Skip to main content
Log in

Characterization of the Dissolution Behavior of Piperine/Cyclodextrins Inclusion Complexes

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this study, the physicochemical properties and solubility of inclusion complexes of ground mixtures (GMs) of piperine (PP), a pungent ingredient of pepper, with α- and γ-cyclodextrin (CD) were studied. From the solubility results, the PP/αCD inclusion molar ratio was determined to be 1/2, while that of PP/γCD was 1/1, according to the AP-type phase diagram of PP/αCD and the BS-type one of PP/γCD. The powder X-ray diffraction and differential scanning calorimetry analyses confirmed the formation of GM complexes with molar ratios of PP/αCD = 1/2 and PP/γCD = 1/1. The Raman analysis revealed the disappearance of the bands corresponding to the C=C, O–CH2–O, −CH, and aliphatic C=C moieties of the methylene dioxyphenyl fragment of PP in the spectra of the inclusion complexes. In the dissolution tests, GM (PP/αCD = 1/2) and GM (PP/γCD = 1/1) showed higher solubility than free PP and the analogous physical mixtures. Furthermore, after 60 min, GM (PP/αCD = 1/2) exhibited higher solubility than GM (PP/γCD = 1/1). In the 1H-1H nuclear Overhauser effect spectroscopy measurements, GM (PP/αCD = 1/2) was found to present a head-to-head inclusion structure via the aliphatic C=C and methylene dioxyphenyl groups of PP and the two αCD molecules. In contrast, it was confirmed that γCD interacts with the O–CH2–O functionality of the methylene dioxyphenyl group of PP in a molar ratio of 1/1. It was thus concluded that the differences in the PP/CD structures influence the solubility of the inclusion complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Marie NG, Tom F, Margaret R, Blake T, Nicholas G, et al. Trends in adult body-mass index in 200 countries from 1975 to 2014 : a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet. 2014;387:1377–96.

    Google Scholar 

  2. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013 : a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–81.

  3. Dawid C, Henze A, Frank O, Glabasnia A, Rupp M, et al. Structural and sensory characterization of key pungent and tingling compounds of black pepper (piper nigrum L.). J Agric Food Chem. 2012;60:2884–95.

    Article  CAS  PubMed  Google Scholar 

  4. Rauscher FM, Sanders RA, Watkins JB. Effects of piperine on antioxidant pathways in tissues from normal and streptozotocin-induced diabetic rats. J Biochem Mol Toxicol. 2000;14:329–34.

    Article  CAS  PubMed  Google Scholar 

  5. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64:353–6.

    Article  CAS  PubMed  Google Scholar 

  6. Bang JS, Oh DH, Choi HM, Sur B-J, Lim S-J, Kim JY, et al. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res. 2009;11:1–9.

    Google Scholar 

  7. Mu LH, Wang B, Ren HY, Liu P, Guo DH, Wang FM, et al. Synthesis and inhibitory effect of piperine derivates on monoamine oxidase. Bioorg Med Chem Lett. 2012;22:3343–8.

    Article  CAS  PubMed  Google Scholar 

  8. Kozukue N, Park MS, Choi SH, Lee SU, Ohnishi-Kameyama M, Levin CE, et al. Kinetics of light-induced cis-trans isomerization of four piperines and their levels in ground black peppers as determined by HPLC and LC/MS. J Agric Food Chem. 2007;55:7131–9.

    Article  CAS  PubMed  Google Scholar 

  9. De Cleyn R, Verzele M. Constituents of peppers I. Qualitative analysis of piperine isomers. Chromatographia. 1972;5:346–50.

    Article  Google Scholar 

  10. Sahu PK, Sharma A, Rayees S, et al. Pharmacokinetic study of piperine in Wistar rats after oral and intravenous administration. Int J Drug Deliv. 2014;6:82–8.

    CAS  Google Scholar 

  11. Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev. 1998;98:1743–54.

    Article  CAS  PubMed  Google Scholar 

  12. Milivojevic Fir M, Smidovnik A, Milivojevic L, Zmitek J, Prosek M. Studies of CoQ10 and cyclodextrin complexes : solubility, thermo- and photo-stability. J Incl Phenom Macrocycl Chem. 2009;64:225–32.

  13. Zhang QF, Jiang ZT, Li R. Complexation of allyl isothiocyanate with β-cyclodextrin and its derivatives and molecular microcapsule of allyl isothiocyanate in β-cyclodextrin. Eur Food Res Technol. 2007;225:407–13.

    Article  CAS  Google Scholar 

  14. Uchida R, Iwamoto K, Nagayama S, Miyajima A, Okamoto H, et al. Effect of γ-Cyclodextrin Inclusion Complex on the Absorption of R-α-Lipoic Acid in Rats. Int J Mol Sci. 2015;16:10105–20.

  15. Hirayama F, Uekama K. Cyclodextrin-based controlled drug release system. Adv Drug Deliv Rev. 1999;36:125–41.

    Article  CAS  PubMed  Google Scholar 

  16. Lee CW, Kim SJ, Youn YS, Widjojokusumo E, Lee YH, Kim J, et al. Preparation of bitter taste masked cetirizine dihydrochloride/β-cyclodextrin inclusion complex by supercritical antisolvent (SAS) process. J Supercrit Fluids. 2010;55:348–57.

