Skip to main content

Advertisement

Log in

Design of a Long-Acting Rivastigmine Transdermal Delivery System: Based on Computational Simulation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of our study was using a computational simulation to develop a long-acting patch of rivastigmine (RVS). A range of patch formulations were screened including pressure sensitive adhesive (PSA), pharmaceutical excipients, and controlled release membranes using transfer simulation based on a mathematical model. Diffusion dynamics parameters for simulated operations were acquired through in vitro release tests (IVRT) and in vitro skin permeation tests (IVPT). The mechanism of controlled release was studied by FTIR (Fourier transform infrared), DSC (differential scanning calorimeter) and molecular docking. Results of a rat in vitro permeation profile showed excellent correlation with the in vivo deconvolution profile (R2=0.998). Experiments testified to transfer of RVS at a relatively uniform speed with high skin permeation (2531.2±142.46 μg/cm2) in 72 h. Pharmacokinetic data obtained in vivo also confirmed stable plasma concentrations over 72 h for the optimized patch, and significant prolongation of both Tmax (11.20±1.79 h) and MRT0-t (33.91±5.33 h). Cmax was controlled with AUC0-t (267.34±24.46 h ng/ml), which was closely comparable to parameters of a commercial Exelon® Patch. The successful development of a long-acting patch of RVS thus underscores the potential of computer aided design in a context of promnesic transdermal delivery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bachurin SO, Bovina EV, Ustyugov AA. Drugs in Clinical Trials for Alzheimer's Disease: The Major Trends. MED RES REV. 2017;37(5):1186–225.

    Article  CAS  Google Scholar 

  2. BLESA R, BALLARD C, ORGOGOZO J, LANE R, THOMAS SK. Caregiver preference for rivastigmine patches versus capsules for the treatment of alzheimer disease, vol. 69. Hagerstown, MD: Lippincott Williams & Wilkins; 2007. p. S23–8.

    Google Scholar 

  3. Lefèvre G, Callegari F, Gsteiger S, Xiong Y. Effects of Renal Impairment on Steady-State Plasma Concentrations of Rivastigmine: A Population Pharmacokinetic Analysis of Capsule and Patch Formulations in Patients with Alzheimer’s Disease. DRUG AGING. 2016;33(10):725–36.

    Article  Google Scholar 

  4. Zhang D, Wang W, Hou T, Pang Y, Wang C, Wu S, Wang Q. New Delivery Route of Gambogic Acid Via Skin for Topical Targeted Therapy of Cutaneous Melanoma and Reduction of Systemic Toxicity. J PHARM SCI-US. 2021;110(5):2167–76.

    Article  CAS  Google Scholar 

  5. Ita KB. Transdermal drug delivery: progress and challenges. J DRUG DELIV SCI TEC. 2014;24(3):245–50.

    Article  CAS  Google Scholar 

  6. Naik A, Kalia YN, Guy RH. Transdermal drug delivery: overcoming the skin's barrier function. Pharm Sci Technol Today. 2000;3(9):318–26.

    Article  CAS  Google Scholar 

  7. Selzer D, Neumann D, Schaefer UF. Mathematical models for dermal drug absorption. EXPERT OPIN DRUG MET. 2015;11(10):1567–83.

    Article  CAS  Google Scholar 

  8. Shi T, Lv Y, Huang W, Fang Z, Qi J, Chen Z, Zhao W, Wu W, Lu Y. Enhanced transdermal delivery of curcumin nanosuspensions: A mechanistic study based on co-localization of particle and drug signals. INT J PHARMACEUT. 2020;588:119737.

    Article  CAS  Google Scholar 

  9. Puri A, Bhattaccharjee S, Zhang W, Clark M, Singh O, Doncel G, Banga A. Development of a Transdermal Delivery System for Tenofovir Alafenamide, a Prodrug of Tenofovir with Potent Antiviral Activity Against HIV and HBV. PHARMACEUTICS. 2019;11(4):173.

    Article  CAS  Google Scholar 

  10. Jafri I, Shoaib MH, Yousuf RI, Ali FR. Effect of permeation enhancers on in vitro release and transdermal delivery of lamotrigine from Eudragit®RS100 polymer matrix-type drug in adhesive patches. Progress in Biomaterials. 2019;8(2):91–100.

