Skip to main content
Log in

Hot-Melt Extrusion: a Roadmap for Product Development

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Hot-melt extrusion has found extensive application as a feasible pharmaceutical technological option over recent years. HME applications include solubility enhancement, taste masking, and sustained drug release. As bioavailability enhancement is a hot topic of today’s science, one of the main applications of HME is centered on amorphous solid dispersions. This review describes the most significant aspects of HME technology and its use to prepare solid dispersions as a drug formulation strategy to enhance the solubility of poorly soluble drugs. It also addresses molecular and thermodynamic features critical for the physicochemical properties of these systems, mainly in what concerns miscibility and physical stability. Moreover, the importance of applying the Quality by Design philosophy in drug development is also discussed, as well as process analytical technologies in pharmaceutical HME monitoring, under the current standards of product development and regulatory guidance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AG:

Adam–Gibbs

ASD:

Amorphous solid dispersions

BA:

Bioavailability

BCS:

Biopharmaceutical Classification Systems

CPP:

Critical process parameter

CQA:

Critical Quality Attribute

DoE:

Design of Experiments

DSC:

Differential Calorimetric Screening

FDA:

Food and Drug Administration USA

Tg :

Glass transition temperature

HME:

Hot-melt extrusion

HPC:

Hydroxypropyl cellulose

HPMC:

Hydroxypropyl methylcellulose (hypromellose)

HPMCAS:

Hypromellose acetate succinate

ICH:

International Conference on Harmonization

KWW:

Kohlrausch–Williams–Watts

MPD:

Melting point depression

Tm :

Melting temperature (Tm)

PATs:

Process Analytical Technologies

PEG:

Polyethylene glycol

PVP:

Poly(vinylpyrrolidone)

QbD:

Quality by Design

References

  1. Lakshman JP. Formulation, Bioavailability, and manufacturing process enhancement: novel applications of melt extrusion in enabling product development. In: Repka MA, Langley N, Di Nunzio J, editors. Melt extrusion: materials, technology and drug product design: Springer; 2013.

  2. Verma S, Rudraraju VS. A systematic approach to design and prepare solid dispersions of poorly water-soluble drug. AAPS PharmSciTech. 2014;15(3):641–57. https://doi.org/10.1208/s12249-014-0093-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pina MF, Zhao M, Pinto JF, Sousa JJ, Craig DQ. The influence of drug physical state on the dissolution enhancement of solid dispersions prepared via hot-melt extrusion: a case study using olanzapine. J Pharm Sci. 2014;103(4):1214–23. https://doi.org/10.1002/jps.23894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shah S, Maddineni S, Lu J, Repka MA. Melt extrusion with poorly soluble drugs. Int J Pharm. 2013;453(1):233–52. https://doi.org/10.1016/j.ijpharm.2012.11.001.

    Article  CAS  PubMed  Google Scholar 

  5. Becker K, Salar-Behzadi S, Zimmer A. Solvent-free melting techniques for the preparation of lipid-based solid oral formulations. Pharm Res. 2015;32(5):1519–45. https://doi.org/10.1007/s11095-015-1661-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao P, Shi Y. Characterization of supersaturatable formulations for improved absorption of poorly soluble drugs. AAPS J. 2012;14(4):703–13. https://doi.org/10.1208/s12248-012-9389-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sarode AL, Sandhu H, Shah N, Malick W, Zia H. Hot melt extrusion for amorphous solid dispersions: temperature and moisture activated drug-polymer interactions for enhanced stability. Mol Pharm. 2013;10(10):3665–75. https://doi.org/10.1021/mp400165b.

    Article  CAS  PubMed  Google Scholar 

  8. Lu M, Guo Z, Li Y, Pang H, Lin L, Liu X, et al. Application of hot melt extrusion for poorly water-soluble drugs: limitations, advances and future prospects. Curr Pharm Des. 2014;20(3):369–87. https://doi.org/10.2174/13816128113199990402.

    Article  CAS  PubMed  Google Scholar 

  9. Repka MA, Shah S, Lu J, Maddineni S, Morott J, Patwardhan K, et al. Melt extrusion: process to product. Expert Opin Drug Deliv. 2012;9(1):105–25. https://doi.org/10.1517/17425247.2012.642365.

    Article  CAS  PubMed  Google Scholar 

  10. Wilson M, Williams MA, Jones DS, Andrews GP. Hot-melt extrusion technology and pharmaceutical application. Ther Deliv. 2012;3(6):787–97. https://doi.org/10.4155/tde.12.26.

    Article  CAS  PubMed  Google Scholar 

  11. Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech. 2016;17(1):20–42. https://doi.org/10.1208/s12249-015-0360-7.

    Article  CAS  PubMed  Google Scholar 

  12. Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D. A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharm. 2012;2012:436763–9. https://doi.org/10.5402/2012/436763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chivate A, Garkal AD, Dhas NL, Mehta DTA. Hot melt extrusion: an emerging technique for solubility enhancement of poorly water soluble drugs. PDA J Pharm Sci Technol. 2021:pdajpst.2019.011403. https://doi.org/10.5731/pdajpst.2019.011403.

  14. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, et al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm. 2007;33(9):909–26. https://doi.org/10.1080/03639040701498759.

    Article  CAS  PubMed  Google Scholar 

  15. Stankovic M, Frijlink HW, Hinrichs WL. Polymeric formulations for drug release prepared by hot melt extrusion: application and characterization. Drug Discov Today. 2015;20(7):812–23. https://doi.org/10.1016/j.drudis.2015.01.012.

    Article  CAS  PubMed  Google Scholar 

  16. ICH. Q8 (R2) Pharmaceutical Development. August 2009.

  17. ICH. Q9 Quality Risk Management. November 2005.

  18. ICH. Q10 Pharmaceutical Quality System. June 2008.

  19. ICH. Q11 Development and Manufacture of Drug Substances (Chemical Entities and Biotechnological/Biological Entities). May 2012.

  20. FDA. Guidance for industry PAT—a framework for innovative pharmaceutical manufacturing and quality assurance. September 2004.

  21. Maniruzzaman M, Nokhodchi A. Continuous manufacturing via hot-melt extrusion and scale up: regulatory matters. Drug Discov Today. 2017;22(2):340–51. https://doi.org/10.1016/j.drudis.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  22. Kallakunta VR, Sarabu S, Bandari S, Tiwari R, Patil H, Repka MA. An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part I. Expert Opin Drug Deliv. 2019;16(5):539–50. https://doi.org/10.1080/17425247.2019.1609448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hitzer P, Bauerle T, Drieschner T, Ostertag E, Paulsen K, van Lishaut H, et al. Process analytical techniques for hot-melt extrusion and their application to amorphous solid dispersions. Anal Bioanal Chem. 2017;409(18):4321–33. https://doi.org/10.1007/s00216-017-0292-z.

