Skip to main content
Log in

Investigation into the Manufacture and Properties of Inhalable High-Dose Dry Powders Produced by Comilling API and Lactose with Magnesium Stearate

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of the study was to understand the impact of different concentrations of the additive material, magnesium stearate (MGST), and the active pharmaceutical ingredient (API), respectively, on the physicochemical properties and aerosol performance of comilled formulations for high-dose delivery. Initially, blends of API/lactose with different concentrations of MGST (1–7.5% w/w) were prepared and comilled by the jet-mill apparatus. The optimal concentration of MGST in comilled formulations was investigated, specifically for agglomerate structure and strength, particle size, uniformity of content, surface coverage, and aerosol performance. Secondly, comilled formulations with different API (1–40% w/w) concentrations were prepared and similarly analyzed. Comilled 5% MGST (w/w) formulation resulted in a significant improvement in in vitro aerosol performance due to the reduction in agglomerate size and strength compared to the formulation comilled without MGST. Higher concentrations of MGST (7.5% w/w) led to reduction in aerosol performance likely due to excessive surface coverage of the micronized particles by MGST, which led to failure in uniformity of content and an increase in agglomerate strength and size. Generally, comilled formulations with higher concentrations of API increased the agglomerate strength and size, which subsequently caused a reduction in aerosol performance. High-dose delivery was achieved at API concentration of >20% (w/w). The study provided a platform for the investigation of aerosol performance and physicochemical properties of other API and additive materials in comilled formulations for the emerging field of high-dose delivery by dry powder inhalation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factos affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Geller DE. Comparing clinical features of the nebulizer, metered-dose inhaler, and dry powder inhaler. Respir Care. 2005;50(10):1313–21.

    PubMed  Google Scholar 

  3. Hoppentocht M, Hagedoorn P, Frijlink HW, de Boer AH. Technological and practical challenges of dry powder inhalers and formulations. Adv Drug Deliv Rev. 2014;75:18–31.

    Article  CAS  PubMed  Google Scholar 

  4. Zeng XM, Martin GP, Marriott C, Pritchard J. The effects of carrier size and morphology on the dispersion of salbutamol sulphate after aerosolization at different flow rates. J Pharm Pharmacol. 2000a;52(10):1211–21.

    Article  CAS  PubMed  Google Scholar 

  5. Buttini F, Brambilla G, Copelli D, Sisti W, Balducci AG, Bettini R, et al. Effect of flow rate on in vitro aerodynamic performance of NEXThaler(®)in comparison with Diskus(®) and Turbohaler(®) dry powder inhalers. J Aerosol Med Pulm Drug Deliv. 2016;29(2):167–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dunber CA, Hickey AJ, Holzner P. Dispersion and characterization of pharmaceutical dry powder aerosols. KONA Powder Part J. 1998;16:7–45.

    Article  Google Scholar 

  7. Voss A, Finlay WH. Deagglomeration of dry powder pharmaceutical aerosols. Int J Pharm. 2002;248:39–50.

    Article  CAS  PubMed  Google Scholar 

  8. Coates MS, Fletcher DF, Chan HK, Raper JA. A comparative study of two marketed pulmonary drug delivery devices using computational fluid dynamics. Respiratory Drug Deliv IX. 2004;3:821–4.

    Google Scholar 

  9. Zanen P, Go LT, Lammers JW. The optimal particle size for beta-adrenergic aerosols in mild asthmatics. Int J Pharm. 1994;107:211–7.

    Article  CAS  Google Scholar 

  10. Morton DAV, Staniforth J, inventors; Vectura Ltd, assignee. Dry powder composition comprising co-jet milled particles for pulmonary inhalation. World wide patent, WO2005025536 A8, 2006.

  11. Visser J. Van der waals and other cohesive forces affecting powder fluidization. Powder Technol. 1989;58:1–10.

    Article  CAS  Google Scholar 

  12. Vanbever R, Mintzes JD, Wang J, Nice J, Chen D, Batycky R, et al. Formulation and physical characterization of large porous particles for inhalation. Pharm Res. 1999;16(11):1735–42.

    Article  CAS  PubMed  Google Scholar 

  13. Zeng XM, Martin GP, Marriott C, editors. Particulate interactions in dry powder formulations for inhalation. U.K.: Taylor & Francis; 2000b.

