Skip to main content

Advertisement

Log in

Quality by Design Adapted Chemically Engineered Lipid Architectonics for HIV Therapeutics and Intervention: Contriving of Formulation, Appraising the In vitro Parameters and In vivo Solubilization Potential

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The present research encompasses a quality by design approach for fabricating lipid architectonics (LA) of an antiretroviral drug (Elvitegravir: EVR) to overcome inherent challenges of EVR to curtail its bioavailability issues. Comparative development strategy employing Box–Behnken design was undertaken between high-pressure homogenization technique and melt emulsification followed by probe sonication method, wherein the later was selected for engineering the EVR-LA. Particle size, entrapment efficiency and drug loading for EVR-LA were 84.6 ± 2.3 nm, 90.7 ± 1.8% and 8.9 ± 0.7% respectively. In vitro release studies established the supremacy of EVR-LA when compared with drug suspension (EVR-DS) by having a cumulative drug release of 96.89 ± 2.5% in pH 1.2, 89.84 ± 2.4% in pH 6.8 and 86.64 ± 2.5% in pH 7.4. Gut permeation studies revealed 19-fold increment in permeation by EVR-LA attributable to intrinsic permeation enhancing and efflux protein inhibitory activity of the lipids and surfactants incorporated. The result was validated by confocal study which exhibited enhanced permeation by EVR-LA. Dissolution study, conducted in fasted state simulated intestinal fluid (FaSSIF) and fed state simulated intestinal fluid (FeSSIF) media to ascertain the effect of food, demonstrated boosted absorption from FeSSIF media. Stability study was conducted in SGF pH 1.2, FaSSIF and FeSSIF media. The lipolysis study, conducted to determine in vivo fate of EVR, revealed 27-fold increment in solubilization potential from EVR-LA (72.43 ± 2.6%). Thus, EVR-LA exhibited remarkable in vitro results by improving gut permeation and solubilization fate along with enhanced lymphatic uptake, thereby leading to prospective in vivo fate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HIV:

human immunodeficiency virus

ART:

antiretroviral therapy

LA:

lipid architectonics

EVR:

Elvitegravir

QbD:

quality by design

HPH:

high-pressure homogenization

BBD:

Box–Behnken design

EE:

entrapment efficiency

DL:

drug loading

TEM:

transmission electron microscopy

DSC:

differential scanning colorimetry

FTIR:

Fourier transform infrared spectroscopy

DS:

drug suspension

FaSSIF:

fasted state simulated intestinal fluid

FeSSIF:

fed state simulated intestinal fluid

SGF:

simulated gastric fluid

MCT:

medium chain triglycerides

LCT:

long-chain triglycerides

T cmc :

surface excess concentration

A cmc :

occupied area per surfactant molecule

S mix :

mixture of optimized surfactant and co-surfactant

EVR-LA:

Elvitegravir lipid architectonic

EVR-DS:

Elvitegravir drug suspension

References

  1. UNAIDS report 2019. https://www.unaids.org/en/resources/fact-sheet Last accessed on 08 Feb 2020; 13:03 pm.

  2. Günthard FH, Aberg JA, Eron JJ, Hoy JF, Telenti A, Benson CA, et al. Antiretroviral treatment of adult HIV infection 2014 recommendations of the International Antiviral Society–USA Panel. JAMA. 2014;312(4):410–25.

    Article  Google Scholar 

  3. Cihlar T, Fordyce M. Current status and prospects of HIV treatment. Curr Opin Virol. 2014;18:50–6.

    Article  Google Scholar 

  4. Nabi B, Rehman S, Baboota S, Ali J. Insights on oral drug delivery of lipid nanocarriers: a win-win solution for augmenting bioavailability of antiretroviral drugs. AAPS PharmSciTech. 2019;20:60.

    Article  CAS  Google Scholar 

  5. Khan S, Baboota S, Ali J, Khan S, Narang RS, Narang JS. Nanostructured lipid carriers: an emerging platform for improving oral bioavailability of lipophilic drugs. Int J Pharm Investig. 2015;5(4):182–91.

    Article  CAS  Google Scholar 

  6. Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release. 2017;264:306–32.

    Article  CAS  Google Scholar 

  7. Fatima N, Rehman S, Nabi B, Baboota S, Ali J. Harnessing nanotechnology for enhanced topical delivery of clindamycin phosphate. J Drug Deliv Sci Technol. 2019;54:1–12.

    Google Scholar 

  8. Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol. 2013;19:29–43.

