Skip to main content
Log in

Reducing Burst Release Effect of Freely Water-Soluble Drug Incorporated into Gastro-Floating Formulation Below HPMC Threshold Concentration Through Interpolymer Complex

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Undesired-burst release effect is observed in a freely water-soluble drug formulated into a gastro-floating formulation with effervescent (GFFE) delivery system. In order to address this limitation, interpolymer complex (IPC) of two swellable and non-soluble polymers, poly-ammonium methacrylate and poly-vinyl acetate, was incorporated into hydroxypropyl methyl cellulose (HPMC)-based matrix GFFE. This research studied the effect and interaction of the IPC-HPMC blending on the drug release of GFFE using a freely water-soluble drug, metformin HCl, under different threshold concentration levels and curing effect. The interaction between the IPC and HPMC was characterized using vibrational spectroscopy and thermal analyses under curing and swelling conditions. Anti-solvent followed by lyophilization had better physicochemical and physicomechanic properties than spray dying technique. The interaction was observed by a specific shifting of the vibrational peaks and alteration of the thermal behavior pattern. These effects altered the drug release behavior. Thereafter, the IPC reduced burst release effects in the initial time and during testing, and the IPC improved the HPMC matrix robustness under mechanical stress testing below threshold concentration of HPMC matrix formulated in the GFFE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ainurofiq A, Choiri S. Drug release model and kinetics of natural polymers-based sustained release tablet. Lat Am J Pharm. 2015;34(7):1328–37.

    CAS  Google Scholar 

  2. Siepmann J, Faham A, Clas S-D, Boyd BJ, Jannin V, Bernkop-Schnürch A, et al. Lipids and polymers in pharmaceutical technology: lifelong companions. Int J Pharm. 2019;558:128–42.

    Article  CAS  Google Scholar 

  3. Contreras L, Melgoza LM, Villalobos R, Caraballo I. Study of the critical points of experimental HPMC–NaCMC hydrophilic matrices. Int J Pharm. 2010;386(1–2):52–60.

    Article  CAS  Google Scholar 

  4. Jain AK, Söderlind E, Viridén A, Schug B, Abrahamsson B, Knopke C, et al. The influence of hydroxypropyl methylcellulose (HPMC) molecular weight, concentration and effect of food on in vivo erosion behavior of HPMC matrix tablets. J Control Release. 2014;187:50–8.

    Article  CAS  Google Scholar 

  5. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2012;64 Supplement:163–74.

    Article  Google Scholar 

  6. Haque SE, Sheela A. Design and in vitro evaluation of interpolymer complex bound metformin sustained release tablet. J Appl Polym Sci. 2014;131(21):41018.

    Article  Google Scholar 

  7. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73(2–3):121–36.

    Article  CAS  Google Scholar 

  8. Klancar U, Baumgartner S, Legen I, Smrdel P, Kampuš NJ, Krajcar D, et al. Determining the polymer threshold amount for achieving robust drug release from HPMC and HPC matrix tablets containing a high-dose BCS class I model drug: in vitro and in vivo studies. AAPS PharmSciTech. 2015;16(2):398–406.

    Article  CAS  Google Scholar 

  9. Naiserová M, Kubová K, Vysloužil J, Pavloková S, Vetchý D, Urbanová M, et al. Investigation of dissolution behavior HPMC/Eudragit®/magnesium aluminometasilicate oral matrices based on NMR solid-state spectroscopy and dynamic characteristics of gel layer. AAPS PharmSciTech. 2018;19(2):681–92.

    Article  Google Scholar 

  10. Elsamaligy S, Bodmeier R. Development of extended release multiple unit effervescent floating drug delivery systems for drugs with different solubilities. J Drug Deliv Sci Technol, 30 Part B. 2015:467–77.

    Article  CAS  Google Scholar 

  11. Maghsoodi M, Barghi L. Polymer percolation threshold in multi-component HPMC matrices tablets. Adv Pharm Bull. 2011;1(1):27–33.

