Skip to main content

Advertisement

Log in

Antimicrobial Activity of Schinopsis brasiliensis Engler Extract-Loaded Chitosan Microparticles in Oral Infectious Disease

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Enterococcus faecalis infections represent a health concern, mainly in oral diseases, in which treatments with chlorhexidine solution (0.2%) are often used; however, it presents high toxicity degree and several side effects. Based on this, the use of natural products as an alternative to treatment has been explored. Nonetheless, plant extracts have poor organoleptic characteristics that impair theirs in natura use. Therefore, this work aimed to evaluate the analytical profile, biological activity, and cytotoxicity in vitro of S. brasiliensis–loaded chitosan microparticles (CMSb) produced using different aspersion flow rates. The analytical fingerprint was obtained by FTIR and NIR spectra. Principal components analysis (PCA) was used to verify the similarity between the samples. The crystallinity degree was evaluated by X-ray diffraction (XRD). Phytochemical screening (PS) was performed to quantify phytocompounds. Antimicrobial activity was evaluated by minimum inhibitory concentration (MIC). Antibiofilm activity and bactericidal kinetics against E. faecalis (ATCC 29212 and MB 146—clinical isolated) were also assessed. The hemolytic potential was performed to evaluate the cytotoxicity. Data provided by FTIR, NIR, and PCA analyses revealed chemical similarity between all CMSb. Furthermore, the results from XRD analysis showed that the obtained CMSb present amorphous characteristic. Tannins and polyphenols were accurately quantified by the PS, but methodology limitations did not allow the flavonoid quantification. The low hemolytic potential assay indicates that all samples are safe. Antimicrobial assays revealed that CMSb were able to inhibit not only the E. faecalis ATCC growth but also the biofilm formation. Only one CMSb sample was able to inhibit the clinical strain. These results highlighted the CMSb antimicrobial potential and revealed this system as a promising product to treat infections caused by E. faecalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albuquerque UP. Re-examining hypotheses concerning the use and knowledge of medicinal plants: a study in the Caatinga vegetation of NE Brazil. J Ethnobiol Ethnomed. 2006;2:30. https://doi.org/10.1186/1746-4269-2-30.

    Article  Google Scholar 

  2. Albuquerque UP, Medeiros PM, Almeida ALS, et al. Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: a quantitative approach. J Ethnopharmacol. 2007;114:325–54. https://doi.org/10.1016/j.jep.2007.08.017.

    Article  Google Scholar 

  3. Chaves TP, Barbosa AS, Nunes LE, et al. Evaluation of the potential modulator of bacterial resistance, acute toxicity and chemical composition of Schinopsis brasiliensis Engl. Afr J Pharm Pharmacol. 2015;9:576–84. https://doi.org/10.5897/AJPP2015.

    Article  Google Scholar 

  4. Fernandes FHA, Batista RSA, Medeiros FD, et al. Development of a rapid and simple HPLC-UV method for determination of gallic acid in Schinopsis brasiliensis. Brazilian J Pharmacogn. 2015;25:208–11. https://doi.org/10.1016/j.bjp.2015.05.006.

    Article  CAS  Google Scholar 

  5. Cardoso MP, Lima LS, David JP, Moreira BO, Santos EO, David JM, et al. A new biflavonoid from Schinopsis brasiliensis (Anacardiaceae). J Braz Chem Soc. 2015;26:1527–31. https://doi.org/10.5935/0103-5053.20150101.

    Article  CAS  Google Scholar 

  6. Cardoso MP, David JM, David JP. A new alkyl phenol from Schinopsis brasiliensis. Nat Prod Res. 2005;19:431–3. https://doi.org/10.1080/14786410512331330684.

    Article  CAS  Google Scholar 

  7. Santos CCS, Masullo M, Cerulli A, et al. Phytochemistry isolation of antioxidant phenolics from Schinopsis brasiliensis based on a preliminary LC-MS profiling. Phytochemistry. 2017;140:45–51. https://doi.org/10.1016/j.phytochem.2017.04.008.

    Article  CAS  Google Scholar 

  8. Fernandes FHA, Salgado HRN. Gallic acid : review of the methods of determination and quantification. Crit Rev Anal Chem. 2015;46:257–65. https://doi.org/10.1080/10408347.2015.1095064.

    Article  CAS  Google Scholar 

  9. Saraiva AM, Saraiva CL, Cordeiro RP, Soares RR, Xavier HS, Caetano N. Atividade antimicrobiana e sinérgica das frações das folhas de Schinopsis brasiliensis Engl. frente a clones multirresistentes de Staphylococcus aureus. Rev. Bras. Planta Med. 2013;15:199–207. https://doi.org/10.1590/S1516-05722013000200006.

