Skip to main content

Advertisement

Log in

Quantification of Monomer Units in Insoluble Polymeric Active Pharmaceutical Ingredients Using Solid-State NMR Spectroscopy I: Patiromer

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Although extensive precautions are taken to limit batch-to-batch variation in pharmaceutical manufacturing, differences between lots may still exist, particularly in complex formulations. When polymerization is used in the production process, the potential for varying chain lengths and incorporation of different monomers increases the likelihood of batch-to-batch variation. This poses a significant challenge for demonstrating active pharmaceutical ingredient (API) sameness between the innovator and generic drug under development. Therefore, the ability to accurately analyze and quantify the relative amounts of active ingredients present in a formulated product is critically important. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy was used to identify, quantify, and compare the relative amounts of the three polymer groups in the amorphous block copolymer drug, patiromer (Veltassa®). Techniques such as cross polarization (CP) and magic angle spinning were used to quantify each polymer group while the importance of understanding CP dynamics to obtain quantitative data was also addressed. It was found that the magnetization transfer rate and chemical shift anisotropy for different functional groups present in patiromer play a large role when optimizing parameters for spectral acquisition. Once accounted for, the average patiromer lot contained 90.9%, 7.6%, and 1.5% carboxylate, aromatic, and aliphatic blocks, respectively, with little lot-to-lot variation between different dosage strengths and expiration dates. SSNMR proved to be a sensitive analytical technique for evaluating and quantifying different monomer groups present in patiromer. This procedure may serve as a guide for similar quantitation studies on complex drug products and for demonstrating API sameness during generic drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li J, Yu F, Chen Y, Oupicky D. Polymeric drugs: advances in the development of pharmacologically active polymers. J Control Release. 2015;219:369–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chourasia MK, Jain SK. Polysaccharides for colon targeted drug delivery. Drug Deliv. 2004;11(2):129–48.

    CAS  PubMed  Google Scholar 

  3. Duncan R, Vicent MJ, Greco F, Nicholson RI. Polymer-drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. Endocr Relat Cancer. 2005;12(Suppl 1):S189–99.

    CAS  PubMed  Google Scholar 

  4. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001;73(2–3):137–72.

    CAS  PubMed  Google Scholar 

  5. Kannan RM, Nance E, Kannan S, Tomalia DA. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med. 2014;276(6):579–617.

    CAS  PubMed  Google Scholar 

  6. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev. 1999;99(11):3181–98.

    CAS  PubMed  Google Scholar 

  7. Bhugra C, Pikal MJ. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci. 2008;97(4):1329–49.

    CAS  PubMed  Google Scholar 

  8. Guo J, Skinner GW, Harcum WW, Barnum PE. Pharmaceutical applications of naturally occuring water-soluble polymers. Pharm Sci Technol Today. 1998;1(6):254–61.

    CAS  Google Scholar 

  9. Connor EF, Lees I, Maclean D. Polymers as drugs—advances in therapeutic applications of polymer binding agents. J Polym Sci A Polym Chem. 2017;55:3146–57.

    CAS  Google Scholar 

  10. Sterns RH, Rojas M, Bernstein P, Chennupati S. Ion-exchange resins for the treatment of hyperkalemia: are they safe and effective? J Am Soc Nephrol. 2010;21(5):733–5.

    CAS  PubMed  Google Scholar 

  11. Davidson MH. The use of colesevelam hydrochloride in the treatment of dyslipidemia: a review. Expert Opin Pharmacother. 2007;8(15):2569–78.

    CAS  PubMed  Google Scholar 

  12. Watson M, Abbott KC, Yuan CM. Damned if you do, damned if you don’t: potassium binding resins in hyperkalemia. Clin J Am Soc Nephrol. 2010;5(10):1723–6.

    CAS  PubMed  Google Scholar 

  13. Rosenbaum DP, Holmes-Farley SR, Mandeville WH, Pitruzzello M, Goldberg DI. Effect of RenaGel, a non-absorbable, cross-linked, polymeric phosphate binder, on urinary phosphorus excretion in rats. Nephrol Dial Transplant. 1997;12(5):961–4.

    CAS  PubMed  Google Scholar 

  14. Mendonca PV, Serra AC, Silva CL, Simoes S, Coelho JFJ. Polymeric bile acid sequestrants—synthesis using conventional methods and new approaches based on “controlled”/living radical polymerization. Prog Polym Sci. 2013;38:445–61.