    Article  CAS  PubMed  Google Scholar 

  24. Wesholowski J, Prill S, Berghaus A, Thommes M. Inline UV/Vis spectroscopy as PAT tool for hot-melt extrusion. Drug Deliv Transl Res. 2018;8(6):1595–603. https://doi.org/10.1007/s13346-017-0465-5.

    Article  CAS  PubMed  Google Scholar 

  25. Kelly AL, Gough T, Isreb M, Dhumal R, Jones JW, Nicholson S, et al. In-process rheometry as a PAT tool for hot melt extrusion. Drug Dev Ind Pharm. 2017;44:1–7. https://doi.org/10.1080/03639045.2017.1408641.

    Article  CAS  Google Scholar 

  26. Repka MA, Bandari S, Kallakunta VR, Vo AQ, McFall H, Pimparade MB, et al. Melt extrusion with poorly soluble drugs—an integrated review. Int J Pharm. 2018;535(1-2):68–85. https://doi.org/10.1016/j.ijpharm.2017.10.056.

    Article  CAS  PubMed  Google Scholar 

  27. Gryczke A. Hot-melt extrusion process design using process analytical technology. In: Repka AM, Langley N, DiNunzio J, editors. Melt extrusion: materials, technology and drug product design. New York: Springer New York; 2013. p. 397–431.

    Chapter  Google Scholar 

  28. Netchacovitch L, Thiry J, De Bleye C, Chavez PF, Krier F, Sacré PY, et al. Vibrational spectroscopy and microspectroscopy analyzing qualitatively and quantitatively pharmaceutical hot melt extrudates. J Pharm Biomed Anal. 2015;113:21–33. https://doi.org/10.1016/j.jpba.2015.01.051.

    Article  CAS  PubMed  Google Scholar 

  29. Huang S, O'Donnell KP, Delpon de Vaux SM, O'Brien J, Stutzman J, Williams RO 3rd. Processing thermally labile drugs by hot-melt extrusion: the lesson with gliclazide. Eur J Pharm Biopharm. 2017;119:56–67. https://doi.org/10.1016/j.ejpb.2017.05.014.

    Article  CAS  PubMed  Google Scholar 

  30. Chavan RB, Rathi S, Jyothi V, Shastri NR. Cellulose based polymers in development of amorphous solid dispersions. Asian J Pharm Sci. 2019;14(3):248–64. https://doi.org/10.1016/j.ajps.2018.09.003.

    Article  PubMed  Google Scholar 

  31. Sangshetti JN, Deshpande M, Zaheer Z, Shinde DB, Arote R. Quality by design approach: regulatory need. Arab J Chem. 2017;10:S3412–S25. https://doi.org/10.1016/j.arabjc.2014.01.025.

    Article  CAS  Google Scholar 

  32. Mishra V, Thakur S, Patil A, Shukla A. Quality by design (QbD) approaches in current pharmaceutical set-up. Expert Opin Drug Deliv. 2018;15(8):737–58. https://doi.org/10.1080/17425247.2018.1504768.

    Article  CAS  PubMed  Google Scholar 

  33. Penumetcha SS, Gutta LN, Dhanala H, Yamili S, Challa S, Rudraraju S, et al. Hot melt extruded Aprepitant-Soluplus solid dispersion: preformulation considerations, stability and in vitro study. Drug Dev Ind Pharm. 2016;42(10):1609–20. https://doi.org/10.3109/03639045.2016.1160105.

    Article  CAS  PubMed  Google Scholar 

  34. Aho J, Edinger M, Botker J, Baldursdottir S, Rantanen J. Oscillatory shear rheology in examining the drug-polymer interactions relevant in hot melt extrusion. J Pharm Sci. 2016;105(1):160–7. https://doi.org/10.1016/j.xphs.2015.11.029.

    Article  CAS  PubMed  Google Scholar 

  35. Li S, Tian Y, Jones DS, Andrews GP. Optimising drug solubilisation in amorphous polymer dispersions: rational selection of hot-melt extrusion processing parameters. AAPS PharmSciTech. 2016;17(1):200–13. https://doi.org/10.1208/s12249-015-0450-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chan SY, Qi S, Craig DQ. An investigation into the influence of drug-polymer interactions on the miscibility, processability and structure of polyvinylpyrrolidone-based hot melt extrusion formulations. Int J Pharm. 2015;496(1):95–106. https://doi.org/10.1016/j.ijpharm.2015.09.063.

    Article  CAS  PubMed  Google Scholar 

  37. Simoes MF, Pinto RMA, Simoes S. Hot-melt extrusion in the pharmaceutical industry: toward filing a new drug application. Drug Discov Today. 2019;24(9):1749–68. https://doi.org/10.1016/j.drudis.2019.05.013.

    Article  CAS  PubMed  Google Scholar 

  38. Gupta A, Khan M. Hot-melt extrusion: an FDA perspective on product and process understanding. In: Douroumis D, editor. Hot-melt extrusion: pharmaceutical applications: John Wiley & Sons, Ltd; 2012. p. 323-31.

  39. Chaves LL, Vieira AC, Reis S, Sarmento B, Ferreira DC. Quality by design: discussing and assessing the solid dispersions risk. Curr Drug Deliv. 2014;11(2):253–69. https://doi.org/10.2174/1567201811666140211110943.

    Article  CAS  PubMed  Google Scholar 

  40. Pawar J, Suryawanshi D, Moravkar K, Aware R, Shetty V, Maniruzzaman M, et al. Study the influence of formulation process parameters on solubility and dissolution enhancement of efavirenz solid solutions prepared by hot-melt extrusion: a QbD methodology. Drug Deliv Transl Res. 2018;8(6):1644–57. https://doi.org/10.1007/s13346-018-0481-0.

    Article  CAS  PubMed  Google Scholar 

  41. Desai PM, Hogan RC, Brancazio D, Puri V, Jensen KD, Chun JH, et al. Integrated hot-melt extrusion–injection molding continuous tablet manufacturing platform: effects of critical process parameters and formulation attributes on product robustness and dimensional stability. Int J Pharm. 2017;531(1):332–42. https://doi.org/10.1016/j.ijpharm.2017.08.097.

    Article  CAS  PubMed  Google Scholar 

  42. Patwardhan K, Asgarzadeh F, Dassinger T, Albers J, Repka MA. A quality by design approach to understand formulation and process variability in pharmaceutical melt extrusion processes. J Pharm Pharmacol. 2015;67(5):673–84. https://doi.org/10.1111/jphp.12370.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang L, Mao S. Application of quality by design in the current drug development. Asian J Pharm Sci. 2017;12(1):1–8. https://doi.org/10.1016/j.ajps.2016.07.006.

    Article  PubMed  Google Scholar 

  44. Markarian J. Defining design space in hot-melt extrusion. Pharm Technol; 2012 [cited 2019 2 Ago]; Available from: http://www.pharmtech.com/defining-design-space-hot-melt-extrusion.