    Article  Google Scholar 

  10. Saraiva AM, Castro RHA, Cordeiro RP, et al. In vitro evaluation of antioxidant, antimicrobial and toxicity properties of extracts of Schinopsis brasiliensis Engl. (Anacardiaceae). African J. Pharm. Pharmacol. 2011:5:1724–1731. doi:https://doi.org/10.5897/AJPP11.428.

  11. Silva MSP, Brando DO, Chaves TP, et al. Study bioprospecting of medicinal plant extracts of the semiarid northeast: contribution to the control of oral microorganisms Evidence-based Complement. Altern Med. 2012;2012:1–6. https://doi.org/10.1155/2012/681207.

    Article  Google Scholar 

  12. Ali L, Goraya MU, Arafat Y, Ajmal M, Chen JL, Yu D Molecular mechanism of quorum-sensing in Enterococcus faecalis: its role in virulence and therapeutic approaches. Int J Mol Sci 2017:18. doi:https://doi.org/10.3390/ijms18050960.

  13. Dumani A, Yoldas O, Yilmaz S, Koksal F, Kayar B, Akcimen B, et al. Polymerase chain reaction of enterococcus faecalis and candida albicans in apical periodontitis from Turkish patients. J Clin Exp Dent. 2012;4:e34–9. https://doi.org/10.4317/jced.50669.

    Article  Google Scholar 

  14. Lins RX, Oliveira-Andrade A, Hirata-Junior R, et al. Antimicrobial resistance and virulence traits of Enterococcus faecalis from primary endodontic infections. J Dent. 2013;41:779–86. https://doi.org/10.1016/j.jdent.2013.07.004.

    Article  CAS  Google Scholar 

  15. Kim MC, Woo GJ. Characterization of antimicrobial resistance and quinolone resistance factors in high-level ciprofloxacin-resistant Enterococcus faecalis and E. faecium isolates obtained from fresh produce and fecal samples of patients. J Sci Food Agric. 2016;97:2858–64. https://doi.org/10.1002/jsfa.8115.

  16. Rôças IN, Siqueira JF. Detection of antibiotic resistance genes in samples from acute and chronic endodontic infections and after treatment. Arch Oral Biol. 2013;58:1123–8. https://doi.org/10.1016/j.archoralbio.2013.03.010.

    Article  CAS  Google Scholar 

  17. Haas AN, Pannuti CM, Andrade AKP, et al. Mouthwashes for the control of supragingival biofilm and gingivitis in orthodontic patients: evidence-based recommendations for clinicians. Braz Oral Res. 2014;28:1–8. https://doi.org/10.1590/1807-3107-BOR-2014.vol28.0021.

    Article  Google Scholar 

  18. Salimi A, Alami B, Pourahmad J. Analysis of cytotoxic effects of chlorhexidine gluconate as antiseptic agent on human blood lymphocytes. J Biochem Mol Toxicol. 2017;31:1–8. https://doi.org/10.1002/jbt.21918.

    Article  CAS  Google Scholar 

  19. Fernandes FHA, Santana CP, Santos RL, Correia LP, Conceição MM, Macêdo RO, et al. Thermal characterization of dried extract of medicinal plant by DSC and analytical techniques. J Therm Anal Calorim. 2013;113:443–7. https://doi.org/10.1007/s10973-012-2807-3.

    Article  CAS  Google Scholar 

  20. Sette-de-Souza PH, Medeiros FD, Santana CP, Araújo RM, Cartaxo-Furtado NAO, Macêdo RO, et al. Thermal decomposition profile of chitosan microparticles produced with Schinopsis brasiliensis Engler extract. J Therm Anal Calorim. 2017;131:829–34. https://doi.org/10.1007/s10973-017-6456-4.

    Article  CAS  Google Scholar 

  21. Muralidharan P, Malapit M, Mallory E, Hayes D, Mansour HM. Inhalable nanoparticulate powders for respiratory delivery. Nanomed Nanotechnol Biol Med. 2015;11:1189–99. https://doi.org/10.1016/j.nano.2015.01.007.

    Article  CAS  Google Scholar 

  22. Pham D, Fattal E, Tsapis N. Pulmonary drug delivery systems for tuberculosis treatment. Int J Pharm. 2015;478:517–29. https://doi.org/10.1016/j.ijpharm.2014.12.009.

