Skip to main content

Advertisement

Log in

The Inclusion of Chitosan in Poly-ε-caprolactone Nanoparticles: Impact on the Delivery System Characteristics and on the Adsorbed Ovalbumin Secondary Structure

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This report extensively explores the benefits of including chitosan into poly-ε-caprolactone (PCL) nanoparticles (NPs) to obtain an improved protein/antigen delivery system. Blend NPs (PCL/chitosan NPs) showed improved protein adsorption efficacy (84%) in low shear stress and aqueous environment, suggesting that a synergistic effect between PCL hydrophobic nature and the positive charges of chitosan present at the particle surface was responsible for protein interaction. Additionally, thermal analysis suggested the blend NPs were more stable than the isolated polymers and cytotoxicity assays in a primary cell culture revealed chitosan inclusion in PCL NPs reduced the toxicity of the delivery system. A quantitative 6-month stability study showed that the inclusion of chitosan in PCL NPs did not induce a change in adsorbed ovalbumin (OVA) secondary structure characterized by the increase in the unordered conformation (random coil), as it was observed for OVA adsorbed to chitosan NPs. Additionally, the slight conformational changes occurred, are not expected to compromise ovalbumin secondary structure and activity, during a 6-month storage even at high temperatures (45°C). In simulated biological fluids, PCL/chitosan NPs showed an advantageous release profile for oral delivery. Overall, the combination of PCL and chitosan characteristics provide PCL/chitosan NPs valuable features particularly important to the development of vaccines for developing countries, where it is difficult to ensure cold chain transportation and non-parenteral formulations would be preferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Junqueira-Kipnis AP, Marques Neto LM, Kipnis A. Role of fused immunogens and adjuvants in modern tuberculosis vaccines. Front Immunol. 2014;5:188. doi:10.3389/fimmu.2014.00188.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tan ML, Choong PF, Dass CR. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides. 2010;31(1):184–93. doi:10.1016/j.peptides.2009.10.002.

    Article  CAS  PubMed  Google Scholar 

  3. Al-Tahami K, Singh J. Smart polymer based delivery systems for peptides and proteins. Recent pat Drug Deliv Formul. 2007;1(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  4. Shaji J, Patole V. Protein and peptide drug delivery: oral approaches. Indian J Pharm Sci. 2008;70(3):269–77. doi:10.4103/0250-474X.42967.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv rev. 2010;62(1):59–82. doi:10.1016/j.addr.2009.11.009.

    Article  CAS  PubMed  Google Scholar 

  6. Baldrick P. The safety of chitosan as a pharmaceutical excipient. Regulatory Toxicology and Pharmacology: RTP. 2010;56(3):290–9. doi:10.1016/j.yrtph.2009.09.015.

    Article  CAS  PubMed  Google Scholar 

  7. Lebre F, Borchard G, de Lima MC, Borges O. Progress towards a needle-free hepatitis B vaccine. Pharm res. 2011;28(5):986–1012. doi:10.1007/s11095-010-0314-4.

    Article  CAS  PubMed  Google Scholar 

  8. Panos I, Acosta N, Heras A. New drug delivery systems based on chitosan. Curr Drug Discov Technol. 2008;5(4):333–41.

    Article  CAS  PubMed  Google Scholar 

  9. Borges O, Borchard G, de Sousa A, Junginger HE, Cordeiro-da-Silva A. Induction of lymphocytes activated marker CD69 following exposure to chitosan and alginate biopolymers. Int J Pharm. 2007;337(1–2):254–64. doi:10.1016/j.ijpharm.2007.01.021.

    Article  CAS  PubMed  Google Scholar 

  10. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–56. doi:10.1016/j.progpolymsci.2010.04.002.

    Article  CAS  Google Scholar 

  11. Haas J, Ravi Kumar MN, Borchard G, Bakowsky U, Lehr CM. Preparation and characterization of chitosan and trimethyl-chitosan-modified poly-(epsilon-caprolactone) nanoparticles as DNA carriers. AAPS PharmSciTech. 2005;6(1):E22–30. doi:10.1208/pt060106.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Florindo HF, Pandit S, Goncalves LM, Alpar HO, Almeida AJ. Streptococcus equi antigens adsorbed onto surface modified poly-epsilon-caprolactone microspheres induce humoral and cellular specific immune responses. Vaccine. 2008;26(33):4168–77. doi:10.1016/j.vaccine.2008.05.074.

    Article  CAS  PubMed  Google Scholar 

  13. Gupta NK, Tomar P, Sharma V, Dixit VK. Development and characterization of chitosan coated poly-(varepsilon-caprolactone) nanoparticulate system for effective immunization against influenza. Vaccine. 2011;29(48):9026–37. doi:10.1016/j.vaccine.2011.09.033.

    Article  CAS  PubMed  Google Scholar 

  14. Florindo HF, Pandit S, Lacerda L, Goncalves LM, Alpar HO, Almeida AJ. The enhancement of the immune response against S. Equi antigens through the intranasal administration of poly-epsilon-caprolactone-based nanoparticles. Biomaterials. 2009;30(5):879–91. doi:10.1016/j.biomaterials.2008.10.035.

