Skip to main content
Log in

Orally Administered Drug Solubility-Enhancing Formulations: Lesson Learnt from Optimum Solubility-Permeability Balance

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Although oral drug delivery is considered as most acceptable route for administering the active pharmaceutical ingredients to patients of all age-groups with the exceptions of bed-ridden patients and infants, the extent and rate of drug reaching the systemic circulation (in other word, drug bioavailability) always depends on many factors such as drug solubility in gastrointestinal fluids and drug permeation into intraluminal epithelial membrane structure, absence (fasting state) and presence (fed state) of food materials in the gastrointestinal tract, and individual variations in gastric emptying time. Taking the most influential factors like drug solubility and its permeability into consideration, these two factors play a pivotal role and even act as the litmus test for the formulation scientists who involve in oral dosage form development. It is very clear that there should be an optimum solubility and permeability balance to be reachable for getting the desired drug bioavailability to exert the intended therapeutic activity. The objectives of current review are (1) to provide an overview of two-different categories of poorly water soluble API molecules, (2) to describe briefly three-different case studies taken from drug solubility-enhancing formulations dealing with interplay between solubility and permeability, and (3) to showcase selected examples of solubility-permeability interplay phenomena arising out from the various orally administrable dosage forms. The lessons learnt from the past and current literatures are certainly encouraging to go ahead for oral dosage form development but with the prior knowledge about the possible existence of solubility-permeability interplay/tradeoff phenomenon.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Flowchart 1
Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABA:

Amino benzoic acid

AI:

Artificial intelligence

ANN:

Artificial neural network

APIs:

Active pharmaceutical ingredients

ASD:

Aqueous solid dispersion

BCS:

Biopharmaceutics classification system

CNZ:

Cinnarizine

DCS:

Developability classification system

EPO:

Methacrylate copolymer Eudragit

FB:

Fenofibrate

GSE:

General solubility equation (GSE)

HPMC:

Hydroxypropyl methylcellulose

HTS:

High-throughput screening

ML:

Machine learning

OSPB:

Optimal solubility permeability balance

PAMPA:

Parallel artificial membrane permeability assay

PVP:

Polyvinylpyrrolidone

SBE:

Sulfobutylether

S-SMEDDS:

Solid-self microemulsifying drug delivery system

S-SNEDDS:

Solid self nanoemulsifying drug delivery system

Tm:

Melting point

TPGS:

Tocopheryl polyethylene glycol (1000) succinate

UWL:

Unstirred water layer

WW:

Working window

References

  1. Beig A, Markovic M, Dahan A. Solubility, permeability, and their interplay. In: Giordanetto FG, editor. Early Drug Development; Bringing a Preclinical Candidate to the Clinic, Volume 1, Book series: Methods and Principles in Medicinal Chemistry; 2018. p. 171–202. ISBN: 9783527801756. https://doi.org/10.1002/9783527801756.ch8.

    Chapter  Google Scholar 

  2. Sun L, Zhang B, Sun J. The solubility-permeability trade-off of progesterone with cyclodextrins under physiological conditions: experimental observations and computer simulations. J Pharm Sci. 2018;107(1):488–94. https://doi.org/10.1016/j.xphs.2017.09.032.

    Article  CAS  PubMed  Google Scholar 

  3. Krstić M, Popović M, Dobričić V, Ibrić S. Influence of solid drug delivery system formulation on poorly water-soluble drug dissolution and permeability. Molecules. 2015;20(8):14684–98. https://doi.org/10.3390/molecules200814684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh H, Kumar M, Gupta S, Sekharan T, Tamilvanan S. Influence of hydrophilic polymers addition into cinnarizine -β-cyclodextrincomplexes on drug solubility, drug liberation behaviour and drug permeability. Polym Bull. 2017;75(7):2987–3009. https://doi.org/10.1007/s00289-017-2203-z.

    Article  CAS  Google Scholar 

  5. Saikia B, Bora P, Khatioda R, Sarma B. Hydrogen bond synthons in the interplay of solubility and membrane permeability/diffusion in variable stoichiometry drug cocrystals. Cryst Growth Des. 2015;15(11):5593–603. https://doi.org/10.1021/acs.cgd.5b01293.

