s contact dermatitis. 4th ed. Hagerstown: Williams and Wilkins; 1995.

  21. Davies DJ, Ward RJ, Heylings JR. Multi-species assessment of electrical resistance as a skin integrity marker for in vitro percutaneous absorption studies. Toxicol In Vitro. 2004;18:351–8. https://doi.org/10.1016/j.tiv.2003.10.004.

    Article  CAS  PubMed  Google Scholar 

  22. Median VM, Roper CS. Inter- and intra-individual variability in human skin barrier function: a large scale retrospective study. Toxicol In Vitro. 2008;22:1062–9. https://doi.org/10.1016/j.tiv.2008.01.009.

    Article  CAS  Google Scholar 

  23. Man M-Q, Wakefield JS, Mauro TM, Elias PM. Role of nitric oxide in regulating epidermal permeability barrier function. Exp Dematol. 2022;31:290–8. https://doi.org/10.1111/exd.14470.

    Article  CAS  Google Scholar 

  24. Ratz-Lyko A, Arct J. Resveratrol as an active ingredient for cosmetic and dermatological applications: a review. J Cosmet Laser Ther. 2019;21:84–90. https://doi.org/10.1080/14764172.2018.1469767.

    Article  PubMed  Google Scholar 

  25. Nicholson DW, Ali A, Thornberry NA, Vaillancourt CK, Ding CK, Gallant M, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995;376:37–43. https://doi.org/10.1038/376037a0.

    Article  CAS  PubMed  Google Scholar 

  26. Rosen A, Casciola-Rosen L. Macromolecular substrates for the ICE-like proteases during apoptosis. J Cell Biochem. 1997;64:50–4. https://doi.org/10.1002/(sici)1097-4644(199701)64:1%3c50::aid-jcb8%3e3.0.co;2-z.

    Article  CAS  PubMed  Google Scholar 

  27. Møllgaard B, Hoelgaard A. Vehicle effect on topical drug delivery. II. Concurrent skin transport of drugs and vehicle components. Acta Pharm Suec. 1983;20:443–50 (PMID: 6675423).

    PubMed  Google Scholar 

  28. Polonini HC, Brandão MA, Ferreira AO, Ramos C, Raposo NR. Evaluation of percutaneous absorption performance for human female sexual steroids into pentravan cream. Int J Pharm Compd. 2014;18:332–40 (PMID: 25474862).

    CAS  PubMed  Google Scholar 

  29. MatTek Corporation. Protocol: MTT effective time 50 (ET-50) for use with EpiDerm Skin Model (EPI-200). (MK-24–007–0001). Ashland; 2017.

  30. Maga G, Hubscher U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci. 2003;116:3051–60. https://doi.org/10.1242/jcs.00653.

    Article  CAS  PubMed  Google Scholar 

  31. Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF. The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol. 1999;19:6195–206. https://doi.org/10.1128/MCB.19.9.6195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ali F, Sultana S. Repeated short-term stress synergizes the ROS signalling through up regulation of NFkB and iNOS expression induced due to combined exposure of trichloroethylene and UVB rays. Mol Cell Biochem. 2012;360:133–45. https://doi.org/10.1007/s11010-011-1051-7.

    Article  CAS  PubMed  Google Scholar 

  33. Takao J, Yudate T, Das A, Shikano S, Bonkobara M, Ariizumi K, et al. Expression of NF-kappaB in epidermis and the relationship between NF-kappaB activation and inhibition of keratinocyte growth. Br J Dermatol. 2003;148:680–8. https://doi.org/10.1046/j.1365-2133.2003.05285.x.

    Article  CAS  PubMed  Google Scholar 

  34. Kim C, Shim J, Han S, Chang I. The skin-permeation-enhancing effect of phosphatidylcholine: caffeine as a model active ingredient. J Cosmet Sci. 2002;53:363–74.

    CAS  PubMed  Google Scholar 

  35. Wang L-H, Wang C-C, Kuo S-C. Vehicle and enhancer effects on human skin penetration of aminophylline from cream formulations: evaluation in vivo. J Cosmet Sci. 2007;58:245–54.

    CAS  PubMed  Google Scholar 

  36. Ruela ALM, Perissinato AG, Lino S, Mudrik ME, Pereira GR. Evaluation of skin absorption of drugs from topical and transdermal formulations. Braz J Pharm Sci. 2016;52:3.

    Article  Google Scholar 

  37. Bartosova L, Bajgar J. Transdermal drug delivery in vitro using diffusion cells. Curr Med Chem. 2012;19:4671–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank BioScreen Testing Service, Inc. (Torrance, CA) for conducting HRIPT for skin irritation and sensitization.

Funding

This work was supported by Professional Compounding Centers of America (PCCA), the manufacturer of APEB and VersaBase Cream.

Author information

Authors and Affiliations

Authors

Contributions

G. Song, K. Ip, H. Song, and B. Valdez contributed to the conception and design of the study and analysis and interpretation of data. G. Song, Y. Liu, and B. Valdez wrote the manuscript. D. Banov and A. Bassani were responsible for the research approach, funding, analysis of data, and critical revision of the article. All of the authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Guiyun Song.

Ethics declarations

Conflict of Interest

The authors G. Song, D. Banov, H, Song, Y. Liu, K. Ip, and A. Bassani are employees of PCCA, the manufacturer of the proprietary bases VersaBase® Cream (VBC) and anhydrous permeation-enhancing base (APEB).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G., Banov, D., Song, H. et al. Evaluation of an Anhydrous Permeation-Enhancing Vehicle for Percutaneous Absorption of Hormones. AAPS PharmSciTech 23, 198 (2022). https://doi.org/10.1208/s12249-022-02352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02352-3

Keywords

Navigation