Skip to main content

Advertisement

Log in

Methotrexate Aspasomes Against Rheumatoid Arthritis: Optimized Hydrogel Loaded Liposomal Formulation with In Vivo Evaluation in Wistar Rats

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Aspasomes of methotrexate with antioxidant, ascorbyl palmitate, were developed and optimized using factorial design by varying parameters such as lipid molar ratio, drug to lipid molar ratio, and type of hydration buffer for transdermal delivery for disease modifying activity in rheumatoid arthritis (RA). Aspasomes were characterized by drug-excipients interaction, particle size analysis, determination of zeta potential, entrapment efficiency, and surface properties. The best formulation was loaded into hydrogel for evaluation of in vitro drug release and tested in vivo against adjuvant induced arthritis model in wistar rats, by assessing various physiological, biochemical, hematological, and histopathological parameters. Optimized aspasome formulation exhibited smooth surface with particle size 386.8 nm, high drug loading (19.41%), negative surface potential, and controlled drug release in vitro over 24 h with a steady permeation rate. Transdermal application of methotrexate-loaded aspasome hydrogel for 12 days reduced rat paw diameter (21.25%), SGOT (40.43%), SGPT (54.75%), TNFα (33.99%), IL β (34.79%), cartilage damage (84.41%), inflammation (82.37%), panus formation (84.38%), and bone resorption (80.52%) as compared to arthritic control rats. Free methotrexate-treated group showed intermediate effects. However, drug-free aspasome treatment did not show any effect. The experimental results indicate a positive outcome in development of drug-loaded therapeutically active carrier system which presents a non-invasive controlled release transdermal formulation with good drug loading, drug permeation rate, and having better disease modifications against RA than the free drug, thereby providing a more attractive therapeutic strategy for rheumatoid disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kraft JC, Freeling JP, Wang Z, Ho RJ. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci. 2014;103(1):29–52. https://doi.org/10.1002/jps.23773.

    Article  CAS  PubMed  Google Scholar 

  2. Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198–205. https://doi.org/10.1016/j.jconrel.2011.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gopinath D, Ravi D, Rao BR, Apte SS, Renuka D, Rambhau D. Ascorbylpalmitate vesicles (Aspasomes): formation, characterization and applications. Int J Pharm. 2004;271(1–2):95–113. https://doi.org/10.1016/j.ijpharm.2003.10.032.

    Article  CAS  PubMed  Google Scholar 

  4. Jukanti R, Gopinath D, Apte SS, Rambhau D. Biodistribution of ascorbylpalmitate loaded doxorubicin pegylated liposomes in solid tumor bearing mice. J Microencapsul. 2011;28(2):142–9. https://doi.org/10.3109/02652048.2010.542496.

    Article  CAS  PubMed  Google Scholar 

  5. Lee S, Lee J, Choi YW. Skin permeation enhancement of ascorbyl palmitate by liposomal hydrogel (lipogel) formulation and electrical assistance. Biol Pharm Bull. 2007;30(2):393–6. https://doi.org/10.1248/bpb.30.393.

    Article  CAS  PubMed  Google Scholar 

  6. Moribe K, Limwikrant W, Higashi K, Yamamoto K. Drug nanoparticle formulation using ascorbic acid derivatives. J Drug Deliv. 2011;2011:1–9. https://doi.org/10.1155/2011/138929.

    Article  Google Scholar 

  7. Karande P, Mitragotri S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim Biophys Acta. 2009;1788(11):2362–73. https://doi.org/10.1016/j.bbamem.2009.08.015.

    Article  CAS  PubMed  Google Scholar 

  8. Cronstein BN. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev. 2005;57(2):163–72. https://doi.org/10.1124/pr.57.2.3.

    Article  CAS  PubMed  Google Scholar 

  9. Gerards AH, de Lathouder S, de Groot ER, Dijkmans BAC, Aarden LA. Inhibition of cytokine production by methotrexate. Studies in healthy volunteers, patients with rheumatoid arthritis. Rheumatology. 2003;42(10):1189–96. https://doi.org/10.1093/rheumatology/keg323.