  45. Butreddy A, Bandari S, Repka MA. Quality-by-design in hot melt extrusion based amorphous solid dispersions: an industrial perspective on product development. Eur J Pharm Sci. 2021;158:105655. https://doi.org/10.1016/j.ejps.2020.105655.

    Article  CAS  PubMed  Google Scholar 

  46. Islam MT, Maniruzzaman M, Halsey SA, Chowdhry BZ, Douroumis D. Development of sustained-release formulations processed by hot-melt extrusion by using a quality-by-design approach. Drug Deliv Transl Res. 2014;4(4):377–87. https://doi.org/10.1007/s13346-014-0197-8.

    Article  CAS  PubMed  Google Scholar 

  47. Thiry J, Krier F, Evrard B. A review of pharmaceutical extrusion: critical process parameters and scaling-up. Int J Pharm. 2015;479(1):227–40. https://doi.org/10.1016/j.ijpharm.2014.12.036.

    Article  CAS  PubMed  Google Scholar 

  48. Wu JX, van den Berg F, Sogaard SV, Rantanen J. Fast-track to a solid dispersion formulation using multi-way analysis of complex interactions. J Pharm Sci. 2013;102(3):904–14. https://doi.org/10.1002/jps.23409.

    Article  CAS  PubMed  Google Scholar 

  49. Pawar J, Tayade A, Gangurde A, Moravkar K, Amin P. Solubility and dissolution enhancement of efavirenz hot melt extruded amorphous solid dispersions using combination of polymeric blends: a QbD approach. Eur J Pharm Sci. 2016;88:37–49. https://doi.org/10.1016/j.ejps.2016.04.001.

    Article  CAS  PubMed  Google Scholar 

  50. Lang B, McGinity JW, Williams RO 3rd. Dissolution enhancement of itraconazole by hot-melt extrusion alone and the combination of hot-melt extrusion and rapid freezing—effect of formulation and processing variables. Mol Pharm. 2014;11(1):186–96. https://doi.org/10.1021/mp4003706.

    Article  CAS  PubMed  Google Scholar 

  51. Saerens L, Ghanam D, Raemdonck C, Francois K, Manz J, Kruger R, et al. In-line solid state prediction during pharmaceutical hot-melt extrusion in a 12 mm twin screw extruder using Raman spectroscopy. Eur J Pharm Biopharm. 2014;87(3):606–15. https://doi.org/10.1016/j.ejpb.2014.03.002.

    Article  CAS  PubMed  Google Scholar 

  52. Reitz E, Vervaet C, Neubert RH, Thommes M. Solid crystal suspensions containing griseofulvin—preparation and bioavailability testing. Eur J Pharm Biopharm. 2013;83(2):193–202. https://doi.org/10.1016/j.ejpb.2012.09.012.

    Article  CAS  PubMed  Google Scholar 

  53. Baronsky-Probst J, Moltgen CV, Kessler W, Kessler RW. Process design and control of a twin screw hot melt extrusion for continuous pharmaceutical tamper-resistant tablet production. Eur J Pharm Sci. 2016;87:14–21. https://doi.org/10.1016/j.ejps.2015.09.010.

    Article  CAS  PubMed  Google Scholar 

  54. Chen M, Lu J, Deng W, Singh A, Mohammed NN, Repka MA, et al. Influence of processing parameters and formulation factors on the bioadhesive, temperature stability and drug release properties of hot-melt extruded films containing miconazole. AAPS PharmSciTech. 2014;15(3):522–9. https://doi.org/10.1208/s12249-013-0029-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lang B, McGinity JW, Williams RO 3rd. Hot-melt extrusion—basic principles and pharmaceutical applications. Drug Dev Ind Pharm. 2014;40(9):1133–55. https://doi.org/10.3109/03639045.2013.838577.

    Article  CAS  PubMed  Google Scholar 

  56. Crowley MM, Zhang F, Koleng JJ, McGinity JW. Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion. Biomaterials. 2002;23(21):4241–8. https://doi.org/10.1016/s0142-9612(02)00187-4.

    Article  CAS  PubMed  Google Scholar 

  57. Gallet G, Carroccio S, Rizzarelli P, Karlsson S. Thermal degradation of poly(ethylene oxide–propylene oxide–ethylene oxide) triblock copolymer: comparative study by SEC/NMR, SEC/MALDI-TOF-MS and SPME/GC-MS. Polymer. 2002;43(4):1081–94. https://doi.org/10.1016/s0032-3861(01)00677-2.

    Article  CAS  Google Scholar 

  58. Watanabe T, Okabayashi M, Kurokawa D, Nishimoto Y, Ozawa T, Kawasaki H, et al. Determination of primary bond scissions by mass spectrometric analysis of ultrasonic degradation products of poly(ethylene oxide-block-propylene oxide) copolymers. J Mass Spectrom. 2010;45(7):799–805. https://doi.org/10.1002/jms.1771.

    Article  CAS  PubMed  Google Scholar 

  59. Shojaee S, Cumming I, Kaialy W, Nokhodchi A. The influence of vitamin E succinate on the stability of polyethylene oxide PEO controlled release matrix tablets. Colloids Surf B: Biointerfaces. 2013;111:486–92. https://doi.org/10.1016/j.colsurfb.2013.06.038.

    Article  CAS  PubMed  Google Scholar 

  60. Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML. Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab. 2010;95(2):116–25. https://doi.org/10.1016/j.polymdegradstab.2009.11.045.

    Article  CAS  Google Scholar 

  61. Zhang T, Zhou S, Gao X, Yang Z, Sun L, Zhang D. A multi-scale method for modeling degradation of bioresorbable polyesters. Acta Biomater. 2017;50:462–75. https://doi.org/10.1016/j.actbio.2016.12.046.

    Article  CAS  PubMed  Google Scholar 

  62. Liu W-C, Halley PJ, Gilbert RG. Mechanism of degradation of starch, a highly branched polymer, during extrusion. Macromolecules. 2010;43(6):2855–64. https://doi.org/10.1021/ma100067x.

    Article  CAS  Google Scholar 

  63. Hughey JR, Keen JM, Miller DA, Brough C, McGinity JW. Preparation and characterization of fusion processed solid dispersions containing a viscous thermally labile polymeric carrier. Int J Pharm. 2012;438(1-2):11–9. https://doi.org/10.1016/j.ijpharm.2012.08.032.

    Article  CAS  PubMed  Google Scholar 

  64. Lu G, Kalyon DM, Yilgör I, Yilgör E. Rheology and extrusion of medical-grade thermoplastic polyurethane. Polym Eng Sci. 2003;43(12):1863–77. https://doi.org/10.1002/pen.10158.