    CAS  Google Scholar 

  15. Veltassa (patiromer) [package insert]. Redwood City, CA: Relypsa, Inc., 2018

  16. Renagel (sevelamer hydrochloride) [package insert]. Cambridge, MA: Genzyme Corporation; 2019.

  17. Renvela (sevelamer carbonate) [package insert]. Cambridge, MA: Genzyme Corporation; 2018.

  18. Welchol (colesevelam hydrochloride) [package insert]. Basking Ridge, NJ: Daiichi Sankyo, Inc.; 2019.

  19. Telwatte S, Moore K, Johnson A, Tyssen D, Sterjovski J, Aldunate M, et al. Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1. Antivir Res. 2011;90(3):195–9.

    CAS  PubMed  Google Scholar 

  20. Thoma LM, Boles BR, Kuroda K. Cationic methacrylate polymers as topical antimicrobial agents against Staphylococcus aureus nasal colonization. Biomacromolecules. 2014;15(8):2933–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ilker MF, Nusslein K, Tew GN, Coughlin EB. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc. 2004;126(48):15870–5.

    CAS  PubMed  Google Scholar 

  22. Mowery BP, Lindner AH, Weisblum B, Stahl SS, Gellman SH. Structure-activity relationships among random nylon-3 copolymers that mimic antibacterial host-defense peptides. J Am Chem Soc. 2009;131(28):9735–45.

    CAS  PubMed  Google Scholar 

  23. Breslow DS. Biologically active synthetic polymers. Pure Appl Chem. 1976;46:103–13.

    CAS  Google Scholar 

  24. Seymour L. Synthetic polymers with intrinsic anticancer activity. J Bioact Compat Polym. 1991;6:178–216.

    CAS  Google Scholar 

  25. Knopp MM, Olesen NE, Holm P, Langguth P, Holm R, Rades T. Influence of polymer molecular weight on drug-polymer solubility: a comparison between experimentally determined solubility in PVP and prediction derived from solubility in monomer. J Pharm Sci. 2015;104(9):2905–12.

    CAS  PubMed  Google Scholar 

  26. Cheng HN, Smith TE, Vitus DM. Tacticity of poly(N-vinyl pyrrolidone). J Polym Sci Polym Lett Ed. 1980:29–31.

  27. Chavan RB, Rathi S, Sainaga Jyothi VGS, Shastri NR. Cellulose based polymers in development of amorphous solid dispersions. Asian J Pharm Sci. 2018;14(3):248–64.

    PubMed  PubMed Central  Google Scholar 

  28. Pinto JMO, Leao AF, Riekes MK, Franca MT, Stulzer HK. HPMCAS as an effective precipitation inhibitor in amorphous solid dispersions of the poorly soluble drug candesartan cilexetil. Carbohydr Polym. 2018;184:199–206.

    CAS  PubMed  Google Scholar 

  29. Delaney SP, Nethercott MJ, Mays CJ, Winquist NT, Arthur D, Calahan JL, et al. Characterization of synthesized and commercial forms of magnesium stearate using differential scanning calorimetry, thermogravimetric analysis, powder X-ray diffraction, and solid-state NMR spectroscopy. J Pharm Sci. 2017;106(1):338–47.

    CAS  PubMed  Google Scholar 

  30. Zarmpi P, Flanagan T, Meehan E, Mann J, Fotaki N. Biopharmaceutical aspects and implications of excipient variability in drug product performance. Eur J Pharm Biopharm. 2017;111:1–15.

    CAS  PubMed  Google Scholar 

  31. Mansky P, Albrecht D, Burdick M, Chang HT, Charmot D, Connor EF, et al., inventors; Relypsa, Inc., assignee. Crosslinked cation exchange polymers, compositions and use in treating hyperkalemia. United States of America; 2011.

  32. Anderson J, Bell C, Bishop J, Capila I, Ganguly T, Glajch J, et al. Demonstration of equivalence of a generic glatiramer acetate (Glatopa). J Neurol Sci. 2015;359(1–2):24–34.

    CAS  PubMed  Google Scholar 

  33. Zhang D, editor. Demonstrating complex API sameness. Demonstrating equivalence of generic complex drug substances and formulations, 2017 October 6. Silver Spring, MD; 2017.

