Skip to main content

Advertisement

Log in

Improvement of the Ocular Bioavailability of Econazole Nitrate upon Complexation with Cyclodextrins

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Econazole nitrate (EC) is an active, imidazole antifungal agent. However, low aqueous solubility and dissolution rate of EC has discouraged its usage for the treatment of ophthalmic fungal infection. In this study, inclusion complexes of EC with cyclodextrins were prepared to enhance its solubility, dissolution, and ocular bioavailability. To achieve this goal, EC was complexed with β-CyD/HP-β-CyD using kneading, co-precipitation, and freeze-drying techniques. Phase-solubility studies were performed to investigate the complexes in the liquid form. Additionally, the complexes in the solid form were characterized with Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and transmission electron microscopy (TEM). Furthermore, different eye drops containing EC-CyD complexes were prepared using different polymers and then characterized regarding their drug contents, pH, viscosity, mucoadhesive strength, and in vitro release characteristics. The results showed that stable EC-CyD complexes were formed in 1:1 molar ratio as designated by BS-type diagram. Econazole nitrate water solubility was significantly increased in about three- and fourfold for β-CyD and HP-β-CyD, respectively. The results showed that the prepared complexes were spherical in shape having an average particle diameter from 110 to 288.33 nm with entrapment efficiency ranging from 64.24 to 95.27%. DSC investigations showed the formation of real inclusion complexes obtained with co-precipitation technique. From the in vitro studies, all eye drops containing co-precipitate complexes exhibited higher release rate than that of other complexes and followed the diffusion-controlled mechanism. In vivo study proved that eye drops containing EC-CyD complexes showed higher ocular bioavailability than EC alone which indicated by higher AUC, Cmax, and relative bioavailability values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009;136:2–13.

    Article  CAS  PubMed  Google Scholar 

  2. Brayfield A. Martindale (the complete drug reference). 38th ed., The Pharmaceutical Press, Lambeth High Street, London SE1 7JN, UK; 2014. P. 531.

  3. Pijls RT, Sonderkamp T, Daube GW, Krebber R, Hanssen HH, Nuijts RM, et al. Studies on a new device for drug delivery to the eye. Eur J Pharm Biopharm. 2005;59:283–8.

    Article  CAS  PubMed  Google Scholar 

  4. Gaona-Galdos AA, García PL, Aurora-Prado MS, Santoro MI, Kedor-Hackmann ÉR. Simultaneous determination of econazole nitrate, main impurities and preservatives in cream formulation by high performance liquid chromatography. Talanta. 2008;77:673–8.

    Article  CAS  Google Scholar 

  5. Mahmoud AA, El-Feky GS, Kamal R, Awad GEA. Chitosan/sufobutylether–β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int J Pharm. 2011;413:229–36.

    Article  CAS  PubMed  Google Scholar 

  6. Jackson CJ, Lamb DC, Kelly DE, Kelly SL. Bactericidal and inhibitory effects of azole antifungal compounds on Mycobacterium smegmatis. FEMS Microbiol Lett. 2000;192:159–62.

    Article  CAS  PubMed  Google Scholar 

  7. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85:1017–25.

    Article  CAS  PubMed  Google Scholar 

  8. Challa R, Ahuja A, Ali A, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 2005;6:E329–57.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gaudana R, Jwala J, Boddu SHS, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26:1197–216.

    Article  CAS  PubMed  Google Scholar 

  10. Loftsson T, Stefánsson E. Cyclodextrins in eye drop formulations: enhanced topical delivery of corticosteroids to the eye. Acta Ophthalmol Scand. 2002;80:144–50.

    Article  CAS  PubMed  Google Scholar 

  11. Archontaki HA, Vertzoni MV, Athanassiou-Malaki MH. Study on the inclusion complexes of bromazepam with β-and β-hydroxypropyl-cyclodextrins. J Pharm Biomed Anal. 2002;28:761–9.

    Article  CAS  PubMed  Google Scholar 

  12. Patel RPM, Shah D. Application of cyclodextrin in drug delivery. Int J Pharm Wor Res. 2010;1:1–21.

    Google Scholar 

  13. Shimpi S, Chauhan B, Shimpi P. Cyclodextrins: application in different routes of drug administration. Acta Pharm. 2005;55:139–56.