    Article  CAS  Google Scholar 

  11. Akram R, Ahmad M, Abrar A, Sarfraz RM, Mahmood A. Formulation design and development of matrix diffusion controlled transdermal drug delivery of glimepiride. 2018;12:349–64.

    CAS  Google Scholar 

  12. Defraeye T, Bahrami F, Ding L, Malini RI, Terrier A, Rossi RM. Predicting Transdermal Fentanyl Delivery Using Mechanistic Simulations for Tailored Therapy. FRONT PHARMACOL. 2020;11.

  13. Nair AB, Gupta S, Al-Dhubiab BE, Jacob S, Shinu P, Shah J, Morsy MA, SreeHarsha N, Attimarad M, Venugopala KN, Akrawi SH. Effective Therapeutic Delivery and Bioavailability Enhancement of Pioglitazone Using Drug in Adhesive Transdermal Patch. PHARMACEUTICS. 2019;11(7).

  14. La Count TD, Zhang Q, Murawsky M, Hao J, Ghosh P, Dave K, Raney SG, Talattof A, Kasting GB, Li SK. Evaluation of Heat Effects on Transdermal Nicotine Delivery In Vitro and In Silico Using Heat-Enhanced Transport Model Analysis. The AAPS Journal. 2020;22(4).

  15. Yang D, Liu C, Piao H, Quan P, Fang L. Enhanced Drug Loading in the Drug-in-Adhesive Transdermal Patch Utilizing a Drug–Ionic Liquid Strategy: Insight into the Role of Ionic Hydrogen Bonding. MOL PHARMACEUT. 2021;18(3):1157–66.

    Article  CAS  Google Scholar 

  16. Zeng L, Song W, He W, Zhang J, Wang Y, Bian J, Mao Z, Quan D, Liu J. Unconventional Passive Enhancement of Transdermal Drug Delivery: toward a Mechanistic Understanding of Penetration Enhancers Releasing from Acrylic Pressure-Sensitive Adhesive of Patches. PHARM RES-DORDR. 2020;37(9).

  17. Yamamoto S, Karashima M, Arai Y, Tohyama K, Amano N. Prediction of Human Pharmacokinetic Profile After Transdermal Drug Application Using Excised Human Skin. J PHARM SCI-US. 2017;106(9):2787–94.

    Article  CAS  Google Scholar 

  18. Rizi K, Mohammed IK, Xu K, Kinloch AJ, Charalambides MN, Murdan S. A systematic approach to the formulation of anti-onychomycotic nail patches. EUR J PHARM BIOPHARM. 2018;127:355–65.

    Article  CAS  Google Scholar 

  19. Yang D, Liu C, Ding D, Quan P, Fang L. The molecular design of drug-ionic liquids for transdermal drug delivery: Mechanistic study of counterions structure on complex formation and skin permeation. INT J PHARMACEUT. 2021;602:120560.

    Article  CAS  Google Scholar 

  20. Chauhan MK, Sharma PK. Optimization and characterization of rivastigmine nanolipid carrier loaded transdermal patches for the treatment of dementia. CHEM PHYS LIPIDS. 2019;224:104794.

    Article  CAS  Google Scholar 

  21. Zhang Y, Liu C, Xu W, Quan P, Luo Z, Yang D, Fang L. An investigation on percutaneous permeation of flurbiprofen enantiomers: The role of molecular interaction between drug and skin components. INT J PHARMACEUT. 2021;601:120503.

    Article  CAS  Google Scholar 

  22. Luo Z, Liu C, Quan P, Yang D, Zhao H, Wan X, Fang L. Mechanistic insights of the controlled release capacity of polar functional group in transdermal drug delivery system: the relationship of hydrogen bonding strength and controlled release capacity. ACTA PHARM SIN B. 2020;10(5):928–45.

    Article  Google Scholar 

  23. Shen M, Liu C, Wan X, Farah N, Fang L. Development of a daphnetin transdermal patch using chemical enhancer strategy: insights of the enhancement effect of Transcutol P and the assessment of pharmacodynamics. DRUG DEV IND PHARM. 2018;44(10):1642–9.