    Article  CAS  Google Scholar 

  65. Dong Z, Choi DS. Hydroxypropyl methylcellulose acetate succinate: potential drug-excipient incompatibility. AAPS PharmSciTech. 2008;9(3):991–7. https://doi.org/10.1208/s12249-008-9138-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Alexy P, Lacı́k I, Šimková B, Bakoš D, Na P, Liptaj T, et al. Effect of melt processing on thermo-mechanical degradation of poly(vinyl alcohol)s. Polym Degrad Stab. 2004;85(2):823–30. https://doi.org/10.1016/j.polymdegradstab.2004.02.011.

    Article  CAS  Google Scholar 

  67. Lin S-Y, Yu H-L, Li M-J. Formation of six-membered cyclic anhydrides by thermally induced intramolecular ester condensation in Eudragit E film. Polymer. 1999;40(12):3589–93. https://doi.org/10.1016/s0032-3861(98)00488-1.

    Article  CAS  Google Scholar 

  68. Lin S-Y, Yu H-L. Thermal stability of methacrylic acid copolymers of Eudragits L, S, and L30D and the acrylic acid polymer of carbopol. J Polym Sci A Polym Chem. 1999;37(13):2061–7. https://doi.org/10.1002/(sici)1099-0518(19990701).

    Article  CAS  Google Scholar 

  69. Hughey JR, DiNunzio JC, Bennett RC, Brough C, Miller DA, Ma H, et al. Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and KinetiSol dispersing. AAPS PharmSciTech. 2010;11(2):760–74. https://doi.org/10.1208/s12249-010-9431-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stroyer A, McGinity JW, Leopold CS. Solid state interactions between the proton pump inhibitor omeprazole and various enteric coating polymers. J Pharm Sci. 2006;95(6):1342–53. https://doi.org/10.1002/jps.20450.

    Article  CAS  PubMed  Google Scholar 

  71. Matić J, Paudel A, Bauer H, Garcia RAL, Biedrzycka K, Khinast JG. Developing HME-based drug products using emerging science: a fast-track roadmap from concept to clinical batch. AAPS PharmSciTech. 2020;21(5):176. https://doi.org/10.1208/s12249-020-01713-0.

    Article  CAS  PubMed  Google Scholar 

  72. Jelić D. Thermal stability of amorphous solid dispersions. Molecules. 2021;26(1):238. https://doi.org/10.3390/molecules26010238.

    Article  CAS  PubMed Central  Google Scholar 

  73. Lin X, Hu Y, Liu L, Su L, Li N, Yu J, et al. Physical stability of amorphous solid dispersions: a physicochemical perspective with thermodynamic, kinetic and environmental aspects. Pharm Res. 2018;35(6):125. https://doi.org/10.1007/s11095-018-2408-3.

    Article  CAS  PubMed  Google Scholar 

  74. Pandi P, Bulusu R, Kommineni N, Khan W, Singh M. Amorphous solid dispersions: an update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int J Pharm. 2020;586:119560. https://doi.org/10.1016/j.ijpharm.2020.119560.

    Article  CAS  PubMed  Google Scholar 

  75. Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12(6):799–806. https://doi.org/10.1023/a:1016292416526.

    Article  CAS  PubMed  Google Scholar 

  76. Laitinen R, Lobmann K, Strachan CJ, Grohganz H, Rades T. Emerging trends in the stabilization of amorphous drugs. Int J Pharm. 2013;453(1):65–79. https://doi.org/10.1016/j.ijpharm.2012.04.066.

    Article  CAS  PubMed  Google Scholar 

  77. Baghel S, Cathcart H, O'Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016;105(9):2527–44. https://doi.org/10.1016/j.xphs.2015.10.008.

    Article  CAS  PubMed  Google Scholar 

  78. Janssens S, Van den Mooter G. Review: physical chemistry of solid dispersions. J Pharm Pharmacol. 2009;61(12):1571–86. https://doi.org/10.1211/jpp/61.12.0001.

    Article  CAS  PubMed  Google Scholar 

  79. Zhu DA, Zografi G, Gao P, Gong Y, Zhang GGZ. Modeling physical stability of amorphous solids based on temperature and moisture stresses. J Pharm Sci. 2016;105(9):2932–9. https://doi.org/10.1016/j.xphs.2016.03.029.

    Article  CAS  PubMed  Google Scholar 

  80. Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas SD, Suryanarayanan R. Correlation between molecular mobility and physical stability of amorphous itraconazole. Mol Pharm. 2013;10(2):694–700. https://doi.org/10.1021/mp300487u.

    Article  CAS  PubMed  Google Scholar 

  81. Miyanishi H, Nemoto T, Mizuno M, Mimura H, Kitamura S, Iwao Y, et al. Evaluation of crystallization behavior on the surface of nifedipine solid dispersion powder using inverse gas chromatography. Pharm Res. 2013;30(2):502–11. https://doi.org/10.1007/s11095-012-0896-0.

    Article  CAS  PubMed  Google Scholar 

  82. Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW. Amorphous solid dispersions: theory and practice. New York: Springer; 2014.

    Book  Google Scholar 

  83. Gupta SS, Solanki N, Serajuddin AT. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, IV: Affinisol HPMC HME polymers. AAPS PharmSciTech. 2016;17(1):148–57. https://doi.org/10.1208/s12249-015-0426-6.

    Article  CAS  PubMed  Google Scholar 

  84. Mao C, Chamarthy SP, Pinal R. Time-dependence of molecular mobility during structural relaxation and its impact on organic amorphous solids: an investigation based on a calorimetric approach. Pharm Res. 2006;23(8):1906–17. https://doi.org/10.1007/s11095-006-9008-3.

    Article  CAS  PubMed  Google Scholar 

  85. Surana R, Pyne A, Rani M, Suryanarayanan R. Measurement of enthalpic relaxation by differential scanning calorimetry—effect of experimental conditions. Thermochim Acta. 2005;433(1-2):173–82. https://doi.org/10.1016/j.tca.2005.02.014.

    Article  CAS  Google Scholar 

  86. Hasegawa S, Ke P, Buckton G. Determination of the structural relaxation at the surface of amorphous solid dispersion using inverse gas chromatography. J Pharm Sci. 2009;98(6):2133–9. https://doi.org/10.1002/jps.21573.

    Article  CAS  PubMed  Google Scholar 

  87. Bansal SS, Kaushal AM, Bansal AK. Enthalpy relaxation studies of two structurally related amorphous drugs and their binary dispersions. Drug Dev Ind Pharm. 2010;36(11):1271–80. https://doi.org/10.3109/03639041003753847.

    Article  CAS  PubMed  Google Scholar 

  88. Kakumanu VK, Bansal AK. Enthalpy relaxation studies of celecoxib amorphous mixtures. Pharm Res. 2002;19(12):1873–8. https://doi.org/10.1023/a:1021453810624.

    Article  CAS  PubMed  Google Scholar 

  89. Mao C, Prasanth Chamarthy S, Byrn SR, Pinal R. A calorimetric method to estimate molecular mobility of amorphous solids at relatively low temperatures. Pharm Res. 2006;23(10):2269–76. https://doi.org/10.1007/s11095-006-9071-9.