    Article  CAS  PubMed  Google Scholar 

  10. Gottschalk O, Metz P, Dao Trong ML, Altenberger S, Jansson V, Mutschler W, et al. Therapeutic effect of methotrexate encapsulated in cationic liposomes (EndoMTX) in comparison to free methotrexate in an antigen-induced arthritis study in vivo. Scand J Rheumatol. 2015;44(6):456–63. https://doi.org/10.3109/03009742.2015.1030448.

  11. Garg NK, Singh B, Tyagi RK, Sharma G, Katare OP. Effective transdermal delivery of methotrexate through nanostructured lipid carriers in an experimentally induced arthritis model. Colloids Surf B Biointerfaces. 2016;147:17–24. https://doi.org/10.1016/j.colsurfb.2016.07.046.

    Article  CAS  PubMed  Google Scholar 

  12. Prabhu P, Shetty R, Koland M, Vijayanarayana K, Vijayalakshmi KK, Nairy MH, et al. Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity. Int J Nanomedicine. 2012;7:177–86. https://doi.org/10.2147/IJN.S25310.

  13. Roy T, Ghosh S. Animal models of rheumatoid arthritis: correlation and usefulness with human rheumatoid arthritis. Indo Amer J Pharm Res. 2013;3:6131–42.

    Google Scholar 

  14. Chang RK, Raw A, Lionberger R, Yu L. Generic development of topical dermatologic products: formulation development, process development, and testing of topical dermatologic products. AAPS J. 2013;15(1):41–52. https://doi.org/10.1208/s12248-012-9411-0.

    Article  CAS  PubMed  Google Scholar 

  15. Grijalvo S, Mayr J, Eritja R, Díaz DD. Biodegradable liposome-encapsulated hydrogels for biomedical applications: a marriage of convenience. Biomater Sci. 2016;4(4):555–74. https://doi.org/10.1039/C5BM00481K.

    Article  CAS  PubMed  Google Scholar 

  16. De P, Damodharan N, Mallick S, Mukherjee B. Development and evaluation of nefopam transdermal matrix patch system in human volunteers. PDA J Pharm Sci Technol. 2009;63(6):537–46.

    CAS  PubMed  Google Scholar 

  17. Pattnaik G, Sinha B, Mukherjee B, Ghosh S, Basak S, Mondal S, et al. Submicron-size biodegradable polymer-based didanosine particles for treating HIV at early stage: an in vitro study. J Microencapsul. 2012;29(7):666–76. https://doi.org/10.3109/02652048.2012.680509.

  18. Ghosh S, Mondal L, Chakraborty S, Mukherjee B. Early stage HIV management and reduction of stavudine-induced hepatotoxicity in rats by experimentally developed biodegradable nanoparticles. AAPS PharmSciTech. 2017;18(3):697–709. https://doi.org/10.1208/s12249-016-0539-6.

    Article  CAS  PubMed  Google Scholar 

  19. Ng SF, Rouse J, Sanderson D, Eccleston GA. Comparative study of transmembrane diffusion and permeation of ibuprofen across synthetic membranes using Franz diffusion cells. Pharmaceutics. 2010;2(2):209–23. https://doi.org/10.3390/pharmaceutics2020209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sinicoa C, Manconia M, Peppib M, Laia F, Valentia D, Fadda AM. Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle–skin interaction. J Control Release. 2005;103(1):123–36. https://doi.org/10.1016/j.jconrel.2004.11.020.

    Article  Google Scholar 

  21. Takeuchi H, Mano Y, Terasaka S, Sakurai T, Furuya A, Urano H, et al. Usefulness of rat skin as a substitute for human skin in the in vitro skin permeation study. Exp Anim. 2011;60(4):373–84. https://doi.org/10.1538/expanim.60.373.

  22. Roy T, Banerjee I, Ghosh S, Dhali RS, Pati AD, Tripathi SK. Effects of co-treatment with pioglitazone and methotrexate on experimentally induced rheumatoid arthritis in Wistar albino rats. Indian J Pharmacol. 2017;49(2):168–75. https://doi.org/10.4103/ijp.IJP_523_15.