    PubMed  PubMed Central  Google Scholar 

  12. Gonçalves-Araújo T, Rajabi-Siahboomi AR, Caraballo I. Polymer percolation threshold in HPMC extended release formulation of carbamazepine and verapamil HCl. AAPS PharmSciTech. 2010;11(2):558–62.

    Article  Google Scholar 

  13. Mason LM, Campiñez MD, Pygall SR, Burley JC, Gupta P, Storey DE, et al. The influence of polymer content on early gel-layer formation in HPMC matrices: the use of CLSM visualisation to identify the percolation threshold. Eur J Pharm Biopharm. 2015;94:485–92.

    Article  CAS  Google Scholar 

  14. Mohamed FAA, Roberts M, Seton L, Ford JL, Levina M, Rajabi-Siahboomi AR. The effect of HPMC particle size on the drug release rate and the percolation threshold in extended-release mini-tablets. Drug Dev Ind Pharm. 2015;41(1):70–8.

    Article  CAS  Google Scholar 

  15. Ali R, Dashevsky A, Bodmeier R. Poly vinyl acetate and ammonio methacrylate copolymer as unconventional polymer blends increase the mechanical robustness of HPMC matrix tablets. Int J Pharm. 2017;516(1–2):3–8.

    Article  CAS  Google Scholar 

  16. Jeganathan B, Prakya V. Interpolyelectrolyte complexes of Eudragit® EPO with hypromellose acetate succinate and Eudragit® EPO with hypromellose phthalate as potential carriers for oral controlled drug delivery. AAPS PharmSciTech. 2015;16(4):878–88.

    Article  CAS  Google Scholar 

  17. Zhang F, Meng F, Wang ZY, NA W. Interpolymer complexation between copovidone and carbopol and its effect on drug release from matrix tablets. Drug Dev Ind Pharm. 2017;43(2):190–203.

    Article  CAS  Google Scholar 

  18. Ohyagi N, Ueda K, Higashi K, Yamamoto K, Kawakami K, Moribe K. Synergetic role of hypromellose and methacrylic acid copolymer in the dissolution improvement of amorphous solid dispersions. J Pharm Sci. 2017;106(4):1042–50.

    Article  CAS  Google Scholar 

  19. Robertis SD, Bonferoni MC, Elviri L, Sandri G, Caramella C, Bettini R. Advances in oral controlled drug delivery: the role of drug–polymer and interpolymer non-covalent interactions. Expert Opin Drug Deliv. 2015;12(3):441–53.

    Article  Google Scholar 

  20. Khutoryanskaya OV, Morrison PWJ, Seilkhanov SK, Mussin MN, Ozhmukhametova EK, Rakhypbekov TK, et al. Hydrogen-bonded complexes and blends of poly(acrylic acid) and methylcellulose: nanoparticles and mucoadhesive films for ocular delivery of riboflavin. Macromol Biosci. 2014;14(2):225–34.

    Article  CAS  Google Scholar 

  21. Khutoryanskiy VV. Hydrogen-bonded interpolymer complexes as materials for pharmaceutical applications. Int J Pharm. 2007;334(1–2):15–26.

    Article  CAS  Google Scholar 

  22. Zhang G, Jiang M, Zhu L, Wu C. Intermacromolecular complexation because of specific interactions 11. Ionic interaction complexation and its comparison with hydrogen-bonding complexation. Polymer. 2001;42(1):151–9.

    Article  CAS  Google Scholar 

  23. Elzayat EM, Abdel-Rahman AA, Ahmed SM, Alanazi FK, Habib WA, Sakr A. Multiple response optimization of processing and formulation parameters of Eudragit RL/RS-based matrix tablets for sustained delivery of diclofenac. Pharm Dev Technol. 2017;22(7):928–38.