    Article  CAS  PubMed  Google Scholar 

  90. Karmwar P, Graeser K, Gordon KC, Strachan CJ, Rades T. Investigation of properties and recrystallisation behaviour of amorphous indomethacin samples prepared by different methods. Int J Pharm. 2011;417(1-2):94–100. https://doi.org/10.1016/j.ijpharm.2010.12.019.

    Article  CAS  PubMed  Google Scholar 

  91. Mao C, Chamarthy SP, Pinal R. Calorimetric study and modeling of molecular mobility in amorphous organic pharmaceutical compounds using a modified Adam-Gibbs approach. J Phys Chem B. 2007;111(46):13243–52. https://doi.org/10.1021/jp072577.

  92. Aso Y, Yoshioka S, Kojima S. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions. J Pharm Sci. 2004;93(2):384–91. https://doi.org/10.1002/jps.10526.

    Article  CAS  PubMed  Google Scholar 

  93. Berthier L, Coslovich D. Novel approach to numerical measurements of the configurational entropy in supercooled liquids. Proc Natl Acad Sci U S A. 2014;111(32):11668–72. https://doi.org/10.1073/pnas.1407934111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Qian F, Huang J, Hussain MA. Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99(7):2941–7. https://doi.org/10.1002/jps.22074.

    Article  CAS  PubMed  Google Scholar 

  95. Forster A, Hempenstall J, Tucker, Rades T. The potential of small-scale fusion experiments and the Gordon-Taylor equation to predict the suitability of drug/polymer blends for melt extrusion. Drug Dev Ind Pharm. 2001;27(6):549–60. https://doi.org/10.1081/ddc-100105180.

    Article  CAS  PubMed  Google Scholar 

  96. Nair R, Nyamweya N, Gönen S, Martı́nez-Miranda LJ, Hoag SW. Influence of various drugs on the glass transition temperature of poly(vinylpyrrolidone): a thermodynamic and spectroscopic investigation. Int J Pharm. 2001;225(1-2):83–96. https://doi.org/10.1016/s0378-5173(01)00767-0.

    Article  CAS  PubMed  Google Scholar 

  97. Jensen KT, Larsen FH, Lobmann K, Rades T, Grohganz H. Influence of variation in molar ratio on co-amorphous drug-amino acid systems. Eur J Pharm Biopharm. 2016;107:32–9. https://doi.org/10.1016/j.ejpb.2016.06.020.

    Article  CAS  PubMed  Google Scholar 

  98. Rask MB, Knopp MM, Olesen NE, Holm R, Rades T. Influence of PVP/VA copolymer composition on drug-polymer solubility. Eur J Pharm Sci. 2016;85:10–7. https://doi.org/10.1016/j.ejps.2016.01.026.

    Article  CAS  PubMed  Google Scholar 

  99. O'Donnell KP, Woodward WH. Dielectric spectroscopy for the determination of the glass transition temperature of pharmaceutical solid dispersions. Drug Dev Ind Pharm. 2015;41(6):959–68. https://doi.org/10.3109/03639045.2014.919314.

    Article  CAS  PubMed  Google Scholar 

  100. Greenhalgh DJ, Williams AC, Timmins P, York P. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci. 1999;88(11):1182–90. https://doi.org/10.1021/js9900856.

    Article  CAS  PubMed  Google Scholar 

  101. Van Krevelen DW, Te Nijenhuis K. Chapter 7—Cohesive properties and solubility. In:Properties of polymers. 4th ed. Amsterdam: Elsevier; 2009. p. 189–227.

    Chapter  Google Scholar 

  102. Just S, Sievert F, Thommes M, Breitkreutz J. Improved group contribution parameter set for the application of solubility parameters to melt extrusion. Eur J Pharm Biopharm. 2013;85(3 Pt B):1191–9. https://doi.org/10.1016/j.ejpb.2013.04.006.

    Article  CAS  PubMed  Google Scholar 

  103. Forster A, Hempenstall J, Tucker I, Rades T. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm. 2001;226(1-2):147–61. https://doi.org/10.1016/s0378-5173(01)00801-8.

    Article  CAS  PubMed  Google Scholar 

  104. Baghel S, Cathcart H, O'Reilly NJ. Theoretical and experimental investigation of drug-polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium. Eur J Pharm Biopharm. 2016;107:16–31. https://doi.org/10.1016/j.ejpb.2016.06.024.

    Article  CAS  PubMed  Google Scholar 

  105. Djuris J, Nikolakakis I, Ibric S, Djuric Z, Kachrimanis K. Preparation of carbamazepine-Soluplus solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm. 2013;84(1):228–37. https://doi.org/10.1016/j.ejpb.2012.12.018.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang Y, Luo R, Chen Y, Ke X, Hu D, Han M. Application of carrier and plasticizer to improve the dissolution and bioavailability of poorly water-soluble baicalein by hot melt extrusion. AAPS PharmSciTech. 2014;15(3):560–8. https://doi.org/10.1208/s12249-013-0071-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yoo SU, Krill SL, Wang Z, Telang C. Miscibility/stability considerations in binary solid dispersion systems composed of functional excipients towards the design of multi-component amorphous systems. J Pharm Sci. 2009;98(12):4711–23. https://doi.org/10.1002/jps.21779.

    Article  CAS  PubMed  Google Scholar 

  108. Yang M, Wang P, Gogos C. Prediction of acetaminophen's solubility in poly(ethylene oxide) at room temperature using the Flory-Huggins theory. Drug Dev Ind Pharm. 2013;39(1):102–8. https://doi.org/10.3109/03639045.2012.659188.

    Article  CAS  PubMed  Google Scholar 

  109. Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res. 2006;23(10):2417–26. https://doi.org/10.1007/s11095-006-9063-9.

    Article  CAS  PubMed  Google Scholar 

  110. Marsac PJ, Konno H, Taylor LS. A comparison of the physical stability of amorphous felodipine and nifedipine systems. Pharm Res. 2006;23(10):2306–16. https://doi.org/10.1007/s11095-006-9047-9.

    Article  CAS  PubMed  Google Scholar 

  111. Tian Y, Booth J, Meehan E, Jones DS, Li S, Andrews GP. Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol Pharm. 2013;10(1):236–48. https://doi.org/10.1021/mp300386v.

    Article  CAS  PubMed  Google Scholar 

  112. Shah SM, Jain AS, Kaushik R, Nagarsenker MS, Nerurkar MJ. Preclinical formulations: insight, strategies, and practical considerations. AAPS PharmSciTech. 2014;15(5):1307–23. https://doi.org/10.1208/s12249-014-0156-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Thakral S, Thakral NK. Prediction of drug-polymer miscibility through the use of solubility parameter based Flory-Huggins interaction parameter and the experimental validation: PEG as model polymer. J Pharm Sci. 2013;102(7):2254–63. https://doi.org/10.1002/jps.23583.