    Article  CAS  Google Scholar 

  24. Luo Z, Liu C, Quan P, Zhang Y, Fang L. Effect of Chemical Penetration Enhancer-Adhesive Interaction on Drug Release from Transdermal Patch: Mechanism Study Based on FT-IR Spectroscopy, 13C NMR Spectroscopy, and Molecular Simulation. AAPS PHARMSCITECH. 2021;22(5):198.

    Article  CAS  Google Scholar 

  25. Yang Y, Manda P, Pavurala N, Khan MA, Krishnaiah YS. Development and validation of in vitro-in vivo correlation (IVIVC) for estradiol transdermal drug delivery systems. J CONTROL RELEASE. 2015;210:58–66.

    Article  CAS  Google Scholar 

  26. Chen Y, Wang Q. Effect of Determination Method on in vitro Release Profiles of Rivastigmine Transdermal Patches and Correlation between Penetration in vitro and Absorption in vivo. Chinese Journal of Pharmaceuticals. 2020;51(06):735–40.

    Google Scholar 

  27. Kalia YN, Guy RH. Modeling transdermal drug release. ADV DRUG DELIVER REV. 2001;48(2):159–72.

    Article  CAS  Google Scholar 

  28. Lefèvre G, Sędek G, Jhee SS, Leibowitz MT, Huang H, Enz A, Maton S, Ereshefsky L, Pommier F, Schmidli H, Appel-Dingemanse S. Pharmacokinetics and Pharmacodynamics of the Novel Daily Rivastigmine Transdermal Patch Compared With Twice-daily Capsules in Alzheimer's Disease Patients. CLIN PHARMACOL THER. 2007;83(1):106–14.

    Article  Google Scholar 

  29. Shin SC, Lee HJ. Controlled release of triprolidine using ethylene-vinyl acetate membrane and matrix systems. EUR J PHARM BIOPHARM. 2002;54(2):201–6.

    Article  CAS  Google Scholar 

  30. Meyer S, Heinsohn G, Wolber R, Pörtner R, Nierle J. Confocal Raman investigation of diffusion processes in monolithic type transdermal drug delivery systems. DRUG DELIV. 2014;22(8):1103–10.

    Article  Google Scholar 

  31. Yang D, Liu C, Ding D, Quan P, Fang L. The molecular design of drug-ionic liquids for transdermal drug delivery: Mechanistic study of counterions structure on complex formation and skin permeation. INT J PHARMACEUT. 2021;602:120560.

    Article  CAS  Google Scholar 

  32. Song W, Quan P, Li S, Liu C, Lv S, Zhao Y, Fang L. Probing the role of chemical enhancers in facilitating drug release from patches: Mechanistic insights based on FT-IR spectroscopy, molecular modeling and thermal analysis. J CONTROL RELEASE. 2016;227:13–22.

    Article  CAS  Google Scholar 

  33. Zhang S, Liu C, Yang D, Ruan J, Luo Z, Quan P, Fang L. Mechanism insight on drug skin delivery from polyurethane hydrogels: Roles of molecular mobility and intermolecular interaction. EUR J PHARM SCI. 2021;161:105783.

    Article  CAS  Google Scholar 

  34. Liu C, Farah N, Weng W, Jiao B, Shen M, Fang L. Investigation of the permeation enhancer strategy on benzoylaconitine transdermal patch: the relationship between transdermal enhancement strength and physicochemical properties of permeation enhancer. EUR J PHARM SCI. 2019;138:105009.

    Article  CAS  Google Scholar 

  35. Otto DP, de Villiers MM. The Experimental Evaluation and Molecular Dynamics Simulation of a Heat-Enhanced Transdermal Delivery System. AAPS PHARMSCITECH. 2013;14(1):111–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, China (No.81872827 and No. 81773676), Dalian High Level Talent Innovation Support Plan (No.2019RT14) and the Dongguan City’s Financial Support Plan for Introducing Innovation Team (No.2018607202009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Liu, J., Hu, X. et al. Design of a Long-Acting Rivastigmine Transdermal Delivery System: Based on Computational Simulation. AAPS PharmSciTech 23, 54 (2022). https://doi.org/10.1208/s12249-021-02207-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02207-3

KEY WORDS

Navigation