    Article  CAS  Google Scholar 

  6. Beig A, Agbaria R, Dahan A. The use of captisol (SBE7-β-CD) in oral solubility-enabling formulations: comparison to HPβCD and the solubility-permeability interplay. Eur J Pharm Sci. 2015;77:73–8. https://doi.org/10.1016/j.ejps.2015.05.024.

    Article  CAS  PubMed  Google Scholar 

  7. Brouwers J, Augustijns P. Resolving intraluminal drug and formulation behavior: Gastrointestinal concentration profiling in humans. Eur J Pharm Sci. 2014;61:2–10. https://doi.org/10.1016/j.ejps.2014.01.010.

    Article  CAS  PubMed  Google Scholar 

  8. Stojkovic A, Parojcic J, Djuric Z, Corrigan OI. A Case study of in silicomodelling of ciprofloxacin hydrochloride/metallic compound interactions. AAPS PharmSciTech. 2013;15(2):270–8. https://doi.org/10.1208/s12249-013-0055-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holmstock N, Bruyn TD, Bevernage J, Annaert P, Mols R, Tack J, et al. Exploring food effects on indinavir absorption with human intestinal fluids in the mouse intestine. Eur J Pharm Sci. 2013;49(1):27–32. https://doi.org/10.1016/j.ejps.2013.01.012.

    Article  CAS  PubMed  Google Scholar 

  10. Miller JM, Beig A, Carr RA, Webster GK, Dahan A. The solubility-permeability interplay when using cosolvents for solubilization: revising the way we use solubility-enabling formulations. Mol Pharm. 2012;9(3):581–90. https://doi.org/10.1021/mp200460u.

    Article  CAS  PubMed  Google Scholar 

  11. Van den Bergh A, Van Hemelryck S, Bevernage J, Van Peer A, Brewster M, Mackie C, et al. Preclinical bioavailability strategy for decisions on clinical drug formulation development: an in depth analysis. Mol Pharm. 2018;15(7):2633–45. https://doi.org/10.1021/acs.molpharmaceut.8b00172.

    Article  CAS  PubMed  Google Scholar 

  12. Berben P, Mols R, Brouwers J, Tack J, Augustijns P. Gastrointestinal behavior of itraconazole in humans-Part 2: the effect of intraluminal dilution on the performance of a cyclodextrin-based solution. Int J Pharm. 2017;526(1-2):235–43. https://doi.org/10.1016/j.ijpharm.2017.04.057.

    Article  CAS  PubMed  Google Scholar 

  13. Fong SYK, Martins SM, Brandl M, Bauer-Brandl A. Solid phospholipid dispersions for oral delivery of poorly soluble drugs: investigation into celecoxib incorporation and solubility-in vitro permeability enhancement. J Pharm Sci. 2016;105(3):1113–23. https://doi.org/10.1016/s0022-3549(15)00186-0.

    Article  CAS  PubMed  Google Scholar 

  14. Hens B, Brouwers J, Corsetti M, Augustijns P. Gastrointestinal behavior of nano- and microsizedfenofibrate: in vivo evaluation in man and in vitro simulation by assessment of the permeation potential. Eur J Pharm Sci. 2015;77:40–7. https://doi.org/10.1016/j.ejps.2015.05.023.

    Article  CAS  PubMed  Google Scholar 

  15. Müller RH, Keck CM. Twenty years of drug nanocrystals: where are we, and where do we go? Eur J Pharm Biopharm. 2012;80(1):1–3. https://doi.org/10.1016/j.ejpb.2011.09.012.

    Article  PubMed  Google Scholar 

  16. Lipinski CA. Solubility in water and DMSO: issues and potential solutions. In: Borchardt R, Kerns E, Lipinski C, Thakker D, Wang B, editors. pharmaceutical profiling in drug discovery for lead selection. Arlington: AAPS Press; 2005. p. 93–125.

    Google Scholar 

  17. Jain N, Yalkowsky SH. Estimation of the aqueous solubility I: application to organic nonelectrolytes. J Pharm Sci. 2001;90(2):234–52. https://doi.org/10.1002/1520-6017(200102)90:2%3C234::aid-jps14%3E3.0.co;2-v.

    Article  CAS  PubMed  Google Scholar 

  18. Bergström CAS, Wassvik CM, Johansson K. Poorly soluble marketed drugs display solvation limited solubility. J Med Chem. 2007;50(23):5858–62. https://doi.org/10.1021/jm0706416.