    CAS  PubMed  Google Scholar 

  14. Rajasekaran A, Kumaran KSGA, Preetha JP, Karthika K. A comparative review on conventional and advanced ocular drug delivery formulations. Int J Pharm Tech Res. 2010;2:668–74.

    CAS  Google Scholar 

  15. Fouda MMG, Knittel D, Hippler UC, Elsner P, Schollmeyer E. Antimycotic influence of beta-cyclodextrin complexes–in-vitro measurements using laser nephelometry in microtiter plates. Int J Pharm. 2006;311:113–21.

    Article  CAS  PubMed  Google Scholar 

  16. Mura P, Faucci MT, Parrini PL, Furlanetto S, Pinzauti S. Influence of the preparation method on the physicochemical properties of ketoprofen-cyclodextrin binary systems. Int J Pharm. 1999;179:117–28.

    Article  CAS  PubMed  Google Scholar 

  17. Higuchi T, Connors KA. Phase solubility techniques. Adv Anal Chem Instrum. 1965;4:117–22.

    CAS  Google Scholar 

  18. Abd El-Gawad AH, Soliman OA, El-Dahan MS, Al-Zuhairy SA. Formulation and evaluation of ophthalmic preparations containing econazole nitrate-cyclodextrin complexes. Am J Pharm Health Res. 2016;4:74–96.

    Google Scholar 

  19. Tsuruoka M, Hashimoto T, Seo H, Ichimasa S, Uenoo O, Fujinaga T, et al. Enhanced bioavailability of phenytoin by beta-cyclodextrin complexation. J Pharm Soc Jap Yakugaku-zasshi. 1981;101:360–7.

    Article  CAS  Google Scholar 

  20. Arias MJ, Moyano JR, Muñoz P, Ginés JM, Justo A, Giordano F. Study of Omeprazole-gamma-cyclodextrin complexation in the solid state. Drug Dev Ind Pharm. 2000;26:253–9.

    Article  CAS  PubMed  Google Scholar 

  21. Hui-Yun Zhou HY, Jiang LJ, Yan-Ping Zhang YP, Li JB. β-Cyclodextrin inclusion complex: preparation, characterization, and its aspirin release in-vitro. Front Mater Sci. 2012;6:259–67.

    Article  Google Scholar 

  22. Epstein SP, Ahdoot M, Marcus E, Asbell PA. Comparative toxicity of preservatives on immortalized corneal and conjunctival epithelial cells. J Ocul Pharmacol Ther. 2009;25:113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davies NM, Fan SJ, Hadgraft J, Kellaway IW. Evaluation of mucoadhesive polymers in ocular drug delivery. I. Viscous solutions. Pharm Res. 1991;8:1039–43.

    Article  CAS  PubMed  Google Scholar 

  24. Ibrahim MM, Abd-Elgawad AE, Soliman OA, Jablonski MM. Nanoparticle-based topical ophthalmic formulations for sustained celecoxib release. J Pharm Sci. 2013;102:1036–53.

    Article  CAS  PubMed  Google Scholar 

  25. Choi MK, Jung JH, Ryu JM, Yoon SJ, Oh YK, Kim CK. Development of in situ-gelling and mucoadhesive acetaminophen liquid suppository. Int J Pharm. 1998;165:33–44.

    Article  CAS  Google Scholar 

  26. Levy MY, Benita S. Drug release from submicronized o/w emulsion: new in-vitro kinetic evaluation model. Int J Pharm. 1990;66:29–37.

    Article  CAS  Google Scholar 

  27. Higuchi T. Mechanism of sustained action medication. J Pharm Sci. 1963;52:1145–9.

    Article  CAS  PubMed  Google Scholar 

  28. Korsmeyer RW, Gurny R, Docler E, Buri P, Peppas NA. Mechanism of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.