    Article  CAS  PubMed  Google Scholar 

  114. Hengsawas Surasarang S, Keen JM, Huang S, Zhang F, McGinity JW, Williams RO 3rd. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole. Drug Dev Ind Pharm. 2017;43(5):797–811. https://doi.org/10.1080/03639045.2016.1220577.

    Article  CAS  PubMed  Google Scholar 

  115. DiNunzio JC, Martin ZFC, McGinity JW. Melt Extrusion. In: Williams III RO, Watts AB, Miller DA, editors. Formulating poorly water soluble drugs. New York: Springer; 2012. p. 331–62.

    Google Scholar 

  116. Maddineni S, Battu SK, Morott J, Majumdar S, Murthy SN, Repka MA. Influence of process and formulation parameters on dissolution and stability characteristics of Kollidon(R) VA 64 hot-melt extrudates. AAPS PharmSciTech. 2015;16(2):444–54. https://doi.org/10.1208/s12249-014-0226-4.

    Article  CAS  PubMed  Google Scholar 

  117. Mendonsa N, Almutairy B, Kallakunta VR, Sarabu S, Thipsay P, Bandari S, et al. Manufacturing strategies to develop amorphous solid dispersions: an overview. J Drug Deliv Sci Technol. 2020;55:101459. https://doi.org/10.1016/j.jddst.2019.101459.

    Article  CAS  PubMed  Google Scholar 

  118. Dinunzio JC, Brough C, Hughey JR, Miller DA, Williams RO 3rd, McGinity JW. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol dispersing. Eur J Pharm Biopharm. 2010;74(2):340–51. https://doi.org/10.1016/j.ejpb.2009.09.007.

    Article  CAS  PubMed  Google Scholar 

  119. Yu LX. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res. 2008;25(4):781–91. https://doi.org/10.1007/s11095-007-9511-1.

    Article  CAS  PubMed  Google Scholar 

  120. Elkhabaz A, Sarkar S, Simpson GJ, Taylor LS. Characterization of phase transformations for amorphous solid dispersions of a weakly basic drug upon dissolution in biorelevant media. Pharm Res. 2019;36(12):174. https://doi.org/10.1007/s11095-019-2718-0.

    Article  CAS  PubMed  Google Scholar 

  121. Elkhabaz A, Sarkar S, Dinh JK, Simpson GJ, Taylor LS. Variation in supersaturation and phase behavior of ezetimibe amorphous solid dispersions upon dissolution in different biorelevant media. Mol Pharm. 2018;15(1):193–206. https://doi.org/10.1021/acs.molpharmaceut.7b00814.

    Article  CAS  PubMed  Google Scholar 

  122. Ashwathy P, Anto AT, Sudheesh MS. A mechanistic review on the dissolution phase behavior and supersaturation stabilization of amorphous solid dispersions. Drug Dev Ind Pharm. 2021;47(1):1–11. https://doi.org/10.1080/03639045.2021.1879843.

    Article  CAS  PubMed  Google Scholar 

  123. Puppolo MM, Hughey JR, Dillon T, Storey D, Jansen-Varnum S. Biomimetic dissolution: a tool to predict amorphous solid dispersion performance. AAPS PharmSciTech. 2017;18(8):2841–53. https://doi.org/10.1208/s12249-017-0783-4.

    Article  CAS  PubMed  Google Scholar 

  124. Litou C, Turner DB, Holmstock N, Ceulemans J, Box KJ, Kostewicz E, et al. Combining biorelevant in vitro and in silico tools to investigate the in vivo performance of the amorphous solid dispersion formulation of etravirine in the fed state. Eur J Pharm Sci. 2020;149:105297. https://doi.org/10.1016/j.ejps.2020.105297.

    Article  CAS  PubMed  Google Scholar 

  125. Kambayashi A, Kiyota T, Fujiwara M, Dressman JB. PBPK modeling coupled with biorelevant dissolution to forecast the oral performance of amorphous solid dispersion formulations. Eur J Pharm Sci. 2019;135:83–90. https://doi.org/10.1016/j.ejps.2019.05.013.

    Article  CAS  PubMed  Google Scholar 

  126. Boyd BJ, Bergström CAS, Vinarov Z, Kuentz M, Brouwers J, Augustijns P, et al. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci. 2019;137:104967. https://doi.org/10.1016/j.ejps.2019.104967.

    Article  CAS  PubMed  Google Scholar 

  127. Keen JM, McGinity JW, Williams RO 3rd. Enhancing bioavailability through thermal processing. Int J Pharm. 2013;450(1-2):185–96. https://doi.org/10.1016/j.ijpharm.2013.04.042.

    Article  CAS  PubMed  Google Scholar 

  128. Seibert KD, Collins PC, Fisher E. Milling operations in the pharmaceutical industry. In: Ende DJ, editor. Chemical engineering in the pharmaceutical industry. New Jersey: John Wiley & Sons, Inc.; 2010. p. 365–78.

    Chapter  Google Scholar 

  129. Agrawal A, Dudhedia M, Deng W, Shepard K, Zhong L, Povilaitis E, et al. Development of tablet formulation of amorphous solid dispersions prepared by hot melt extrusion using quality by design approach. AAPS PharmSciTech. 2016;17(1):214–32. https://doi.org/10.1208/s12249-015-0472-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kolter K, Karl M, Gryczke A. Hot-melt extrusion with BASF pharma polymers: extrusion compendium. Germany: BASF SE - Pharma Ingredients and Services; 2012.

    Google Scholar 

  131. Iyer R, Hegde S, Zhang YE, Dinunzio J, Singhal D, Malick A, et al. The impact of hot melt extrusion and spray drying on mechanical properties and tableting indices of materials used in pharmaceutical development. J Pharm Sci. 2013;102(10):3604–13. https://doi.org/10.1002/jps.23661.

    Article  CAS  PubMed  Google Scholar 

  132. Carley JF, McKelvey JM. Extruder scale-up theory and experiments. Ind Eng Chem. 1953;45(5):989–92. https://doi.org/10.1021/ie50521a036.

    Article  CAS  Google Scholar 

  133. Nakatani M. Short communication: scale-up theory for twin-screw extruder, keeping the resin temperature unchanged. Adv Polym Technol. 1998;17(1):19–22. https://doi.org/10.1002/(sici)1098-2329(199821).

    Article  CAS  Google Scholar 

  134. Chung CI. On the scale-up of plasticating extruder screws. Polym Eng Sci. 1984;24(9):626–32. https://doi.org/10.1002/pen.760240904.

    Article  Google Scholar 

  135. Meijer HEH, Elemans PHM. The modeling of continuous mixers. Part I: The corotating twin-screw extruder. Polym Eng Sci. 1988;28(5):275–90. https://doi.org/10.1002/pen.760280504.

