Skip to main content
Log in

Green Synthesis of Carbon Nanotubes-Reinforced Molecularly Imprinted Polymer Composites for Drug Delivery of Fenbufen

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The facile fabrication of single-walled carbon nanotubes (SWCNTs)-doping molecularly imprinted polymer (MIP) nanocomposite-based binary green porogen system, room-temperature ionic liquids (RTILs), and deep eutectic solvents (DESs) was developed for drug delivery system. With fenbufen (FB) as template molecule, 4-vinylpyridine (4-VP) was used as functional monomer, ethylene glycol dimethacrylate as cross-linking monomer, and 1-butyl-3-methylimidazoliumtetrafluoroborate and choline chloride/ethylene glycol as binary green solvent, in the presence of SWCNTs. The imprinting effect of the SWCNT–MIP composites was optimized by regulation of the amount of SWCNTs, ratio of RTILs and DES, and the composition of DES. Blue shifts of UV bands strongly suggested that interaction between 4-VP and FB can be enhanced due to SWCNT doping in the process of self-assembly. The reinforced imprinted effect of CNT-doping MIP can provide superior controlled release characteristics. Compared with the control MIP prepared without SWCNTs, the imprinting factor of the SWCNT–MIP composites exhibited a twofold increase. In the analysis for the FB release kinetics from all samples, the SWCNT-reinforced MIP produced the lowest value of drug diffusivity. The relative bioavailability of the SWCNT–MIP composites (F %) displayed the highest value of 143.3% compared with the commercial FB tablet, whereas the control MIP and SWCNT–non-MIP composites was only 48.3% and 44.4%, respectively. The results indicated that the SWCNT–MIP nanocomposites developed here have potentials as the controlled-release device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

[BMIM]BF4 :

1-butyl-3-methylimidazoliumtetrafluoroborate

CNT:

carbon nanotube

ChCl:

choline chloride

DES:

deep eutectic solvent

EG:

ethylene glycol

FB:

fenbufen

FLU:

flurbiprofen

IBU:

ibuprofen

IF:

imprinting factor

MIP:

molecularly imprinted polymer

NAP:

naproxen

NIP:

non-molecularly imprinted polymer

RTIL:

room-temperature ionic liquid

SWCNT:

single-walled carbon nanotube

4-VP:

4-vinylpyridine

References

  1. Genix AC, Oberdisse J. Nanoparticle self-assembly: from interactions in suspension to polymer nanocomposites. Soft Matter. 2018;14:5161–79.

    Article  CAS  Google Scholar 

  2. Ha CS. Polymer based hybrid nanocomposites: a progress toward enhancing interfacial interaction and tailoring advanced applications. Chem Rec. 2018;18:759–75.

    Article  CAS  Google Scholar 

  3. Prusty RK, Rathore DK, Ray BC. CNT/polymer interface in polymeric composites and its sensitivity study at different environments. Adv Colloid Interf Sci. 2017;240:77–106.

    Article  CAS  Google Scholar 

  4. Heinz H, Ramezani-Dakhel H. Simulations of inorganic–bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chem Soc Rev. 2015;45:412–48.

    Article  Google Scholar 

  5. Lee JW, Yoo YT, Lee JY. Ionic polymer–metal composite actuators based on triple-layered polyelectrolytes composed of individually functionalized layers. ACS Appl Mater Interfaces. 2014;6:1266–71.

    Article  CAS  Google Scholar 

  6. Atar N, Grossman E, Gouzman I, Bolker A, Murray VJ, Marshall BC, et al. Atomic-oxygen-durable and electrically-conductive CNT-POSS polyimide flexible films for space applications. ACS Appl Mater Interfaces. 2015;7:12047–56.

    Article  CAS  Google Scholar 

  7. Saito N, Aoki K, Usui Y, Shimizu M, Hara K, Narita N, et al. Application of carbon fibers to biomaterials: a new era of nano-level control of carbon fibers after 30-years of development. Chem Soc Rev. 2011;40:3824–34.