    Article  CAS  Google Scholar 

  29. Medendrop J, Yedluri J, Hammell DC, Ji T, Lodder RA, Stinchcomb AL. Near-infrared spectrometry for the quantification of dermal absorption of econazole nitrate and 4- cyanophenol. Pharm Res. 2006;23:835–43.

    Article  Google Scholar 

  30. Cheruvu NPS, Amrite AC, Kompella UB. Effect of eye pigmentation on transscleral drug delivery. Invest Ophthalmol Vis Sci. 2008;49:333–41.

    Article  PubMed  PubMed Central  Google Scholar 

  31. De Muth JE. Basic statistics and pharmaceutical statistical applications. 2nd ed. New York: Chapman & Hall/CRC, Taylor &Francis Group; 2006. p. 201–43.

    Google Scholar 

  32. Patel RP, Patel MM. Preparation and evaluation of inclusion complex of the lipid lowering drug lovastatin with β-cyclodextrin. Dhaka Univ J Pharm Sci. 2007;6:25–36.

    Article  Google Scholar 

  33. Loftsson T, Jarho P, Másson M, Järvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005;2:335–51.

    Article  CAS  PubMed  Google Scholar 

  34. Jug M, Mennini N, Kövérc KE, Mura P. Comparative analysis of binary and ternary cyclodextrin complexes with econazole nitrate in solution and in solid state. J Pharm Biomed Anal. 2014;91:81–91.

    Article  CAS  PubMed  Google Scholar 

  35. Yadav VR, Suresh S, Devi K, Yadav S. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech. 2009;10:752–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39:1033–46.

    Article  Google Scholar 

  37. Al-Omaria MM, Daraghmha MH, El-Barghouthib MI, Zughulc MB, Chowdhryd BZ, Leharned SA, et al. Novel inclusion complex of ibuprofen tromethamine with cyclodextrins: physicochemical characterization. J Pharm Biomed Anal. 2009;50:449–58.

    Article  Google Scholar 

  38. Semcheddine F, Guissi NE, Liu X, Wu Z, Wang B. Effects of the preparation method on the formation of true nimodipine SBE-β-CD/HP-β-CD inclusion complexes and their dissolution rates enhancement. AAPS PharmSciTech. 2015;16:704–15.

    Article  CAS  PubMed  Google Scholar 

  39. Liu LX, Zhu SY. A study on the supramolecular structure of inclusion complex of β-cyclodextrin with prazosin hydrochloride. Carbohydr Polym. 2007;68:472–6.

    Article  CAS  Google Scholar 

  40. Kohata S, Jyodoi K, Ohyoshi A. Thermal decomposition of cyclodextrins (α-, β-, γ-, and modified β-CyD) and of metal-(β-CyD) complexes in the solid phase. Thermochim Acta. 1993;217:187–98.

    Article  CAS  Google Scholar 

  41. Wang J, Cao Y, Sun B, Wang C. Characterization of inclusion complex of trans-ferulic acid and hydroxypropyl β-cyclodextrin. Food Chem. 2011;124:1069–75.

    Article  CAS  Google Scholar 

  42. Jun SW, Kim MS, Kim JS, Park HJ, Lee S, Woo JS, et al. Preparation and characterization of simvastatin/ hydroxypropyl β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm. 2007;66:413–21.

    Article  CAS  PubMed  Google Scholar 

  43. Bekers O, Uijtendaal EV, Beijnen JH, Bult A, Underberg WJM. Cyclodextrins in the pharmaceutical field. Drug Dev Ind Pharm. 1991;17:1503–49.

    Article  CAS  Google Scholar 

  44. Salústio PJ, Feio G, Figueirinhas JL, Pinto JF, Cabral Marques HM. The influence of the preparation methods on the inclusion of model drugs in a β-cyclodextrin cavity. Eur J Pharm Biopharm. 2009;71:377–86.

    Article  PubMed  Google Scholar 

  45. Batt DK, Garala KC. Preparation and evaluation of inclusion complexes of diacerein with β-cyclodextrin and hydroxypropyl β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2013;77:471–81.

    Article  CAS  Google Scholar 

  46. Aggarwal D, Garg A, Kaur IP. Development of topical niosomal preparation of acetazolamide: preparation and evaluation. J Pharm Pharmacol. 2004;56:1509–17.

