Skip to main content
Log in

Development and Characterization of Mixed Niosomes for Oral Delivery Using Candesartan Cilexetil as a Model Poorly Water-Soluble Drug

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study was to prepare candesartan cilexetil-loaded niosomes and mixed niosomes to enhance the aqueous solubility of the drug, thus improving its oral bioavailability. The formulations were prepared using various types and combinations of surfactants, copolymers, and charge-inducing agents. The candesartan cilexetil entrapment efficiency, particle size, and zeta potential of these niosomes varied within the range of 99.06 ± 1.74 to 36.26 ± 2.78, 157.3 ± 3.3 to 658.3 ± 12.7 nm, and −14.7 ± 2.8 to −44.5 ± 1.5 mV, respectively. The in vitro drug release from niosomes was improved after niosomal entrapment compared to pure candesartan cilexetil. The sedimentation behavior study and formulation stability tests against bile salt revealed that mixed niosomes prepared by combining Span 60 and Pluronic P85 demonstrated better stability. The differential scanning calorimetry analysis showed the conversion of crystal structure of candesartan cilexetil to the soluble amorphous form after niosomal encapsulation which induced the drug release. Consequently, oral drug delivery by Span 60/Pluronic P85-mixed niosomes seems feasible due to enhanced drug release and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meringer P, Winter M. Clinical pharmacokinetics and pharmacodynamics. In: Troy D, editor. Remington: the science and practice of pharmacy. 59. 21st ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 1193.

    Google Scholar 

  2. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Vauthier C. Formulating nanoparticles to achieve oral and intravenous delivery of challenging drugs. In: Tiddy G, Tan R, editors. NanoFormulation. Cambridge: RSC Publishing; 2012.

    Google Scholar 

  4. Detroja C, Chavhan S, Sawant K. Enhanced antihypertensive activity of candesartan cilexetil nanosuspension: formulation, characterization and pharmacodynamic study. Sci Pharm. 2011;79(3):635–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nekkanti V, Pillai R, Venkateshwarlu V, Harisudhan T. Development and characterization of solid oral dosage form incorporating candesartan nanoparticles. Pharm Dev Technol. 2009;14(3):290–8.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Z, Gao F, Bu H, Xiao J, Li Y. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: in vitro characteristics and absorption mechanism in rats. Nanomedicine. 2012;8(5):740–7.

    Article  CAS  PubMed  Google Scholar 

  7. Gao F, Zhang Z, Bu H, Huang Y, Gao Z, Shen J, et al. Nanoemulsion improves the oral absorption of candesartan cilexetil in rats: performance and mechanism. J Control Release. 2011;149(2):168–74.

    Article  CAS  PubMed  Google Scholar 

  8. Vaculikova E, Grunwaldova V, Kral V, Dohnal J, Jampilek J. Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation. Molecules. 2012;17(11):13221–34.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Z, Gao F, Bu H, Xiao J, Li Y. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: in vitro characteristics and absorption mechanism in rats. Nanomedicine. 2012;8(5):740–7.

    Article  CAS  PubMed  Google Scholar 

  10. Tavano L, Vivacqua M, Carito V, Muzzalupo R, Caroleo MC, Nicoletta F. Doxorubicin loaded magneto-niosomes for targeted drug delivery. Colloids Surf B: Biointerfaces. 2013;102:803–7.

    Article  CAS  PubMed  Google Scholar 

  11. Sezgin-Bayindir Z, Onay-Besikci A, Vural N, Yuksel N. Niosomes encapsulating paclitaxel for oral bioavailability enhancement: preparation, characterization, pharmacokinetics and biodistribution. J Microencapsul. 2013;30:796–804.

    Article  CAS  PubMed  Google Scholar 

  12. Carafa M, Santucci E, Alhaique F, Coviello T, Murtas E, Riccieri FM, et al. Preparation and properties of new unilamellar non-ionic:ionic surfactant vesicles. Int J Pharm. 1998;160:51–9.

    Article  CAS  Google Scholar 

  13. Kurumada K, Robinson BH. Viscosity studies of Pluronic F127 in aqueous solution. Prog Colloid Polym Sci. 2004;123:12–5.

    CAS  Google Scholar 

  14. Liu T, Guo R. Preparation of a highly stable niosome and its hydrotrope-solubilization action to drugs. Langmuir ACS J Surf Colloids. 2005;21(24):11034–9.

    Article  CAS  Google Scholar 

  15. Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(15):2713–22.