    Article  CAS  Google Scholar 

  136. Agur EE. Extruder scale-up in a corotating twin-screw extrusion compounding process. Adv Polym Technol. 1986;6(2):225–31. https://doi.org/10.1002/adv.1986.060060208.

    Article  CAS  Google Scholar 

  137. Bigio D, Wang K. Scale-up rules for mixing in a non-intermeshing twin-screw extruder. Polym Eng Sci. 1996;36(23):2832–9. https://doi.org/10.1002/pen.10684.

    Article  CAS  Google Scholar 

  138. Hughey J. A practical guide to hot-melt extrusion scale-up for pharmaceutical applications. Pharm Technol. 2014;Solid Dosage & Excipients:25-9.

  139. Ghosh I, Vippagunta R, Li S, Vippagunta S. Key considerations for optimization of formulation and melt-extrusion process parameters for developing thermosensitive compound. Pharm Dev Technol. 2012;17(4):502–10. https://doi.org/10.3109/10837450.2010.550624.

    Article  CAS  PubMed  Google Scholar 

  140. Agrawal AM, Dudhedia MS, Zimny E. Hot melt extrusion: development of an amorphous solid dispersion for an insoluble drug from mini-scale to clinical scale. AAPS PharmSciTech. 2016;17(1):133–47. https://doi.org/10.1208/s12249-015-0425-7.

    Article  CAS  PubMed  Google Scholar 

  141. Bochmann ES, Steffens KE, Gryczke A, Wagner KG. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity. Eur J Pharm Biopharm. 2018;124:34–42. https://doi.org/10.1016/j.ejpb.2017.12.001.

    Article  CAS  PubMed  Google Scholar 

  142. Dubey SP, Abhyankar HA, Marchante V, Brighton JL, Blackburn K, Temple C, et al. Modelling and validation of synthesis of poly lactic acid using an alternative energy source through a continuous reactive extrusion process. Polymers. 2016;8(4):164. https://doi.org/10.3390/polym8040164.

    Article  CAS  PubMed Central  Google Scholar 

  143. Zecevic DE, Evans RC, Paulsen K, Wagner KG. From benchtop to pilot scale-experimental study and computational assessment of a hot-melt extrusion scale-up of a solid dispersion of dipyridamole and copovidone. Int J Pharm. 2018;537(1-2):132–9. https://doi.org/10.1016/j.ijpharm.2017.12.033.

    Article  CAS  PubMed  Google Scholar 

  144. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5(5):442–53. https://doi.org/10.1016/j.apsb.2015.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Loreti G, Maroni A, Del Curto MD, Melocchi A, Gazzaniga A, Zema L. Evaluation of hot-melt extrusion technique in the preparation of HPC matrices for prolonged release. Eur J Pharm Sci. 2014;52:77–85. https://doi.org/10.1016/j.ejps.2013.10.014.

    Article  CAS  PubMed  Google Scholar 

  146. Wilson MR, Jones DS, Andrews GP. The development of sustained release drug delivery platforms using melt-extruded cellulose-based polymer blends. J Pharm Pharmacol. 2017;69(1):32–42. https://doi.org/10.1111/jphp.12656.

    Article  CAS  PubMed  Google Scholar 

  147. Yi S, Wang J, Lu Y, Ma R, Gao Q, Liu S, et al. Novel hot melt extruded matrices of hydroxypropyl cellulose and amorphous felodipine-plasticized hydroxypropyl methylcellulose as controlled release systems. AAPS PharmSciTech. 2019;20(6):219. https://doi.org/10.1208/s12249-019-1435-7.

    Article  CAS  PubMed  Google Scholar 

  148. Almutairi M, Almutairy B, Sarabu S, Almotairy A, Ashour E, Bandari S, et al. Processability of AquaSolve LG polymer by hot-melt extrusion: effects of pressurized CO2 on physicomechanical properties and API stability. J Drug Deliv Sci Technol. 2019;52:165–76. https://doi.org/10.1016/j.jddst.2019.04.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Xue X, Chen G, Xu X, Wang J, Wang J, Ren L. A combined utilization of Plasdone-S630 and HPMCAS-HF in ziprasidone hydrochloride solid dispersion by hot-melt extrusion to enhance the oral bioavailability and no food effect. AAPS PharmSciTech. 2019;20(1):37. https://doi.org/10.1208/s12249-018-1216-8.

    Article  CAS  PubMed  Google Scholar 

  150. Wu CY, Lui WB, Peng J. Optimization of extrusion variables and maleic anhydride content on biopolymer blends based on poly(hydroxybutyrate-co-hydroxyvalerate)/poly(vinyl acetate) with tapioca starch. Polymers. 2018;10(8):827. https://doi.org/10.3390/polym10080827.

    Article  CAS  PubMed Central  Google Scholar 

  151. Pimparade MB, Vo A, Maurya AS, Bae J, Morott JT, Feng X, et al. Development and evaluation of an oral fast disintegrating anti-allergic film using hot-melt extrusion technology. Eur J Pharm Biopharm. 2017;119:81–90. https://doi.org/10.1016/j.ejpb.2017.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fukuda M, Peppas NA, McGinity JW. Properties of sustained release hot-melt extruded tablets containing chitosan and xanthan gum. Int J Pharm. 2006;310(1-2):90–100. https://doi.org/10.1016/j.ijpharm.2005.11.042.

    Article  CAS  PubMed  Google Scholar 

  153. Verhoeven E, Vervaet C, Remon JP. Xanthan gum to tailor drug release of sustained-release ethylcellulose mini-matrices prepared via hot-melt extrusion: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2006;63(3):320–30. https://doi.org/10.1016/j.ejpb.2005.12.004.

    Article  CAS  PubMed  Google Scholar 

  154. Leelakanok N, Geary SM, Salem AK. Antitumor efficacy and toxicity of 5-fluorouracil-loaded poly(lactide co-glycolide) pellets. J Pharm Sci. 2018;107(2):690–7. https://doi.org/10.1016/j.xphs.2017.10.005.

    Article  CAS  PubMed  Google Scholar 

  155. Bode C, Kranz H, Fivez A, Siepmann F, Siepmann J. Often neglected: PLGA/PLA swelling orchestrates drug release: HME implants. J Control Release. 2019;306:97–107. https://doi.org/10.1016/j.jconrel.2019.05.039.

    Article  CAS  PubMed  Google Scholar 

  156. Kamel R, Abbas H. PLGA-based monolithic filaments prepared by hot-melt extrusion: In-vitro comparative study. Ann Pharm Fr. 2018;76(2):97–106. https://doi.org/10.1016/j.pharma.2017.09.002.

    Article  CAS  PubMed  Google Scholar 

  157. Heller J, Barr J, Ng S, Shen HR, Gurny R, Schwach-Abdelaoui K, et al. Development of poly(ortho esters) and their application for bovine serum albumin and bupivacaine delivery. J Control Release. 2002;78(1-3):133–41. https://doi.org/10.1016/s0168-3659(01)00482-5.