    Article  CAS  Google Scholar 

  24. Elzoghby AO, Vranic BZ, Samy WM, Elgindy NA. Swellable floating tablet based on spray-dried casein nanoparticles: near-infrared spectral characterization and floating matrix evaluation. Int J Pharm. 2015;491(1–2):113–22.

    Article  CAS  Google Scholar 

  25. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  CAS  Google Scholar 

  26. Yusif RM, Hashim IIA, Mohamed EA, El R. Investigation and evaluation of an in situ interpolymer complex of carbopol with polyvinylpyrrolidone as a matrix for gastroretentive tablets of ranitidine hydrochloride. Chem Pharm Bull (Tokyo). 2016;64(1):42–51.

    Article  Google Scholar 

  27. Zhang F, Lubach J, Na W, Momin S. Interpolymer complexation between Polyox and Carbopol, and its effect on drug release from matrix tablets. J Pharm Sci. 2016;105(8):2386–96.

    Article  CAS  Google Scholar 

  28. Tarlier N, Soulairol I, Bataille B, Baylac G, Ravel P, Nofrerias I, et al. Compaction behavior and deformation mechanism of directly compressible textured mannitol in a rotary tablet press simulator. Int J Pharm. 2015;495(1):410–9.

    Article  CAS  Google Scholar 

  29. Chen Y-C, Ho H-O, Liu D-Z, Siow W-S, Sheu M-T. Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose. PLoS One. 2015;10(1):e0116914.

    Article  Google Scholar 

  30. Bansal S, Beg S, Garg B, Asthana A, Asthana GS, Singh B. QbD-oriented development and characterization of effervescent floating-bioadhesive tablets of cefuroxime axetil. AAPS PharmSciTech. 2016;17(5):1086–99.

    Article  CAS  Google Scholar 

  31. Guo L, Sato H, Hashimoto T, Ozaki Y. FTIR study on hydrogen-bonding interactions in biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(4-vinylphenol). Macromolecules. 2010;43(8):3897–902.

    Article  CAS  Google Scholar 

  32. Varma-Nair M, Costello CA, Colle KS, King HE. Thermal analysis of polymer–water interactions and their relation to gas hydrate inhibition. J Appl Polym Sci. 2007;103(4):2642–53.

    Article  CAS  Google Scholar 

  33. Dey SK, De PK, De A, Ojha S, De R, Mukhopadhyay AK, et al. Floating mucoadhesive alginate beads of amoxicillin trihydrate: a facile approach for H. pylori eradication. Int J Biol Macromol. 2016;89:622–31.

    Article  CAS  Google Scholar 

  34. Gendre C, Genty M, da Silva JC, Tfayli A, Boiret M, Lecoq O, et al. Comprehensive study of dynamic curing effect on tablet coating structure. Eur J Pharm Biopharm. 2012;81(3):657–65.

    Article  CAS  Google Scholar 

  35. Li Y, Wurster DE. The effects of curing and casting methods on the physicochemical properties of polymer films. AAPS PharmSciTech. 2018;19(6):2740–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Indonesian Endowment Fund for Education (LPDP). The authors would like to thank Evonik (Darmstadt, Germany) for providing Eudragit Polymers, BASF (Ludwigshafen, Germany) for providing Kollidon SR, Colorcon (West Point, PA) for providing Methocel K100M DC, and PT Phapros (Semarang, Indonesia) for providing Metformin HCl.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Syaiful Choiri or T. N. Saifullah Sulaiman.

Ethics declarations

Conflict of Interest

All authors declare there was no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choiri, S., Sulaiman, T.N.S. & Rohman, A. Reducing Burst Release Effect of Freely Water-Soluble Drug Incorporated into Gastro-Floating Formulation Below HPMC Threshold Concentration Through Interpolymer Complex. AAPS PharmSciTech 20, 196 (2019). https://doi.org/10.1208/s12249-019-1414-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1414-z

KEY WORDS

Navigation