    Article  CAS  PubMed  Google Scholar 

  47. USP 34-NF 29. “The United States Pharmacopeia”, 34th, The National formulary 29th: The United States Pharmacopeial Convention, Twinbrook Parkway, Rockville, MD 2011, pp. 700–1.

  48. Bilensoy E, Rouf MA, Vural I, Sen M, Hincal AA. Mucoadhesive, thermosensitive, prolonged-release vaginal gel for clotrimazole: β-cyclodextrin complex. AAPS Pharm Sci Tech. 2006;7:E1–7.

    Article  Google Scholar 

  49. Gu JM, Robinson JR, Leung SHS. Binding of acrylic polymers to mucin/epithelial surface: structure property relationships. Crit Rev Ther Drug Carrier Syst. 1988;5:21–67.

    CAS  PubMed  Google Scholar 

  50. Mortazavi SA, Smart JD. Factors influencing gel strengthening at the mucoadhesive mucus interface. J Pharm Pharmacol. 1994;46:86–90.

    Article  CAS  PubMed  Google Scholar 

  51. Dollo G, Le Corre P, Chollet M, Chevanne F, Bertault M, Burgot JL, et al. Improvement in solubility and dissolution rate of 1,2-dithiole-3-thiones upon complexation with β-cyclodextrin and its hydroxypropyl and sulfobutyl ether-7 derivatives. J Pharm Sci. 1999;88:889–95.

    Article  CAS  PubMed  Google Scholar 

  52. Carrier RL, Miller LA, Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. J Control Release. 2007;123:78–99.

    Article  CAS  PubMed  Google Scholar 

  53. Budai L, Hajdú M, Budai M, Gróf P, Béni S, Noszál B, et al. Gels and liposomes in optimized ocular drug delivery: studies on ciprofloxacin formulations. Int J Pharm. 2007;343:34–40.

    Article  CAS  PubMed  Google Scholar 

  54. Granero GE, Maitre MM, Garnero C, Longhi MR. Synthesis, characterization and in-vitro release studies of a new acetazolamide-HP-beta-CD-TEA inclusion complex. Eur J Med Chem. 2008;43:464–70.

    Article  CAS  PubMed  Google Scholar 

  55. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67:217–23.

    CAS  PubMed  Google Scholar 

  56. North-Root H, Yackovich F, Demetrulias J, Gacula Jr M, Heinze JE, Gacula MJR. Prediction of the eye irritation potential of shampoos using the in vitro SIRC cell toxicity test. Food Chem Toxicol. 1985;23:271–3.

    Article  CAS  PubMed  Google Scholar 

  57. Berry M, Gurung A, Easty DL. Toxicity of antibiotics and antifungals on cultured human corneal cells: effect of mixing, exposure and concentration. Eye. 1995;9:110–5.

    Article  PubMed  Google Scholar 

  58. Saarinen-Savolainen P, Järvinen T, Araki-Sasaki K, Watanabe H, Urtti A. Evaluation of cytotoxicity of various ophthalmic drugs, eye drops excipients and cyclodextrins in an immortalized human corneal epithelial cell line. Pharm Res. 1998;15:1275–80.

    Article  CAS  PubMed  Google Scholar 

  59. Yamaguchi M, Yasueda SI, Isowaki A, Yamamoto M, Kimura M, Inada K, et al. Formulation of an ophthalmic lipid emulsion containing an anti-inflammatory steroidal drug, difluprednate. Int J Pharm. 2005;301:121–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd El-Gawad Helmy Abd El-Gawad.

Ethics declarations

The animal experimental procedures conform to the ethical principles of the scientific committee of the Pharmacy Faculty, Mansoura University, Egypt (code number, 2016–9).

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Gawad, A.EG.H., Soliman, O.A., El-Dahan, M.S. et al. Improvement of the Ocular Bioavailability of Econazole Nitrate upon Complexation with Cyclodextrins. AAPS PharmSciTech 18, 1795–1809 (2017). https://doi.org/10.1208/s12249-016-0609-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0609-9

KEY WORDS

Navigation