    Google Scholar 

  14. Timsina MP, Martin GP, Marriott C, Ganderton D, Yianneskis M. Drug delivery to the respiratory tract using dry powder inhalers. Int J Pharm. 1994;101(1–2):1–13.

    Article  CAS  Google Scholar 

  15. Zhou T, Li H. Effects of adding different size particles on fluidization of cohesive particles. Powder Technol. 1999;102(3):215–20.

    Article  CAS  Google Scholar 

  16. Krupp H. Particle adhesion theory and experiment. Adv Colloid Interface Sci. 1967;1(2):111–239.

    Article  CAS  Google Scholar 

  17. Smyth HDC, Hickey AJ. Carriers in drug powder delivery. Am J Drug Deliv. 2005;3(2):117–32.

    Article  CAS  Google Scholar 

  18. Cavaiola TS, Edelman S. Inhaled insulin: a breath of fresh air? A review of inhaled insulin. Clin Ther. 2014;36(8):1275–89.

    Article  Google Scholar 

  19. Somayaji R, Parkins MD. Tobramycin inhalation powder: an efficient and efficacious therapy for the treatment of Pseudomonas aeruginosa infection in cystic fibrosis. Ther Deliv. 2015;6(2):121–37.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou QT, Qu L, Gengenbach T, Larson I, Stewart PJ, Morton DAV. Effect of surface coating with magnesium stearate via mechanical dry powder coating apporach on the aerosol performance of micronized drug powders from dry powder inhalers. AAPS Pharmscitech. 2013;14(1):38–44.

    Article  PubMed  Google Scholar 

  21. Zhou QT, Qu L, Larson I, Stewart P, Morton DAV. Improving aersolization of drug powders by reducing powder intrinsic cohesion via a mechanical dry coating approach. Int J Pharm. 2010;394(1–2):50–9.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou QT, Qu L, Gengenbach T, Denman JA, Larson I, Stewart PJ. Investigation of the extent of surface coating via mechanofusion with varying additive levels and influences on bulk powder flow properties. Int J Pharm. 2011;413(1–2):36–43.

    Article  CAS  PubMed  Google Scholar 

  23. Tay T, Das S, Stewart P. Magnesium stearate increases salbutamol sulphate dispersion: what is the mechanism? Int J Pharm. 2010;383(1–2):62–9.

    Article  CAS  PubMed  Google Scholar 

  24. Pfeffer R, Dave RN, Wei D, Ramlakhan M. Synthesis of engineered particulates with tailored properties using dry particle coating. Powder Technol. 2001;117(1–2):40–67.

    Article  CAS  Google Scholar 

  25. Morton DAV, inventor; Vectura Ltd, assignee. Dry powder inhaler formulations comprising surface-modified particles with anti-adherent additives. US patent, US 2008/0127972 A1, 2008.

  26. British Pharmacopeia Commission. Appendix XII: C. Consistency of formulated preparations. 3. Uniformity of content. British Pharmacopoeia 2016. Volume V: appendices. London: TSO. p. 2016.

  27. Barra J, Somma R. Influence of the physicochemical variability of magnesium stearate on its lubricant properties: possible solutions. Drug Dev Ind Pharm. 1996;22(11):1105–20.

    Article  CAS  Google Scholar 

  28. Ertel KD, Carstensen JT. Chemical, physical, and lubricant properties of magnesium stearate. J Pharm Sci. 1988;77(7):625–9.

    Article  CAS  PubMed  Google Scholar 

  29. Haware RV, Shivagari R, Jonson PR. Application of multivariate methods to evaluate the functionality of bovine and vegetable dereived magnesium stearate. J Pharm Sci. 2014;103:1466–77.

    Article  CAS  PubMed  Google Scholar 

  30. Swaminathan V, Kildsig DO. An examination of the moisture sorption characteristics of commercial magnesium stearate. AAPS Pharmscitech. 2001;2(4):73–9.

    Article  PubMed Central  Google Scholar 

  31. Leinonen UI, Jalonen HU, Vihervaara PA, Laine ES. Physical and lubrication properties of magnesium stearate. J Pharm Sci. 1992;81(12):1194–8.