    Article  CAS  Google Scholar 

  9. Poonia N, Kharb R, Lather V, Pandita D. Nanostructured lipid carriers: versatile oral delivery vehicle. Future Sci OA. 2016;2(3):FSO135.

    Article  Google Scholar 

  10. Rehman S, Nabi B, Zafar A, Baboota S, Ali J. Intranasal delivery of mucoadhesive nanocarriers: a viable option for Parkinson’s disease treatment? Expert Opin Drug Deliv. 2019;16(12):1355–66.

    Article  CAS  Google Scholar 

  11. Cavalcanti SMT, Nunes C, Lima SAC, Soares-Sobrinho JL, Reis S. Multiple lipid nanoparticles (MLN), a new generation of lipid nanoparticles for drug delivery systems: lamivudine-MLN experimental design. Pharm Res. 2017;34:1204–16.

    Article  CAS  Google Scholar 

  12. Chakraborty T, Das MK, Dutta L, Mukherjee B, Das S, Sarma A. Successful delivery of zidovudine-loaded docosanol nanostructured lipid carriers (docosanol NLCs) into rat brain. In: Pathak Y, editors. Surface modification of nanoparticles for targeted drug delivery. 2019. p. 245–276.

  13. Khan AA, Mudassir J, Akhtar S, Murugaiyah V, Darwis Y. Freeze-dried lopinavir-loaded nanostructured lipid carriers for enhanced cellular uptake and bioavailability: statistical optimization, in vitro and in vivo evaluations. Pharmaceutics. 2019;11(2):97.

    Article  CAS  Google Scholar 

  14. Alam T, Khan S, Gaba B, Haider MF, Baboota S, Ali J. Adaptation of quality by design-based development of isradipine nanostructured - lipid carrier and its evaluation for in vitro gut permeation and in vivo solubilization fate. J Pharm Sci. 2018;1–13.

  15. Iqbal B, Ali J, Baboota S. Silymarin loaded nanostructured lipid carrier: from design and dermatokinetic study to mechanistic analysis of epidermal drug deposition enhancement. Molliq. 2017;255:513–29. https://doi.org/10.1016/j.molliq.2018.01.141.

    Article  CAS  Google Scholar 

  16. Dubey S, Satyanarayana YD, Lavania. Development of integrase inhibitors for treatment of AIDS: an overview. Eur J Med Chem. 2007;42(9):1159–68.

    Article  CAS  Google Scholar 

  17. Subhra M, Prathipati PK, Guobin K, You Z, Zhe Y, Wenjin F, et al. Tenofovir alafenamide and elvitegravir loaded nanoparticles for long-acting prevention of HIV-1 vaginal transmission. AIDS. 2017;31(4):469–76.

    Article  Google Scholar 

  18. Pandey KK. Critical appraisal of elvitegravir in the treatment of HIV-1/AIDS. HIV AIDS (Auckl). 2014;6:81–90.

    CAS  Google Scholar 

  19. Khan S, Shaharyar M, Fazil M, Baboota S, Ali J. Tacrolimus-loaded nanostructured lipid carriers for oral delivery - optimization of production & characterization. Eur J Pharm Biopharm. 2016;108:277–88. https://doi.org/10.1016/j.ejpb.2016.07.017.

    Article  CAS  Google Scholar 

  20. Gurumukhi VC, Bari SB. Fabrication of efavirenz loaded nano-formulation using quality by design (QbD) based approach: exploring characterizations and in vivo safety. J Drug Deliv Sci Technol. 2020;56:101545. https://doi.org/10.1016/j.jddst.2020.101545.

    Article  CAS  Google Scholar 

  21. Cunha S, Costa CP, Loureiro JA, Alves J, Peixoto AF, Forbes B, et al. Double optimization of rivastigmine-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery using the quality by design (QbD) approach: formulation variables and instrumental parameters. Pharmaceutics. 2020;12(7):E599. https://doi.org/10.3390/pharmaceutics12070599.

    Article  Google Scholar 

  22. Rangaraj N, Pailla SR, Shah S, Prajapati S, Sampathi S. QbD aided development of ibrutinib-loaded nanostructured lipid carriers aimed for lymphatic targeting: evaluation using chylomicron flow blocking approach [published online ahead of print, 2020 Jun 9]. Drug Deliv Transl Res. 2020. https://doi.org/10.1007/s13346-020-00803-7.

  23. Teng Z, Yu M, Ding Y, Zhang H, Shen Y, Jiang M, et al. Preparation and characterization of nimodipine loaded nanostructured lipid systems for enhanced solubility and bioavailability. Int J Nanomedicine. 2019;11:119–33.