    Article  CAS  Google Scholar 

  23. Alhnan MA, Basit AW. In-process crystallization of acidic drugs in acrylic microparticle systems : influence of physical factors and drug – polymer interactions. J Pharm Sci. 2011;100:3284–93. https://doi.org/10.1002/jps.

    Article  CAS  Google Scholar 

  24. Samiei M, Farjami A, Dizaj SM. Nanoparticles for antimicrobial purposes in endodontics: a systematic review of in vitro studies. Mater Sci Eng A. 2015;58:1269–78. https://doi.org/10.1016/j.msec.2015.08.070.

    Article  CAS  Google Scholar 

  25. Dianat O, Saedi S, Kazem M, Alam M. Antimicrobial activity of nanoparticle calcium hydroxide against Enterococcus Faecalis: an in vitro study. Iran Endod J. 2015;10:39–43.

    CAS  Google Scholar 

  26. Luthria DL, Mukhopadhyay S, Lin LZ, Harnly JM. A comparison of analytical and data preprocessing methods for spectral fingerprinting. Appl Spectrosc. 2013;65:250–9. https://doi.org/10.1366/10-06109.A.

    Article  Google Scholar 

  27. Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005;91:571–7. https://doi.org/10.1016/j.foodchem.2004.10.006.

    Article  CAS  Google Scholar 

  28. Makkar HPS, Becker K. Vanillin-HCl method for condensed tannins: effect of organic solvents used for extraction of tannins. J Chem Ecol. 1993;19:613–21. https://doi.org/10.1007/BF00984996.

    Article  CAS  Google Scholar 

  29. Chandra S, Mejia EG. Polyphenolic compounds, antioxidant capacity, and quinone reductase activity of an aqueous extract of Ardisia compressa in comparison to mate (Ilex paraguariensis) and green (Camellia sinensis) teas. J Agric Food Chem. 2004;52:3595–89. https://doi.org/10.1021/jf0352632.

    Article  CAS  Google Scholar 

  30. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard—Tenth Edition. 2015.

  31. Peixoto LR, Rosalen PL, Ferreira GLS, Freires IA, de Carvalho FG, Castellano LR, et al. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Arch Oral Biol. 2017;73:179–85. https://doi.org/10.1016/j.archoralbio.2016.10.013.

    Article  CAS  Google Scholar 

  32. Guerillot F, Carret G, Flandrois JP. Mathematical model for comparison of time-killing curves. Antimicrob. Agents Chemother. 1993;37:1685–9.

    Article  CAS  Google Scholar 

  33. Cruz-Silva MM, Madeira VMC, Almeida LM, Custódio JBA. Hemolysis of human erythrocytes induced by tamoxifen is related to disruption of membrane structure. Biochim Biophys Acta. 2000;1464:49–61.

    Article  CAS  Google Scholar 

  34. Rutckeviski R, Xavier-Júnior F, Morais ARV, Alencar É, Amaral-Machado L, Genre J, et al. Thermo-oxidative stability evaluation of bullfrog (Rana catesbeiana Shaw) oil. Molecules. 2017;22:606. https://doi.org/10.3390/molecules22040606.

    Article  CAS  Google Scholar 

  35. Oliveira RN, Mancini MC, Oliveira FCS, et al. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Rev Mater. 2016;21:767–79. https://doi.org/10.1590/S1517-707620160003.0072.

    Article  CAS  Google Scholar 

  36. Sigee DC, Dean A, Levado E, Tobin MJ. Fourier-transform infrared spectroscopy of Pediastrum duplex: characterization of a micro- population isolated from a eutrophic lake. Eur J Phycol. 2002;37:19–26. https://doi.org/10.1017/S0967026201003444.

    Article  Google Scholar 

  37. Tsapis N, Dufresne ER, Sinha SS, Riera CS, Hutchinson JW, Mahadevan L, et al. Onset of buckling in drying droplets of colloidal suspensions. Phys Rev Lett. 2005;18302:1–4. https://doi.org/10.1103/PhysRevLett.94.018302.

    Article  CAS  Google Scholar 

  38. Pantoja-Castro MA, González-Rodríguez H. Study by infrared spectroscopy and thermogravimetric analysis of tannins and tannic acid. Rev Latinoam Química. 2011;3:107–12.

    Google Scholar 

  39. Sharma V, Janmeda P. Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves. Arab J Chem. 2017;10:509–14. https://doi.org/10.1016/j.arabjc.2014.08.019.

    Article  CAS  Google Scholar 

  40. Heneczkowski M, Kopacz M, Nowak D, Kuzniar A. Infrared spectrum analysis of some flavonoides. Acta Pol Pharm. 2001;58:415–20.