    Article  CAS  Google Scholar 

  8. Sun XM, Sun H, Li HP, Peng HS. Developing polymer composite materials: carbon nanotubes or graphene. Adv Mater. 2013;25:5153–76.

    Article  CAS  Google Scholar 

  9. Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin–nanotube composite. Science. 1994;265:1212–4.

    Article  CAS  Google Scholar 

  10. Spitalsky Z, Tasisb D, Papagelis K, Galiotis C. Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci. 2010;35:357–401.

    Article  CAS  Google Scholar 

  11. Coleman JN, Khan U, Blau WJ, Gun’ko YK. Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon. 2006;44:1624–52.

    Article  CAS  Google Scholar 

  12. Tserpes KI, Chanteli A. Parametric numerical evaluation of the effective elastic properties of carbon nanotube-reinforced polymers. Compos Struct. 2013;99:366–74.

    Article  Google Scholar 

  13. Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45:2137–211.

    Article  CAS  Google Scholar 

  14. Yoshikawa M, Tharpa K, Dima ŞO. Molecularly imprinted membranes: past, present, and future. Chem Rev. 2016;116:11500–28.

    Article  CAS  Google Scholar 

  15. Haupt K, Linares AV, Bompart M, Bui BT. Molecularly imprinted polymers. Top Curr Chem. 2012;325:1–28.

    CAS  PubMed  Google Scholar 

  16. Li XX, Hao LF, Huang YP, Duan HQ, Liu ZS. Release evaluation of molecularly imprinted polymers prepared under molecular crowding conditions. Polym Eng Sci. 2012;52: 1440-9.  

    Article  CAS  Google Scholar 

  17. Tang L, Zhao C-Y, Wang X-H, Li R-S, Yang J-R, Huang Y-P, et al. Macromolecular crowding of molecular imprinting: a facile pathway to produce drug delivery devices for zero-order sustained release. Int J Pharm. 2015;496:822–33.

    Article  CAS  Google Scholar 

  18. Ban L, Zhao L, Deng B-L, Huang Y-P, Liu Z-S. Preparation and characterization of imprinted monolith by atom transfer radical polymerization assisted with crowding agents. Anal Bioanal Chem. 2013;405(7):2245–53.

    Article  CAS  Google Scholar 

  19. Zhang Z, Liu J. Molecularly imprinted polymers with DNA aptamer fragments as macromonomers. ACS Appl Mater Interfaces. 2016;8:6371–8.

    Article  CAS  Google Scholar 

  20. Hamdan S, Moore JL, Lejeune J, Hasan F, Carlisle TK, Bara JE, et al. Ionic liquid crosslinkers for chiral imprinted nanoGUMBOS. J Colloid Interface Sci. 2016;463:29–36.

    Article  CAS  Google Scholar 

  21. Booker K, Bowyer MC, Holdsworth CI, McCluskey A. Efficient preparation and improved sensitivity of molecularly imprinted polymers using room temperature ionic liquids. Chem Commun. 2006;(16):1730–2.

  22. Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M. Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B. 2000;104:8911–5.

    Article  CAS  Google Scholar 

  23. Hwang JY, Nish A, Doig J, Douven S, Chen CW, Chen LC, et al. Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes. J Am Chem Soc. 2008;130:3543–53.

    Article  CAS  Google Scholar 

  24. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science. 2003;300:2072–4.

    Article  CAS  Google Scholar 

  25. Zhang L-S, Gao S-P, Huang Y-P, Liu Z-S. Green synthesis of polymer monoliths incorporated with carbon nanotubes in room temperature ionic liquid and deep eutectic solvents. Talanta. 2016;154:335–40.

    Article  CAS  Google Scholar 

  26. Carriazo D, Arco MD, Fernandez A, Martin C, Rives V. Inclusion and release of fenbufen in mesoporous silica. J Pharm Sci. 2010;99:3372–80.