    Google Scholar 

  24. Alam TPJ, Vohora D, Aqil M, Ali A, Sultana Y. Optimization of nanostructured lipid carriers of lamotrigine for brain delivery: in vitro characterization and in vivo efficacy in epilepsy. Expert Opin Drug Deliv. 2015;12(2):181–94.

    Article  CAS  Google Scholar 

  25. Shete H, Patravale V. Long chain lipid based tamoxifen NLC. Part I: preformulation studies, formulation development and physicochemical characterization. Int J Pharm. 2013;454:573–84.

    Article  CAS  Google Scholar 

  26. Kumar V, Kharb R, Chaudhary H. Optimization & design of isradipine loaded solid lipid nanobioparticles using rutin by Taguchi methodology. Int J Biol Macromol. 2016;92:338–46.

    Article  CAS  Google Scholar 

  27. Rehman S, Nabi B, Fazil M, Khan S, Bari NK, Singh R, et al. Role of P-glycoprotein inhibitors in the bioavailability enhancement of solid dispersion of darunavir. Biomed Res Int. 2017;2017:1–17. https://doi.org/10.1155/2017/8274927.

    Article  CAS  Google Scholar 

  28. Swetha V, Prasad SVUM, Rani YA. Analytical method development and validation for simultaneous estimation of Cobicistat and Elvitegravir by using RP-HPLC in pure and pharmaceutical dosage form. Asian J Pharm Anal. 2017;7(3):151–8.

    Article  Google Scholar 

  29. Shrestha N, Bouttefeux O, Vanvarenberg K, Lundquist P, Cunarro J, Tovar S, et al. The stimulation of GLP-1 secretion and delivery of GLP-1 agonists via nanostructured lipid carriers. Nanoscale. 2018;10(2):603–13.

    Article  CAS  Google Scholar 

  30. Mudalige T, Qu H, Van Haute D, Ansar SM, Paredes A, Ingle T. Characterization of nanomaterials. Nanomater Food Appl. 2019:313–53. https://doi.org/10.1016/b978-0-12-814130-4.00011-7.

  31. Singh A, Neupane YR, Mangla B, Kohli K. Nanostructured lipid carriers for oral bioavailability enhancement of exemestane: formulation design, in vitro, ex vivo, and in vivo studies. J Pharm Sci. 2019;108(10):3382–95. https://doi.org/10.1016/j.xphs.2019.06.003.

    Article  CAS  Google Scholar 

  32. Verma S, Singh SK, Verma PR. Fabrication of lipidic nanocarriers of loratadine for facilitated intestinal permeation using multivariate design approach. Drug Dev Ind Pharm. 2016;42(2):288–306. https://doi.org/10.3109/03639045.2015.1052078.

    Article  CAS  Google Scholar 

  33. Rizwanullah M, Amin S, Ahmad J. Improved pharmacokinetics and antihyperlipidemic efficacy of rosuvastatin-loaded nanostructured lipid carriers. J Drug Target. 2017;25(1):58–74.

    Article  CAS  Google Scholar 

  34. Khan S, Shaharyar M, Fazil M, Hassan MQ, Baboota S, Ali J. Tacrolimus-loaded nanostructured lipid carriers for oral delivery-in vivo bioavailability enhancement. Eur J Pharm Biopharm. 2016;109:149–57. https://doi.org/10.1016/j.ejpb.2016.10.011.

    Article  CAS  Google Scholar 

  35. Lyne G, Mouna L, Francois L, Pichette V. Medium chain length fatty acids and glycerides as nephroprotection agents. Australian Patent. AU2008318196. 2014.

  36. Negi LM, Jaggi M, Talegaonkar S. Development of protocol for screening the formulation components and the assessment of common quality problems of nano-structured lipid carriers. Int J Pharm. 2014;461:403–10.

    Article  CAS  Google Scholar 

  37. Eh Suk VR, Latif MF, Teo YY, Misran M. Development of nanostructured lipid carrier (NLC) assisted with polysorbate nonionic surfactants as a carrier for L-ascorbic acid and Gold Tri.E 30. J Food Sci Technol. 2020. https://doi.org/10.1007/s13197-020-04357-x.

  38. Subedi RK, Kang KW, Choi HK. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci. 2009;37:508–13.

    Article  CAS  Google Scholar 

  39. Palagati SSVS, Kesavan BR. Application of computational tools for the designing of oleuropein loaded nanostructured lipid carrier for brain targeting through nasal route. DARU. 2019;27:695–708. https://doi.org/10.1007/s40199-019-00304-0.