    Article  CAS  PubMed  Google Scholar 

  15. Jimenez-Ruiz E, Alvarez-Garcia G, Aguado-Martinez A, Salman H, Irache JM, Marugan-Hernandez V, et al. Low efficacy of NcGRA7, NcSAG4, NcBSR4 and NcSRS9 formulated in poly-epsilon-caprolactone against Neospora caninum infection in mice. Vaccine. 2012;30(33):4983–92. doi:10.1016/j.vaccine.2012.05.033.

    Article  CAS  PubMed  Google Scholar 

  16. Bilensoy E, Sarisozen C, Esendagli G, Dogan AL, Aktas Y, Sen M, et al. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int J Pharm. 2009;371(1–2):170–6. doi:10.1016/j.ijpharm.2008.12.015.

    Article  CAS  PubMed  Google Scholar 

  17. Mazzarino L, Travelet C, Ortega-Murillo S, Otsuka I, Pignot-Paintrand I, Lemos-Senna E, et al. Elaboration of chitosan-coated nanoparticles loaded with curcumin for mucoadhesive applications. J Colloid Interface Sci. 2012;370(1):58–66. doi:10.1016/j.jcis.2011.12.063.

    Article  CAS  PubMed  Google Scholar 

  18. Borges O, Borchard G, Verhoef JC, de Sousa A, Junginger HE. Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int J Pharm. 2005;299(1–2):155–66. doi:10.1016/j.ijpharm.2005.04.037.

    Article  CAS  PubMed  Google Scholar 

  19. Jesus S, Borchard G, Borges O. Freeze dried chitosan/poly-e-caprolactone and poly-e-caprolactone nanoparticles: evaluation of their potential as DNA and antigen delivery systems. J Genet Syndr Gene Ther. 2013;4(164). doi:10.4172/2157-7412.1000164.

  20. Whitmore L, Wallace BA. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers. 2008;89(5):392–400. doi:10.1002/bip.20853.

    Article  CAS  PubMed  Google Scholar 

  21. Martinac A, Filipovic-Grcic J, Voinovich D, Perissutti B, Franceschinis E. Development and bioadhesive properties of chitosan-ethylcellulose microspheres for nasal delivery. Int J Pharm. 2005;291(1–2):69–77. doi:10.1016/j.ijpharm.2004.07.044.

    Article  CAS  PubMed  Google Scholar 

  22. Rahman M, Laurent S, Tawil N, Yahia LH, Mahmoudi M. Nanoparticle and protein corona. Protein-nanoparticle interactions. Berlin Heidelberg: Springer; 2013. p. 21–44.

    Google Scholar 

  23. Dole MN, Patel PA, Sawant SD, Schedpure PS. Advance applications of Fourier transform infrared spectroscopy. Int J Pharm Sci Rev Res. 2011;7(2).

  24. Roozbahani F, Sultana N, Fauzi Ismail A, Nouparvar H. Effects of chitosan alkali pretreatment on the preparation of electrospun PCL/chitosan blend Nanofibrous scaffolds for tissue engineering application. J Nanomater. 2013;2013:6. doi:10.1155/2013/641502.

    Article  Google Scholar 

  25. Gregorio-Jauregui KM, Pineda MG, Rivera-Salinas JE, Hurtado G, Saade H, Martinez JL, et al. One-step method for preparation of magnetic nanoparticles coated with chitosan. J Nanomater. 2012;2012:8. doi:10.1155/2012/813958.

    Article  Google Scholar 

  26. Duarte ML, Ferreira MC, Marvao MR, Rocha J. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int J Biol Macromol. 2002;31(1–3):1–8.

    Article  CAS  PubMed  Google Scholar 

  27. Jang MK, Jeong YI, Cho CS, Yang SH, Kang YE, Nah JW. The preparation and characterization of low molecular and water soluble free-amine chitosan. Bull Korean Chem Soc. 2002;23(6).

  28. Elzubair A, Elias CN, Suarez JC, Lopes HP, Vieira MV. The physical characterization of a thermoplastic polymer for endodontic obturation. J Dent. 2006;34(10):784–9. doi:10.1016/j.jdent.2006.03.002.

    Article  CAS  PubMed  Google Scholar 

  29. Zhetcheva VDK, Pavlova LP. Synthesis and spectral characterization of a decavanadate/chitosan complex. Turk J Chem. 2011;35:215–23. doi:10.3906/kim-1006-718.

    Google Scholar 

  30. Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys sin. 2007;39(8):549–59.

    Article  CAS  PubMed  Google Scholar 

  31. Chakraborty S, Joshi P, Shanker V, Ansari ZA, Singh SP, Chakrabarti P. Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. Langmuir: the ACS Journal of Surfaces and Colloids. 2011;27(12):7722–31. doi:10.1021/la200787t.

    Article  CAS  Google Scholar 

  32. Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR. Thermal analysis of chitosan based networks. Carbohyd Polym. 2005;62(2):97–103. doi:10.1016/j.carbpol.2005.02.022.