    Article  CAS  PubMed  Google Scholar 

  158. Heller J, Barr J, Ng SY, Shen HR, Schwach-Abdellaoui K, Einmahl S, et al. Poly(ortho esters)—their development and some recent applications. Eur J Pharm Biopharm. 2000;50(1):121–8. https://doi.org/10.1016/s0939-6411(00)00085-0.

    Article  CAS  PubMed  Google Scholar 

  159. Verstraete G, Vandenbussche L, Kasmi S, Nuhn L, Brouckaert D, Van Renterghem J, et al. Thermoplastic polyurethane-based intravaginal rings for prophylaxis and treatment of (recurrent) bacterial vaginosis. Int J Pharm. 2017;529(1-2):218–26. https://doi.org/10.1016/j.ijpharm.2017.06.076.

    Article  CAS  PubMed  Google Scholar 

  160. Verstraete G, Mertens P, Grymonpre W, Van Bockstal PJ, De Beer T, Boone MN, et al. A comparative study between melt granulation/compression and hot melt extrusion/injection molding for the manufacturing of oral sustained release thermoplastic polyurethane matrices. Int J Pharm. 2016;513(1-2):602–11. https://doi.org/10.1016/j.ijpharm.2016.09.072.

    Article  CAS  PubMed  Google Scholar 

  161. Verstraete G, Van Renterghem J, Van Bockstal PJ, Kasmi S, De Geest BG, De Beer T, et al. Hydrophilic thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding. Int J Pharm. 2016;506(1-2):214–21. https://doi.org/10.1016/j.ijpharm.2016.04.057.

    Article  CAS  PubMed  Google Scholar 

  162. Li LC, Deng J, Stephens D. Polyanhydride implant for antibiotic delivery—from the bench to the clinic. Adv Drug Deliv Rev. 2002;54(7):963–86. https://doi.org/10.1016/s0169-409x(02)00053-4.

    Article  PubMed  Google Scholar 

  163. Deng JS, Meisters M, Li L, Setesak J, Claycomb L, Tian Y, et al. The development of an injection-molding process for a polyanhydride implant containing gentamicin sulfate. PDA J Pharm Sci Technol. 2002;56(2):65–77.

    CAS  PubMed  Google Scholar 

  164. Simões MF, Pereira A, Cardoso S, Cadonau S, Werner K, Pinto RMA, et al. A 5-stage approach for a systematic screening and development of etravirine amorphous solid dispersions by hot-melt extrusion. Mol Pharm. 2019. https://doi.org/10.1021/acs.molpharmaceut.9b00996.

  165. Evans RC, Bochmann ES, Kyeremateng SO, Gryczke A, Wagner KG. Holistic QbD approach for hot-melt extrusion process design space evaluation: linking materials science, experimentation and process modeling. Eur J Pharm Biopharm. 2019;141:149–60. https://doi.org/10.1016/j.ejpb.2019.05.021.

    Article  CAS  PubMed  Google Scholar 

  166. Ma X, Huang S, Lowinger MB, Liu X, Lu X, Su Y, et al. Influence of mechanical and thermal energy on nifedipine amorphous solid dispersions prepared by hot melt extrusion: preparation and physical stability. Int J Pharm. 2019;561:324–34. https://doi.org/10.1016/j.ijpharm.2019.03.014.

    Article  CAS  PubMed  Google Scholar 

  167. Zi P, Zhang C, Ju C, Su Z, Bao Y, Gao J, et al. Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant—Soluplus. Eur J Pharm Sci. 2019;134:233–45. https://doi.org/10.1016/j.ejps.2019.04.022.

    Article  CAS  PubMed  Google Scholar 

  168. Simões MF, Nogueira BA, Tabanez AM, Fausto R, Pinto RMA, Simões S. Enhanced solid-state stability of amorphous ibrutinib formulations prepared by hot-melt extrusion. Int J Pharm. 2020;579:119156. https://doi.org/10.1016/j.ijpharm.2020.119156.

    Article  CAS  PubMed  Google Scholar 

  169. Ugaonkar SR, Wesenberg A, Wilk J, Seidor S, Mizenina O, Kizima L, et al. A novel intravaginal ring to prevent HIV-1, HSV-2, HPV, and unintended pregnancy. J Control Release. 2015;213:57–68. https://doi.org/10.1016/j.jconrel.2015.06.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Almeida A, Possemiers S, Boone MN, De Beer T, Quinten T, Van Hoorebeke L, et al. Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion. Eur J Pharm Biopharm. 2011;77(2):297–305. https://doi.org/10.1016/j.ejpb.2010.12.004.

    Article  CAS  PubMed  Google Scholar 

  171. Feng Z, Li M, Wang W. Improvement of dissolution and tabletability of carbamazepine solid dispersions with high drug loading prepared by hot-melt extrusion. Pharmazie. 2019;74(9):523–8. https://doi.org/10.1691/ph.2019.9008.

    Article  CAS  PubMed  Google Scholar 

  172. Meng F, Meckel J, Zhang F. Investigation of itraconazole ternary amorphous solid dispersions based on povidone and Carbopol. Eur J Pharm Sci. 2017;106:413–21. https://doi.org/10.1016/j.ejps.2017.06.019.

    Article  CAS  PubMed  Google Scholar 

  173. Bhagurkar AM, Darji M, Lakhani P, Thipsay P, Bandari S, Repka MA. Effects of formulation composition on the characteristics of mucoadhesive films prepared by hot-melt extrusion technology. J Pharm Pharmacol. 2019;71(3):293–305. https://doi.org/10.1111/jphp.13046.

    Article  CAS  PubMed  Google Scholar 

  174. Palazi E, Karavas E, Barmpalexis P, Kostoglou M, Nanaki S, Christodoulou E, et al. Melt extrusion process for adjusting drug release of poorly water soluble drug felodipine using different polymer matrices. Eur J Pharm Sci. 2018;114:332–45. https://doi.org/10.1016/j.ejps.2018.01.004.

    Article  CAS  PubMed  Google Scholar 

  175. Xu X, Siddiqui A, Srinivasan C, Mohammad A, Rahman Z, Korang-Yeboah M, et al. Evaluation of abuse-deterrent characteristics of tablets prepared via hot-melt extrusion. AAPS PharmSciTech. 2019;20(6):230. https://doi.org/10.1208/s12249-019-1448-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Teresa Filipe for her support on illustrations.

Funding

This work was supported by Bluepharma, Coimbra, Portugal, and by Fundação para a Ciência e Tecnologia (FCT), Portugal (Ph.D. fellowship PD/BDE/135149/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Simões.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simões, M.F., Pinto, R.M.A. & Simões, S. Hot-Melt Extrusion: a Roadmap for Product Development. AAPS PharmSciTech 22, 184 (2021). https://doi.org/10.1208/s12249-021-02017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02017-7

KEY WORDS

Navigation