    Article  CAS  PubMed  Google Scholar 

  19. Tuomela A, Hirvonen J, Peltonen L. Stabilizing agents for drug nanocrystals: effect on bioavailability. Pharmaceutics. 2016;8(2):1–18. https://doi.org/10.3390/pharmaceutics8020016.

    Article  CAS  Google Scholar 

  20. Bergström CAS, Larsson P. Computational prediction of drug solubility in water-based systems: qualitative and quantitative approaches used in the current drug discovery and development setting. Int J Pharm. 2018;540(1-2):185–93. https://doi.org/10.1016/j.ijpharm.2018.01.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ganesan P, Narayanasamy D. Lipid nanoparticles: a challenging approach for oral delivery of BCS Class-II drugs. Futur J Pharm Sci. 2018;4(2):191–205. https://doi.org/10.1016/j.fjps.2018.04.001.

    Article  Google Scholar 

  22. pdr.net/drug-summary/Griseofulvin-Oral-Suspension-griseofulvin-2447#topPage, accessed on 20-10-2020.

  23. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20. https://doi.org/10.1023/A:1016212804288.

    Article  CAS  PubMed  Google Scholar 

  24. Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399(1-2):129–39. https://doi.org/10.1016/j.ijpharm.2010.07.044.

    Article  CAS  PubMed  Google Scholar 

  25. Butler JM, Dressman JB. The developability classification system: application of biopharmaceutics concepts to formulation development. J Pharm Sci. 2010;99(12):4940–54. https://doi.org/10.1002/jps.22217.

    Article  CAS  PubMed  Google Scholar 

  26. Chen M-L, John M, Lee SL, Tyner KM. Development considerations for nanocrystal drug products. AAPS J. 2017;19(3):642–51. https://doi.org/10.1208/s12248-017-0064-x.

    Article  CAS  PubMed  Google Scholar 

  27. Shah DA, Murdande SB, Dave RH. A review: pharmaceutical and pharmacokinetic aspect of nanocrystalline suspensions. J Pharm Sci. 2016;105(1):10–24. https://doi.org/10.1002/jps.24694.

    Article  CAS  PubMed  Google Scholar 

  28. Baghel S, Cathcart H, O'Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016;105:1–18. https://doi.org/10.1016/j.xphs.2015.10.008.

    Article  CAS  Google Scholar 

  29. Sekiguchi K, Obi N. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull. 1961;9(11):866–72. https://doi.org/10.1248/cpb.9.866.

    Article  CAS  Google Scholar 

  30. Vo CL, Park C, Lee B. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85(3):799–813. https://doi.org/10.1016/j.ejpb.2013.09.007.

    Article  CAS  PubMed  Google Scholar 

  31. McEvoy GK, editor. American Hospital Formulary Service - Drug Information 92. Bethesda: American Society of Hospital Pharmacists, Inc; 1992 (Plus Supplements 1992). p. 524.

    Google Scholar 

  32. Hansch C, Leo A, Hoekman D. Exploring QSAR hydrophobic, electronic, and steric constants, vol. 2. 1st ed. Washington, DC: American Chemical Society; 1995. p. 188. ISBN: 9780841229914

    Google Scholar 

  33. Porat D, Dahan A. Active intestinal drug absorption and the solubility-permeability interplay. Int J Pharm. 2018;537(1-2):84–93. https://doi.org/10.1016/j.ijpharm.2017.10.058.

    Article  CAS  PubMed  Google Scholar 

  34. Beig A, Miller JM, Lindley D, Carr RA, Zocharski P, Agbaria R, et al. Head-to-head comparison of different solubility-enabling formulations of etoposide and their consequent solubility-permeability interplay. J Pharm Sci. 2015;104(9):2941–7. https://doi.org/10.1002/jps.24496.

    Article  CAS  PubMed  Google Scholar 

  35. Dahan A, Beig A, Lindley D, Miller JM. The solubility-permeability interplay and oral drug formulation design: two heads are better than one. Adv Drug Deliv Rev. 2016;101:99–107. https://doi.org/10.1016/j.addr.2016.04.018.

    Article  CAS  PubMed  Google Scholar 

  36. https://pubchem.ncbi.nlm.nih.gov/compound/Rifaximin#section=Experimental-Properties. Accessed on 20-10-2020.