    Article  CAS  Google Scholar 

  33. Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, et al. Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules. 2005;6(4):1961–76. doi:10.1021/bm0500805.

    Article  CAS  PubMed  Google Scholar 

  34. Persenaire O, Alexandre M, Degee P, Dubois P. Mechanisms and kinetics of thermal degradation of poly(epsilon-caprolactone). Biomacromolecules. 2001;2(1):288–94.

    Article  CAS  PubMed  Google Scholar 

  35. Mohamed A, Finkenstadt VL, Gordon SH, Biresaw G, Debra P, Rayas-Duarte P. Thermal properties of PCL/gluten bioblends characterized by TGA, DSC, SEM, and infrared-PAS. J Appl Polym Sci. 2008;110(5):3256–66. doi:10.1002/App.28914.

    Article  CAS  Google Scholar 

  36. das Neves J, Amiji M, Bahia MF, Sarmento B. Assessing the physical-chemical properties and stability of dapivirine-loaded polymeric nanoparticles. Int J Pharm. 2013;456(2):307–14. doi:10.1016/j.ijpharm.2013.08.049.

    Article  PubMed  Google Scholar 

  37. Correlo VM, Boesel LF, Bhattacharya M, Mano JF, Neves NM, Reis RL. Properties of melt processed chitosan and aliphatic polyester blends. Mater Sci Eng a. 2005;403(1–2):57–68. doi:10.1016/j.msea.2005.04.055.

    Article  Google Scholar 

  38. Li XM, Chen MM, Yang WZ, Zhou ZM, Liu LR, Zhang QQ. Interaction of bovine serum albumin with self-assembled nanoparticles of 6-O-cholesterol modified chitosan. Colloid Surface B. 2012;92:136–41. doi:10.1016/j.colsurfb.2011.11.030.

    Article  CAS  Google Scholar 

  39. Huang RX, Carney RP, Stellacci F, Lau BLT. Protein-nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent. Nanoscale. 2013;5(15):6928–35. doi:10.1039/C3nr02117c.

    Article  CAS  PubMed  Google Scholar 

  40. Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2006;1(6):2876–90. doi:10.1038/nprot.2006.202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol. 2013;11. doi:10.1186/1477-3155-11-26.

  42. Ghosh G, Panicker L, Barick KC. Selective binding of proteins on functional nanoparticles via reverse charge parity model: an in vitro study. Mater Res Express. 2014;1(1). doi: 10.1088/2053-1591/1/015017.

  43. Shang L, Wang Y, Jiang J, Dong S. pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: a spectroscopic study. Langmuir: the ACS Journal of Surfaces and Colloids. 2007;23(5):2714–21. doi:10.1021/la062064e.

    Article  CAS  Google Scholar 

  44. Ranjbar B, Gill P. Circular dichroism techniques: biomolecular and Nanostructural analyses- a review. Chem Biol Drug des. 2009;74(2):101–20. doi:10.1111/j.1747-0285.2009.00847.x.

    Article  CAS  PubMed  Google Scholar 

  45. Fei L, Perrett S. Effect of nanoparticles on protein folding and fibrillogenesis. Int J Mol Sci. 2009;10(2):646–55. doi:10.3390/ijms10020646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Borges O, Cordeiro-da-Silva A, Romeijn SG, Amidi M, de Sousa A, Borchard G, et al. Uptake studies in rat Peyer's patches, cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosal vaccination. Journal of Controlled Release: Official Journal of the Controlled Release Society. 2006;114(3):348–58. doi:10.1016/j.jconrel.2006.06.011.

    Article  CAS  Google Scholar 

  47. Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromolecules. 2008;9(7):1837–42. doi:10.1021/bm800276d.

    Article  CAS  PubMed  Google Scholar 

  48. Sonia TA, Sharma CP. Chitosan and its derivatives for drug delivery perspective. Chitosan for Biomaterials I. 2011;243:23–53. doi:10.1007/12_2011_117.

    Article  CAS  Google Scholar 

  49. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;274(1–2):1–33. doi:10.1016/j.ijpharm.2003.12.026.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Portuguese Foundation for Science and Technology (FCT)—project PTDC/SAU-FAR/115044/2009, by the Center for Neuroscience and Cell Biology, University of Coimbra, PEst-C/SAU/LA0001/2013-014, by FCT fellowship DFRH—SFRH/BD/81350/2011, and by FCT in cooperation with Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil)—FCT/CAPES Proc.N.329/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Borges.

Electronic Supplementary Material

Supplemental 1

(DOCX 151 kb)

Supplemental 2

(DOCX 94 kb)

Supplemental 3

(DOCX 326 kb)

Supplemental 4

(DOCX 327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jesus, S., Fragal, E.H., Rubira, A.F. et al. The Inclusion of Chitosan in Poly-ε-caprolactone Nanoparticles: Impact on the Delivery System Characteristics and on the Adsorbed Ovalbumin Secondary Structure. AAPS PharmSciTech 19, 101–113 (2018). https://doi.org/10.1208/s12249-017-0822-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0822-1

KEY WORDS

Navigation