    PubMed  PubMed Central  Google Scholar 

  23. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27–31. https://doi.org/10.4103/0976-0105.177703.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Martínez A, Fernández-Arquero M, Pascual-Salcedo D, Conejero L, Alves H, Balsa A, et al. Primary association of tumour necrosis factor-region genetic markers with susceptibility to rheumatoid arthritis. Arthritis Rheum. 2000;43(6):1366–70. https://doi.org/10.1002/1529-0131(200006)43:6<1366::AID-ANR21>3.0.CO;2-S.

  25. Thorbecke GJ, Shah R, Leu CH, Kuruvilla AP, Hardison AM, Palladino MA. Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type II arthritis in mice. Proc Natl Acad Sci U S A. 1992;89(16):7375–9. https://doi.org/10.1073/pnas.89.16.7375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dubey V, Mishra D, Dutta T, Nahar M, Saraf DK, Jain NK. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J Control Release. 2007;123(2):148–54. https://doi.org/10.1016/j.jconrel.2007.08.005.

    Article  CAS  PubMed  Google Scholar 

  27. Gosenca M, Obreza A, Pečar S, Gašperlin M. A new approach for increasing ascorbyl palmitate stability by addition of non-irritant co-antioxidant. AAPS PharmSciTech. 2010;11(3):1485–92. https://doi.org/10.1208/s12249-010-9507-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andersen FA. Final report on the safety assessment of ascorbylpalmitate, ascorbyldipalmitate, ascorbyl stearate, erythorbic acid, and sodium erythorbate. Int J Toxicol. 1999;18(3):1–26.

    Article  Google Scholar 

  29. Anderson M, Omri A. The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Deliv. 2004;11(1):33–9. https://doi.org/10.1080/10717540490265243.

    Article  CAS  PubMed  Google Scholar 

  30. Kristl J, Volka B, Gasperlin M, Sentjurc M, Jurkovic P. Effect of colloidal carriers on ascorbylpalmitate stability. Eur J Pharm Sci. 2003;19(4):181–9. https://doi.org/10.1016/S0928-0987(03)00104-0.

    Article  CAS  PubMed  Google Scholar 

  31. Obeida MA, Khadraa I, Mullena A, Tatea RJ, Ferroa VA. The effects of hydration media on the characteristics of non-ionic surfactant vesicles (NISV) prepared by microfluidics. Int J Pharm. 2017;516(1–2):52–60. https://doi.org/10.1016/j.ijpharm.2016.11.015.

    Article  Google Scholar 

  32. Ruckmani K, Sankar V. Formulation and optimization of zidovudine niosomes. AAPS PharmSciTech. 2010;11(3):1119–27. https://doi.org/10.1208/s12249-010-9480-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Ravi Kumar MNV. Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Control Release. 2006;113(3):189–207. https://doi.org/10.1016/j.jconrel.2006.04.015.

    Article  CAS  PubMed  Google Scholar 

  34. Chibowski E, Szcześ A. Zeta potential and surface charge of DPPC and DOPC liposomes in the presence of PLC enzyme. Adsorption. 2016;22(4):755–65. https://doi.org/10.1007/s10450-016-9767-z.

    Article  CAS  Google Scholar 

  35. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. https://doi.org/10.1186/1556-276X-8-102.

  36. Hoarea TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49(8):1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027.

    Article  Google Scholar 

  37. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217–23.

    CAS  PubMed  Google Scholar 

  38. Abd E, Yousef SA, Pastore MN, Telaprolu K, Mohammed YH, Namjoshi S, et al. Skin models for the testing of transdermal drugs. Clin Pharmacol. 2016;8:163–76. https://doi.org/10.2147/CPAA.S64788.

  39. Chung CP, Avalos I, Raggi P, Stein CM. Atherosclerosis and inflammation: insights from rheumatoid arthritis. Clin Rheumatol. 2007;26(8):1228–33. https://doi.org/10.1007/s10067-007-0548-7.

    Article  PubMed  Google Scholar 

  40. Snekhalatha U, Anburajan M, Venkatraman B, Menaka M. Evaluation of complete Freund’s adjuvant-induced arthritis in a Wistar rat model: comparison of thermography and histopathology. Z Rheumatol. 2013;72(4):375–82. https://doi.org/10.1007/s00393-012-1083-8.

    Article  CAS  PubMed  Google Scholar 

  41. Asquith DL, Miller AM, McInnes IB, Liew FY. Animal models of rheumatoid arthritis. Eur J Immunol. 2009;39(8):2040–4. https://doi.org/10.1002/eji.200939578.