  37. Claudio VG, Paola M, Laurao V, Miriam B, Donatella C, Dario B. WO2011107970-Rifaximin powder,process for preparing the same and controlled release compositions containing said Rifaximin useful for obtaining a long-lasting effect. 2011.

  38. Beig A, Fine-Shamir N, Porat D, Lindley D, Miller JM, Dahan A. Concomitant solubility-permeability increase: vitamin E TPGS vs. amorphous solid dispersion as oral delivery systems for etoposide. Eur J Pharm Biopharm. 2017;121:97–103. https://doi.org/10.1016/j.ejpb.2017.09.012.

    Article  CAS  PubMed  Google Scholar 

  39. Fine-Shamir N, Beig A, Miller JM, Dahan A. The solubility, permeability and the dose as key factors in formulation development for oral lipophilic drugs: maximizing the bioavailability of carbamazepine with cosolvent-based formulation. Int J Pharm. 2020;119307:119307. https://doi.org/10.1016/j.ijpharm.2020.119307.

    Article  CAS  Google Scholar 

  40. Beig A, Miller JM, Lindley D, Dahan A. Striking the optimal solubility-permeability balance in oral formulation development for lipophilic drugs: maximizing carbamazepine blood levels. Mol Pharm. 2017;14(1):319–27. https://doi.org/10.1021/acs.molpharmaceut.6b00967.

    Article  CAS  PubMed  Google Scholar 

  41. Fine-Shamir N, Dahan A. Methacrylate-copolymer Eudragit EPO as solubility-enabling excipient for anionic drugs: investigation of drug solubility, intestinal permeability, and their interplay. Mol Pharm. 2019;16:2884–91. https://doi.org/10.1021/acs.molpharmaceut.9b00057.

    Article  CAS  PubMed  Google Scholar 

  42. Patil PB, Gupta VRM, Udupi RH, Srikanth K, SreeGiri PB. Development of dissolution medium for poorly water soluble drug mefenamic acid. Res J Pharm Biol Chem Sci. 2010;1(4):544–9.

    CAS  Google Scholar 

  43. Swathi CH, Subrahmanyam CVS, Kedarnath SA, SatheshBabu PR. Solubilization of mefenamic acid. Int J Pharm Technol. 2011;3:3267–76.

    CAS  Google Scholar 

  44. Zhang M, Li H, Lang B, O’Donnell K, Zhang H, Wang ZY, et al. Williams III, Formulation and delivery of improved amorphous fenofibrate solid dispersions prepared by thin film freezing. Eur J Pharm Biopharm. 2012;82:534–44. https://doi.org/10.1016/j.ejpb.2012.06.016.

    Article  CAS  PubMed  Google Scholar 

  45. Law D, Schmitt EA, Marsh KC, Everitt EA, Wang W, Fort JJ, et al. Ritonavir-PEG 8000 amorphous solid dispersions: in vitro and in vivo evaluations. J Pharm Sci. 2004;93(3):563–70. https://doi.org/10.1002/jps.10566.

    Article  CAS  PubMed  Google Scholar 

  46. Deng L, Wang Y, Gong T, Sun X, Zhang ZR. Dissolution and bioavailability enhancement of alpha-asarone by solid dispersions via oral administration. Drug Dev Ind Pharm. 2017;43(11):1817–26. https://doi.org/10.1080/03639045.2017.1349783.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author Datta Maroti Pawde would like to thank the National Mission on Himalayan Studies (NMHS), Ministry of Environment, Forest & Climate Change (MoEF & CC) Nodal and Serving hub with G.B. Pant National Institute of Himalayan Environment & Sustainable Development, Govt. of India for providing the financial support.

Funding

This study received funding provided by the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India to the authors Bhakti Mahendra Pawar, Syed Nazrin Ruhina Rahman and Abhinab Goswami.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamilvanan Shunmugaperumal.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors Bhakti Mahendra Pawar and Syed Nazrin Ruhina Rahman deserve as first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, B.M., Rahman, S.N.R., Pawde, D.M. et al. Orally Administered Drug Solubility-Enhancing Formulations: Lesson Learnt from Optimum Solubility-Permeability Balance. AAPS PharmSciTech 22, 63 (2021). https://doi.org/10.1208/s12249-021-01936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01936-9

KEY WORDS

Navigation