    Article  CAS  Google Scholar 

  27. Meng ZX, Xu XX, Zheng W, Zhou HM, Li L, Zheng YF, et al. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids Surf B Biointerfaces. 2011;84:97–102.

    Article  CAS  Google Scholar 

  28. Li B, He J, Evans DG, Duan X. Enteric-coated layered double hydroxides as a controlled release drug delivery system. Int J Pharm. 2004;287:89–95.

    Article  CAS  Google Scholar 

  29. Umpleby RJ II, Baxter SC, Chen Y, Shah RN, Shimizu KD. Characterization of molecularly imprinted polymers with the Langmuir−Freundlich isotherm. Anal Chem. 2001;73:4584–91.

    Article  CAS  Google Scholar 

  30. Siepmann J, Siepmann F. Modeling of diffusion controlled drug delivery. J Control Release. 2012;161:351–62.

    Article  CAS  Google Scholar 

  31. Gandhi M, Srikar R, Yarin AL, Megaridis CM, Gemeinhart RA. Mechanistic examination of protein release from polymer nanofibers. Mol Pharm. 2009;6:641–7.

    Article  CAS  Google Scholar 

  32. Fujigaya T, Nakashima N. Methodology for homogeneous dispersion of single-walled carbon nanotubes by physical modification. Polym J. 2008;40:577–89.

    Article  CAS  Google Scholar 

  33. Qin S, Qin D, Ford WT, Herrera JE, Resasco DE. Grafting of poly(4-vinylpyridine) to single-walled carbon nanotubes and assembly of multilayer films. Macromolecules. 2004;37:9963–7.

    Article  CAS  Google Scholar 

  34. Li G, Wang W, Wang Q, Zhu T. Deep eutectic solvents modified molecular imprinted polymers for optimized purification of chlorogenic acid from honeysuckle. J Chromatogr Sci. 2016;54:271–9.

    CAS  PubMed  Google Scholar 

  35. Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1982;54:2201–18.

    Article  Google Scholar 

  36. Yang S, Guo W, Lin Y, Deng X, Wang H, Sun H, et al. Biodistribution of pristine single-walled carbon nanotubes in vivo. J Phys Chem C. 2007;11:17761–4.

    Article  Google Scholar 

  37. Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. PNAS. 2008;105:1410–5.

    Article  CAS  Google Scholar 

  38. Xiao D, Dramou P, Xiong N, He H, Li H, Yuan D, et al. Development of novel molecularly imprinted magnetic solid-phase extraction materials based on magnetic carbon nanotubes and their application for the determination of gatifloxacin in serum samples coupled with high performance liquid chromatography. J Chromatogr A. 2013;1274:44–53.

    Article  CAS  Google Scholar 

  39. Madrakian T, Ahmadi M, Afkhami A, Soleimani M. Selective solid-phase extraction of naproxen drug from human urine samples using molecularly imprinted polymer-coated magnetic multi-walled carbon nanotubes prior to its spectrofluorometric determination. Analyst. 2013;138:4542–9.

    Article  CAS  Google Scholar 

  40. Yang W, Jiao F, Zhou L, Chen X, Jiang X. Molecularly imprinted polymers coated on multi-walled carbon nanotubes through a simple indirect method for the determination of 2,4-dichlorophenoxyacetic acid in environmental water. Appl Sur Sci. 2013;284:692–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (grant no. 21775109) and Innovation and Entrepreneurship Training Program for College Students in Jiangsu (201810316049x) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Wei He or Yan-Ping Huang.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Electronic supplementary material

ESM 1

(DOC 3072 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XL., Yao, HF., Chai, MH. et al. Green Synthesis of Carbon Nanotubes-Reinforced Molecularly Imprinted Polymer Composites for Drug Delivery of Fenbufen. AAPS PharmSciTech 19, 3895–3906 (2018). https://doi.org/10.1208/s12249-018-1192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1192-z

KEY WORDS

Navigation