    CAS  Google Scholar 

  41. Destefanis G, Barge MT, Brugiapaglia A, Tassone S. The use of principal component analysis (PCA) to characterize beef. Meat Sci. 2000;56:255–9.

    Article  CAS  Google Scholar 

  42. Fernandes RVB, Borges SV, Silva EK, et al. Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Ind Crop Prod. 2016;94:413–23. https://doi.org/10.1016/j.indcrop.2016.09.010.

    Article  CAS  Google Scholar 

  43. Caparino OA, Tang J, Nindo CI, Sablani SS, Powers JR, Fellman JK. Effect of drying methods on the physical properties and microstructures of mango (Philippine “Carabao” var.) powder. J. Food Eng. 2012;111:135–48. https://doi.org/10.1016/j.jfoodeng.2012.01.010.

    Article  Google Scholar 

  44. Botrel DA, Rodrigues ICB, Souza HJB, Fernandes RVB. Application of inulin in thin-layer drying process of araticum (Annona crassiflora) pulp. LWT Food Sci Technol. 2016;69:32–9. https://doi.org/10.1016/j.lwt.2016.01.018.

    Article  CAS  Google Scholar 

  45. Marabi A, Mayor G, Raemy A, Bauwens I, Claude J, Burbidge AS, et al. Solution calorimetry : a novel perspective into the dissolution process of food powders. Food Res Int. 2007;40:1286–98. https://doi.org/10.1016/j.foodres.2007.08.007.

    Article  CAS  Google Scholar 

  46. Kandaswamy K, Liew TH, Wang CY, Huston-Warren E, Meyer-Hoffert U, Hultenby K, et al. Focal targeting by human β -defensin 2 disrupts localized virulence factor assembly sites in Enterococcus faecalis. Proc Natl Acad Sci. 2013;110:20230–5. https://doi.org/10.1073/pnas.1319066110.

  47. Merode AEJV, Mei HCVD, Busscher HJ, Waar K, Krom BP. Enterococcus faecalis strains show culture heterogeneity in cell surface charge. Microbiology. 2006;152:807–14. https://doi.org/10.1099/mic.0.28460-0.

    Article  CAS  Google Scholar 

  48. Ong TH, Chitra E, Ramamurthy S, et al. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PLoS One. 2017;12:1–22. https://doi.org/10.1371/journal.pone.0174888.

    Article  CAS  Google Scholar 

  49. Bisi-Johnson MA, Obi CL, Samuel BB, Eloff JN, Okoh AI. Antibacterial activity of crude extracts of some south African medicinal plants against multidrug resistant etiological agents of diarrhea. BMC Compl Altern Med. 2017;17:1–9. https://doi.org/10.1186/s12906-017-1802-4.

    Article  CAS  Google Scholar 

  50. Dzoyem JP, Melong R, Tsamo AT, Tchinda AT, Kapche DGWF, Ngadjui BT, et al. Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae). BMC Res Notes. 2017;10:4–9. https://doi.org/10.1186/s13104-017-2441-z.

    Article  CAS  Google Scholar 

  51. Oliveira GT, Ferreira JMS, Lima, et al. Phytochemical characterization and bioprospection for antibacterial and antioxidant activities of Lippia alba Brown ex Britton & Wilson (Verbenaceae). Nat. Prod. Res. 2017;6419. doi:https://doi.org/10.1080/14786419.2017.1335727

  52. Amin K, Dannenfelser RM. In vitro hemolysis: guidance for the pharmaceutical scientist. J Pharm Sci. 2006;95:1173–6. https://doi.org/10.1002/jps.20627.

    Article  CAS  Google Scholar 

  53. Rochelle SLA, Sardi JCO, Freires IA, et al. The anti-biofilm potential of commonly discarded agro-industrial residues against opportunistic pathogens. Ind Crop Prod. 2016;87:150–60. https://doi.org/10.1016/j.indcrop.2016.03.044.

    Article  Google Scholar 

  54. Oliveira JR, Jesus D, Figueira LW, et al. Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells. Exp Biol Med. 2017;0:1–10. https://doi.org/10.1177/1535370216688571.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Henrique Sette-de-Souza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sette-de-Souza, P.H., de Santana, C.P., Amaral-Machado, L. et al. Antimicrobial Activity of Schinopsis brasiliensis Engler Extract-Loaded Chitosan Microparticles in Oral Infectious Disease. AAPS PharmSciTech 21, 246 (2020). https://doi.org/10.1208/s12249-020-01786-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01786-x

KEY WORDS

Navigation