    Article  CAS  Google Scholar 

  17. Szejtli J, Szente L. Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm. 2005;61:115–25.

    Article  CAS  PubMed  Google Scholar 

  18. Figueiras A, Cardoso O, Veiga F, De Carvalho RBF, Ballaro G. Preparation and characterization of trimethoprim inclusion complex with methyl-β-cyclodextrin and determination of its antimicrobial activity. Pharm Anal Acta. 2015;6:6–10.

    Google Scholar 

  19. Lin HL, Lin SY, Lin CC, Hsu CH, Wu TK, Huang YT. Mechanical grinding effect on thermodynamics and inclusion efficiency of loratadine-cyclodextrin inclusion complex formation. Carbohydr Polym. 2012;87:512–7.

    Article  CAS  Google Scholar 

  20. Inoue Y, Suzuki K, Ezawa T, Murata I, Yokota M, Tokudome Y, et al. Examination of the physicochemical properties of caffeic acid complexed with γ-cyclodextrin. J Incl Phenom Macrocycl Chem. 2015;83:289–98.

    Article  CAS  Google Scholar 

  21. Ikeda H, Ikuta N, Nakata D, Ishida Y, Terao K. NMR studies of inclusion complexes formed by (R)-α-lipoic acid with α-, β-, and γ-Cyclodextrins. Bull Chem Soc Jpn. 2015;88:1123–7.

    Article  CAS  Google Scholar 

  22. Andrens S, Andrej S. Effect of β-cyclodextrin on antioxidant activity of coumaric acids. Food Chem. 2008;110:636–42.

    Article  Google Scholar 

  23. Nalluri BN, Chowdary KPR, Murthy KVR, Hayman AR, Becket G. Physicochemical characterization and dissolution properties of nimesulide-cyclodextrin binary systems. AAPS PharmSciTech. 2003;4:6–17.

    Article  PubMed Central  Google Scholar 

  24. Ezawa T, Inoue Y, Tunvichien S, Suzuki R, Kanamoto I. Changes in the physicochemical properties of piperine/β-cyclodextrin due to the formation of inclusion complexes. Int J Med Chem. 2016;2016:1–9.

    Google Scholar 

  25. de Miranda JC, Martins TEA, Veiga F, Ferraz HG. Cyclodextrins and ternary complexes: technology to improve solubility of poorly soluble drugs. Brazilian J Pharm Sci. 2011;47:665–81.

    Article  Google Scholar 

  26. Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39:1033–46.

    Article  Google Scholar 

  27. Loftsson T, Másson M, Brewster ME. Self-association of cyclodextrins and cyclodextrin complexes. J Pharm Sci. 2004;93:1091–9.

    Article  CAS  PubMed  Google Scholar 

  28. Iacovino R, Rapuano F, Caso JV, Russo A, Lavorgna M, Russo C, et al. β-cyclodextrin inclusion complex to improve physicochemical properties of pipemidic acid: characterization and bioactivity evaluation. Int J Mol Sci. 2013;14:13022–41.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang LJ, Xia S, Ma SX, Zhou SY, Zhao XQ, Wang SH, et al. Host-guest system of hesperetin and β-cyclodextrin or its derivatives: preparation, characterization, inclusion mode, solubilization and stability. Mater Sci Eng C. 2016;59:1016–24.

    Article  CAS  Google Scholar 

  30. Ficarra R, Tommasini S, Raneri D, Calabro ML, Di Bella MR, Rustichelli C, et al. Study of flavonoids/β-cyclodextrins inclusion complexes by NMR, FT-IR, DSC, X-ray investigation. J Pharm Biomed Anal. 2002;29:1005–14.

    Article  CAS  PubMed  Google Scholar 

  31. Schulz H, Baranska M, Quilitzsch R, Schütze W, Lösing G. Characterization of peppercorn, pepper oil, and pepper oleoresin by vibrational spectroscopy methods. J Agric Food Chem. 2005;53:3358–63.

    Article  CAS  PubMed  Google Scholar 

  32. Becket G, Schep LJ, Yee M. Improvement of the in vitro dissolution of praziquantel by complexation with α-, β- and γ-cyclodextrins. Int J Pharm. 1999;179:65–71.

    Article  CAS  PubMed  Google Scholar 

  33. Naidoo KJ, Chen JY, Jansson JLM, Maliniak A. Molecular properties related to the anomalous solubility of beta-cyclodextrin. J Phys Chem B. 2004;108:4236–328.

    Article  CAS  Google Scholar 

  34. Jambhekar SS, Breen P. Cyclodextrins in pharmaceutical formulations II: solubilization, binding constant, and complexation efficiency. Drug Discov Today. 2016;21:363–8.

    Article  CAS  PubMed  Google Scholar 

  35. Manolikar MK, Sawant MR. Study of solubility of isoproturon by its complexation with β-cyclodextrin. Chemosphere. 2003;51:811–6.

    Article  CAS  PubMed  Google Scholar 

  36. Yadav VR, Suresh S, Devi K, Yadav S. Effect of Cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech. 2009;10:752–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schneider H-J, Hacket F, Rüdiger V, Ikeda H. NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev. 1998;98:1755–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Cyclo Chem Co., Ltd. for providing α-, β-, and γCD and TEK Analysis Inc. for their support with the Raman spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Inoue.

Ethics declarations

Conflict on Interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezawa, T., Inoue, Y., Murata, I. et al. Characterization of the Dissolution Behavior of Piperine/Cyclodextrins Inclusion Complexes. AAPS PharmSciTech 19, 923–933 (2018). https://doi.org/10.1208/s12249-017-0908-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0908-9

KEY WORDS

Navigation