    Article  CAS  Google Scholar 

  40. Moghddam SM, Ahad A, Aqil M, Imam SS, Sultana Y. Optimization of nanostructured lipid carriers for topical delivery of nimesulide using Box-Behnken design approach. Artif Cells Nanomed Biotechnol. 2017;45(3):617–24.

    Article  CAS  Google Scholar 

  41. Rahman Z, Zidan AS, Khan MA. Non-destructive methods of characterization of risperidone solid lipid nanoparticles. Eur J Pharm Biopharm. 2010;76:127–37.

    Article  CAS  Google Scholar 

  42. Guo Z, Zeng S, Lu X, Zhou M, Zheng M, Zheng B. Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure. Food Chem. 2015;186:223–30.

    Article  CAS  Google Scholar 

  43. Siddiqui A, Alayoubi A, El-Malah Y, Nazzal S. Modeling the effect of sonication parameters on size and dispersion temperature of solid lipid nanoparticles (SLNs) by response surface methodology (RSM). Pharm Dev Technol. 2014;19(3):342–6.

    Article  CAS  Google Scholar 

  44. Tran TH, Ramasamy T, Truong DH, Choi HG, Yong CS, Kim JO. Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement. AAPS PharmSciTech. 2014;15(6):1509–15.

    Article  CAS  Google Scholar 

  45. Kumar S, Randhawa JK. Solid lipid nanoparticles of stearic acid for the drug delivery of paliperidone. RSC Adv. 2015;5(84):68743–50.

    Article  CAS  Google Scholar 

  46. Helal HM, Mortada SM, Sallam MA. Paliperidone-loaded nanolipomer system for sustained delivery and enhanced intestinal permeation: superiority to polymeric and solid lipid nanoparticles. AAPS PharmSciTech. 2017;18(6):1946–59.

    Article  CAS  Google Scholar 

  47. Shamma RN, Aburahma MH. Follicular delivery of spironolactone via nanostructured lipid carriers for management of alopecia. Int J Nanomedicine. 2014;9:5449–60.

    Article  CAS  Google Scholar 

  48. Khan N, Shah FA, Rana I, Ansari MM, Ud Din F, Rizvi SZH, et al. Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity. Int J Pharm. 2020;577:119033. https://doi.org/10.1016/j.ijpharm.2020.119033.

    Article  CAS  Google Scholar 

  49. Ghate VM, Lewis SA, Prabhu P, Dubey A, Patel N. Nanostructured lipid carriers for the topical delivery of tretinoin. Eur J Pharm Biopharm. 2016;108:253–61.

    Article  CAS  Google Scholar 

  50. Forster S, Thumser AE, Hood SR, Plant N. Characterization of Rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS One. 2012;7(3):e33253. https://doi.org/10.1371/journal.pone.0033253.

    Article  CAS  Google Scholar 

  51. Porter C, Trevaskis N, Charman W. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Dics. 2007;6:231–48.

    Article  CAS  Google Scholar 

  52. Baracca A, Sgarbi G, Solaini G, Lenaz G. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0) during ATP synthesis. Biochim Biophys Acta. 2003;1606(1–3):137–46. https://doi.org/10.1016/s0005-2728(03)00110-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DST-FIST for departmental support and All India Institute of Medical Science (AIIMS) New Delhi, India, for providing technical assistance for TEM analysis.

Funding

Jamia Hamdard Silver Jubilee Research Fellowship 2017 (AS/Fellow/JH-5/2018) provided financial assistance to the first author from April 2018 to March 2019 and Indian Council of Medical Research, New Delhi (HIV/Fellowship/5/6/2018-ECD-II), for providing financial assistance to the first author from April 2019 onwards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Ali.

Ethics declarations

The study was conducted according to the Institutional Animal Ethics Committee (173/CPCSEA, 28 January 2000; Approval no. 1458), Jamia Hamdard and all guidelines were adhered to.

Conflict of Interest

The authors declare that they have no conflict of interest.

Prior Presentations

2019 AAPS PharmSci 360, USA, and IPA Convention 2019 PharmaRIA.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabi, B., Rehman, S., Aggarwal, S. et al. Quality by Design Adapted Chemically Engineered Lipid Architectonics for HIV Therapeutics and Intervention: Contriving of Formulation, Appraising the In vitro Parameters and In vivo Solubilization Potential. AAPS PharmSciTech 21, 261 (2020). https://doi.org/10.1208/s12249-020-01795-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01795-w

KEY WORDS

Navigation