  34. Blanco M, Villarroya I. NIR spectroscopy: a rapid-response analytical tool. Trends Anal Chem. 2002;21(4):240–50.

    CAS  Google Scholar 

  35. Mark J, Andre M, Karner M, Huck CW. Prospects for multivariate classification of a pharmaceutical intermediate with near-infrared spectroscopy as a process analytical technology (PAT) production control supplement. Eur J Pharm Biopharm. 2010;76(2):320–7.

    PubMed  Google Scholar 

  36. Bly RM, Kiener PE, Fries BA. Near-infrared method for analysis of block and random ethylene-propylene copolymers. Anal Chem. 1966;38(2):217–20.

    CAS  Google Scholar 

  37. Anderson CA, Drennen JK, Ciurczak EW. Pharmaceutical applications of near-infrared spectroscopy. In: Burns DA, Ciurczak EW, editors. Handbook of near-infrared analysis. Boca Raton: CRC; 2008. p. 834.

    Google Scholar 

  38. Jamrogiewicz M. Application of the near-infrared spectroscopy in the pharmaceutical technology. J Pharm Biomed Anal. 2012;66:1–10.

    CAS  PubMed  Google Scholar 

  39. Gies AP. Mass spectrometry of insoluble polymers: University of Alabama at Birmingham; 2004.

  40. Park J, Kataoka K. Precise control of lower critical solution temperature of thermosensitive poly(2-isopropyl-2-oxazoline) via gradient copolymerization with 2-ethyl-2-oxazoline as a hydrophilic comonomer. Macromolecules. 2006;39(19):6622–30.

    CAS  Google Scholar 

  41. Montaudo MS. Mass spectra of copolymers. Mass Spectrom Rev. 2002;21(2):108–44.

    CAS  PubMed  Google Scholar 

  42. Montaudo G, Samperi F, Montaudo MS. Characterization of synthetic polymers by MALDI-MS. Prog Polym Sci. 2006;31:277–357.

    CAS  Google Scholar 

  43. Zell MT, Padden BE, Paterick AJ, Hillmyer MA, Kean RT, Thakur KAM, et al. Direct observation of stereodefect sites in semi-crystalline poly (lactide) using 13-C solid-state NMR. J Am Chem Soc. 1998;120(48):12672–3.

    CAS  Google Scholar 

  44. Lubach JW, Padden BE, Winslow SL, Salsbury JS, Masters DB, Topp EM, et al. Solid-state NMR studies of pharmaceutical solids in polymer matrices. Anal Bioanal Chem. 2004;378(6):1504–10.

    CAS  PubMed  Google Scholar 

  45. Yuan XD, Sperger D, Munson EJ. Investigating miscibility and molecular mobility of nifedipine-PVP amorphous solid dispersions using solid-state NMR spectroscopy. Mol Pharm. 2014;11(1):329–37.

    CAS  PubMed  Google Scholar 

  46. Yuan XD, Xiang TX, Anderson BD, Munson EJ. Hydrogen bonding interactions in amorphous indomethacin and its amorphous solid dispersions with poly (vinylpyrrolidone) and poly (vinylpyrrolidone-co-vinyl acetate) studied using C-13 solid-state NMR. Mol Pharm. 2015;12(12):4518–28.

    CAS  PubMed  Google Scholar 

  47. Offerdahl TJ, Salsbury JS, Dong Z, Grant DJ, Schroeder SA, Prakash I, et al. Quantitation of crystalline and amorphous forms of anhydrous neotame using 13C CPMAS NMR spectroscopy. J Pharm Sci. 2005;94(12):2591–605.

    CAS  PubMed  Google Scholar 

  48. Gorman EM. Solid-state physical form detection and quantitation of pharmaceuticals in formulations: University of Kansas; 2011.

  49. Pines A, Gibby MG, Waugh JS. Proton-enhanced NMR of dilute spins in solids. J Chem Phys. 1973;59(2):569–90.

    CAS  Google Scholar 

  50. Harris RK. Quantitative aspects of high-resolution solid-state nuclear magnetic resonance spectroscopy. Analyst. 1985;110:649–55.

    CAS  Google Scholar 

  51. Clauss J, Schmidt-Rohr K, Spiess HW. Determination of domain sizes in heterogeneous polymers by solid-state NMR. Acta Polym. 1993;44(1):1–17.

    CAS  Google Scholar 

  52. Li L, Harrison SD, Cope MJ, Park C, Lee L, Salaymeh F, et al. Mechanism of action and pharmacology of patiromer, a nonabsorbed cross-linked polymer that lowers serum potassium concentration in patients with hyperkalemia. J Cardiovasc Pharmacol Ther. 2016;21(5):456–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27–46.