    Article  CAS  PubMed  Google Scholar 

  32. Begat P, Morton DAV, Staniforth JN, Price R. The cohesive-adhesive balances in dry powder inhaler formulations II: influence on fine particle delivery characteristics. Pharm Res. 2004;21(10):1826–33.

    Article  CAS  PubMed  Google Scholar 

  33. Hersey JA. Ordered mixing: a new concept in powder mixing practice. Powder Technol. 1975;11(1):41–4.

    Article  Google Scholar 

  34. Staniforth JN, Rees JE. Electrostatic charge interactions in ordered powder mixes. J Pharm Pharmacol. 1982a;34(2):69–76.

    Article  CAS  PubMed  Google Scholar 

  35. Staniforth JN, Rees JE, Lai FK, Hersey JA. Interparticle forces in binary and ternary ordered powder mixes. J Pharm Pharmacol. 1982b;34(3):141–5.

    Article  CAS  PubMed  Google Scholar 

  36. Swaminathan V, Kildsig DO. Effect of magnesium stearate on the content uniformity of active ingredient in pharmaceutical powder mixtures. AAPS PharmSciTech. 2002;3:27–31.

    Article  PubMed Central  Google Scholar 

  37. Chow AH, Tong HH, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24(3):411–37.

    Article  CAS  PubMed  Google Scholar 

  38. Kendall K, Stainton C. Adhesion and aggregation of fine particles. Powder Technol. 2001;121(2–3):223–9.

    Article  CAS  Google Scholar 

  39. Behara SR, Kippax P, McIntosh MP, Morton DAV, Larson I, Stewart P. Structural influence of cohesive mixtures of salbutamol sulphate and lactose on aerosolisation and de-agglomeration behaviour under dynamic conditions. Eur J Pharm Sci. 2011a;42(3):210–9.

    Article  CAS  PubMed  Google Scholar 

  40. Jones MD, Price R. The influence of fine excipient particles on the perforamance of carrier-based dry powder inhalation formulations. Pharm Res. 2006;23(8):1665–74.

    Article  CAS  PubMed  Google Scholar 

  41. Louey MD, Stewart PJ. Particle interactions involved in aerosol dispersion of ternary interactive mixtures. Pharm Res. 2002;19(10):1524–31.

    Article  CAS  PubMed  Google Scholar 

  42. Zeng XM, Martin GP, Tee SK, Marriott C. The role of fine particle lactose on the dispersion and deaggregation of salbutamol sulphate in an air stream in vitro. Int J Pharm. 1998;176(1):99–110.

    Article  CAS  Google Scholar 

  43. Liu Z, Wu XY, Ballinger JR, Bendayan R. Synthesis and characterization of surface-hydrophobic ion-exchange microspheres and the effect of coating on drug release rate. J Pharm Sci. 2000;89(6):807–17.

    Article  CAS  PubMed  Google Scholar 

  44. Lamb RN, Baxter J, Grunze M, Kong CW, Unertl WN. An XPS study of the composition of thin polyimide films formed by vapor-deposition. Langmuir. 1988;4(2):249–56.

    Article  CAS  Google Scholar 

  45. Zhou QT, Denman JA, Gengenbach T, Das S, Qu L, Zhang H, et al. Characterization of the surface properties of a model pharmaceutical fine powder modified with a pharmaceutical lubricant to improve flow via a mechanical dry coating approach. J Pharm Sci. 2011;100(8):3421–30.

    Article  CAS  PubMed  Google Scholar 

  46. Staniforth JN, inventor; Vectura Ltd, assignee. Powders comprising anti-adherent materials for use in dry powder inhalers. US patent, US 20050152849 A1, 2005.

  47. Chew NYK, Chan HK, Bagster DF, Mukhraiya J. Characterization of pharmaceutical powder inhalers: estimation of energy input for powder dispersion and effect of capsule device configuration. J Aerosol Sci. 2002;33(7):999–1008.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Alan Tweedie, Tanya Church, and David Lewis for their assistance and guidance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Traini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, M., Young, P.M. & Traini, D. Investigation into the Manufacture and Properties of Inhalable High-Dose Dry Powders Produced by Comilling API and Lactose with Magnesium Stearate. AAPS PharmSciTech 18, 2248–2259 (2017). https://doi.org/10.1208/s12249-016-0708-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0708-7

KEY WORDS

Navigation