    Article  CAS  PubMed  Google Scholar 

  42. Goodson T, Morgan SL, Carlee JR, Baggott JE. The energy cost of adjuvant-induced arthritis in rats. Arthritis Rheum. 2003;48(10):2979–82. https://doi.org/10.1002/art.11274.

    Article  PubMed  Google Scholar 

  43. Somasundaran S, Sadique J, Subramoniam A. In vitro absorption of [14C] leucine during inflammation and the effect of anti-inflammatory drugs in the jejunum of rats. Biochem Med. 1983;29(2):259–64. https://doi.org/10.1016/0006-2944(83)90046-7.

    Article  Google Scholar 

  44. Stagakis I, Bertsias G, Karvounaris S, Kavousanaki M, Virla D, Raptopoulou A, et al. Anti-tumor necrosis factor therapy improves insulin resistance, beta cell function and insulin signaling in active rheumatoid arthritis patients with high insulin resistance. Arthritis Res Ther. 2012;14(3):R141. https://doi.org/10.1186/ar3874.

  45. Romeo GR, Lee J, Shoelson SE. Metabolic syndrome, insulin resistance, and roles of inflammation-mechanisms and therapeutic targets. Arterioscler Thromb Vasc Biol. 2012;32(8):1771–6. https://doi.org/10.1161/ATVBAHA.111.241869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Feldmann M, Brennan FM, Foxwell BM, Maini RN. The role of TNF alpha and IL-1 in rheumatoid arthritis. Curr Dir Autoimmun. 2001;3:188–99.

    Article  CAS  PubMed  Google Scholar 

  47. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–42. https://doi.org/10.1038/nri2094.

    Article  CAS  PubMed  Google Scholar 

  48. Kinne RW, Brauer R, Stuhlmuller B, Kinne RW, Bräuer R, Stuhlmüller B, et al. Macrophages in rheumatoid arthritis. Arthritis Res. 2000;2(3):189–202. https://doi.org/10.1186/ar86.

  49. Karie S, Gandjbakhch F, Janus N, Launay-Vacher V, Rozenberg S, Mai Ba CU, et al. Kidney disease in RA patients: prevalence and implication on RA-related drugs management: the MATRIX study. Rheumatology (Oxford). 2008;47(3):350–4. https://doi.org/10.1093/rheumatology/kem370.

  50. Selmi C, De Santis M, Gershwin ME. Liver involvement in subjects with rheumatic disease. Arthritis Res Ther. 2011;13(3):226. https://doi.org/10.1186/ar3319.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rajkapoor B, Ravichandran V, Gobinath M, Anbu J, Harikrishnan N, Sumithra M, et al. Effect of Bauhinia variegata on complete Freund’s adjuvant induced arthritis in rats. J Pharmacol Toxicol. 2007;2(5):465–72.

  52. Ormseth MJ, Oeser AM, Cunningham A, Bian A, Shintani A, Solus J, et al. Peroxisome proliferator-activated receptor gamma agonist effect on rheumatoid arthritis: a randomized controlled trial. Arthritis Res Ther. 2013;15(5):R110. https://doi.org/10.1186/ar4290.

  53. Trotta M, Peira E, Carlotti ME, Gallarate M. Deformable liposomes for dermal administration of methotrexate. Int J Pharm. 2004;270(1-2):119–25. https://doi.org/10.1016/j.ijpharm.2003.10.006.

    Article  CAS  PubMed  Google Scholar 

  54. Alvarez-Figueroa MJ, Delgado-Charro MB, Blanco-Mèndez J. Passive and iontophoretic transdermal penetration of methotrexate. Int J Pharm. 2001;212(1):101–7. https://doi.org/10.1016/S0378-5173(00)00599-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Mukherjee.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Mukherjee, B., Chaudhuri, S. et al. Methotrexate Aspasomes Against Rheumatoid Arthritis: Optimized Hydrogel Loaded Liposomal Formulation with In Vivo Evaluation in Wistar Rats. AAPS PharmSciTech 19, 1320–1336 (2018). https://doi.org/10.1208/s12249-017-0939-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0939-2

KEY WORDS

Navigation