    CAS  PubMed  Google Scholar 

  54. Andrew AR, Bradbury A, Eades RG. Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature. 1959;183(4678):1802–3.

    CAS  Google Scholar 

  55. Fung BM, Khitrin AK, Ermolaev K. An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson. 2000;142(1):97–101.

    CAS  PubMed  Google Scholar 

  56. Barich DH, Gorman EM, Zell MT, Munson EJ. 3-Methylglutaric acid as a 13C solid-state NMR standard. Solid State Nucl Magn Reson. 2006;30(3–4):125–9.

    CAS  PubMed  Google Scholar 

  57. Harris RK, Olivieri AC. Spinning sideband analysis for spin-1/2 nuclei. In: Encyclopedia of magnetic resonance: John Wiley & Sons; 2007. p. 1–10.

  58. Dixon WT, Schaefer J, Sefcik MD, Stejskal EO, McKay RA. Total suppression of sidebands in CPMAS C-13 NMR. J Magn Reson. 1982;49(2):341–5.

    CAS  Google Scholar 

  59. Kolodziejski W, Klinowski J. Kinetics of cross-polarization in solid-state NMR: a guide for chemists. Chem Rev. 2002;102(3):613–28.

    CAS  PubMed  Google Scholar 

  60. Wemmer DE. Some double resonance and multiple quantum NMR studies in solids. Berkeley: University of California; 1979.

    Google Scholar 

  61. Herzfeld J, Berger AE. Sideband intensities in NMR spectra of samples spinning at the magic angle. J Chem Phys. 1980;73(12):6021–30.

    CAS  Google Scholar 

  62. Demco DE, Johansson A, Tegenfeldt J. Proton spin diffusion for spatial heterogeneity and morphology investigations of polymers. Solid State Nucl Magn Reson. 1995;4(1):13–38.

    CAS  PubMed  Google Scholar 

  63. Slichter CP. Spin temperature in magnetism and in magnetic resonance. Principles of magnetic resonance. Berlin: Springer Berlin Heidelberg; 1990. p. 219–46.

    Google Scholar 

  64. Bovey FA, Mirau PA. 1—Fundamentals of nuclear magnetic resonance. In: Bovey FA, Mirau PA, editors. NMR of polymers. San Diego: Academic; 1996. p. 1–115.

    Google Scholar 

  65. Lubach JW, Xu D, Segmuller BE, Munson EJ. Investigation of the effects of pharmaceutical processing upon solid-state NMR relaxation times and implications to solid-state formulation stability. J Pharm Sci. 2007;96(4):777–87.

    CAS  PubMed  Google Scholar 

  66. Charmot D, Chang HT, Fordtran J, Klaerner G, Buysse JM, Alpern R, et al., inventors; Relypsa, Inc., assignee. Ion binding polymers and uses thereof. United States of America; 2012.

  67. Albrecht D, Burdick M, Chang HT, Charmot D, Chidambaram R, Connor EF, et al., inventors; Relypsa, Inc., assignee. Linear polyol stabilized polyfluoroacrylate compositions. United States of America; 2012.

Download references

Acknowledgments

The views expressed in this paper do not reflect the official policies of the U.S. Food and Drug Administration or the U.S. Department of Health and Human Services nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

Funding

Funding for this research was made possible by a U.S. Food and Drug Administration grant (5U01FD004275-07). Dr. Li was supported in part by an appointment to the Oak Ridge Institute for Science and Education (ORISE) Research Participation Program at the Center for Drug Evaluation and Research administered by the ORISE through an agreement between the U. S. Department of Energy and CDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Munson.

Ethics declarations

Conflict of Interest

The authors declare the following competing financial interest(s): E.J.M. is a partial owner of Kansas Analytical Services, a company that provides solid-state NMR services to the pharmaceutical industry. The results presented here are from academic work at University of Kentucky and Purdue University, and no data from Kansas Analytical Services are presented.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarrells, T.W., Zhang, D., Li, S. et al. Quantification of Monomer Units in Insoluble Polymeric Active Pharmaceutical Ingredients Using Solid-State NMR Spectroscopy I: Patiromer. AAPS PharmSciTech 21, 116 (2020). https://doi.org/10.1208/s12249-020-01654-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01654-8

KEY WORDS

Navigation