    Article  CAS  PubMed  Google Scholar 

  16. Pardakhty A, Moazeni E, Varshosaz J, Hajhashemi V, Rouholamini NA. Pharmacokinetic study of niosome-loaded insulin in diabetic rats. Daru. 2011;19(6):404–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Yang DB, Zhu JB, Huang ZJ, Ren HX, Zheng ZJ. Synthesis and application of poly(ethylene glycol)-cholesterol (Chol-PEGm) conjugates in physicochemical characterization of nonionic surfactant vesicles. Colloids Surf B: Biointerfaces. 2008;63(2):192–9.

    Article  CAS  PubMed  Google Scholar 

  18. De S, Robinson DH. Particle size and temperature effect on the physical stability of PLGA nanospheres and microspheres containing Bodipy. AAPS PharmSciTech. 2004;5(4):e53.

    Article  PubMed  Google Scholar 

  19. Cevc G, Richardsen H. Lipid vesicles and membrane fusion. Adv Drug Deliv Rev. 1999;38(3):207–32.

    Article  CAS  PubMed  Google Scholar 

  20. Uchegbu IF, Florence AT. Non-ionic surfactant vesicles (niosomes): physical and pharmaceutical chemistry. Adv Colloid Interf Sci. 1995;58:1–55.

    Article  CAS  Google Scholar 

  21. An L, Pan Y, Shen X, Lu H, Yang Y. Rod-like attapulgite/polyimide nanocomposites with simultaneously improved strength, toughness, thermal stability and related mechanisms. J Mater Chem. 2008;18:4928–41.

    Article  CAS  Google Scholar 

  22. Lentz BR, Carpenter TJ, Alford DR. Spontaneous fusion of phosphatidylcholine small unilamellar vesicles in the fluid phase. Biochemistry. 1987;26(17):5389–97.

    Article  CAS  PubMed  Google Scholar 

  23. Nutan MTH, Reddy IK. General principles of suspensions. In: Kulshreshtha AK, Singh ON, Wall GM, editors. Pharmaceutical suspensions: from formulation development to manufacturing. New York: Springer; 2010. p. 52–5.

    Google Scholar 

  24. Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci. 2010;99(4):2049–60.

    CAS  PubMed  Google Scholar 

  25. Rowland RN, Woodley JF. The stability of liposomes in vitro to pH, bile salts and pancreatic lipase. Biochim Biophys Acta. 1980;620(3):400–9.

    Article  CAS  PubMed  Google Scholar 

  26. Chiang CM, Weiner N. Gastrointestinal uptake of liposomes. 1. In vitro and in situ studies. Int J Pharm. 1987;37(1–2):75–85.

    Article  CAS  Google Scholar 

  27. Li H, Yu Y, Faraji Dana S, Li B, Lee CY, Kang L. Novel engineered systems for oral, mucosal and transdermal drug delivery. J Drug Target. 2013;21(7):611–29.

    Article  CAS  PubMed  Google Scholar 

  28. Freund O, Amedee J, Roux D, Laversanne R. In vitro and in vivo stability of new multilamellar vesicles. Life Sci. 2000;67(4):411–9.

    Article  CAS  PubMed  Google Scholar 

  29. Gadras C, Santaella C, Vierling P. Improved stability of highly fluorinated phospholipid-based vesicles in the presence of bile salts. J Control Release. 1999;57(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  30. Di Marzio L, Esposito S, Rinaldi F, Marianecci C, Carafa M. Polysorbate 20 vesicles as oral delivery system: in vitro characterization. Colloids Surf B Biointerfaces. 2013;104:200–6.

    Article  PubMed  Google Scholar 

  31. Sihorkar V, Vyas SP. Polysaccharide coated niosomes for oral drug delivery: formulation and in vitro stability studies. Pharmazie. 2000;55(2):107–13.

    CAS  PubMed  Google Scholar 

  32. Kumar P, Bohidar HB. Aqueous dispersion stability of multi-carbon nanoparticles in anionic, cationic, neutral, bile salt and pulmonary surfactant solutions. Colloids Surf A Physicochem Eng Asp. 2010;361:13–24.

    Article  CAS  Google Scholar 

  33. Aboelwafa AA, El-Setouhy DA, Elmeshad AN. Comparative study on the effects of some polyoxyethylene alkyl ether and sorbitan fatty acid ester surfactants on the performance of transdermal carvedilol proniosomal gel using experimental design. AAPS PharmSciTech. 2010;11(4):1591–602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Guinedi AS, Mortada ND, Mansour S, Hathout RM. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm. 2005;306(1–2):71–82.

    Article  CAS  PubMed  Google Scholar 

  35. Satturwar P, Eddine MN, Ravenelle F, Leroux JC. pH-responsive polymeric micelles of poly(ethylene glycol)-b-poly(alkyl(meth)acrylate-co-methacrylic acid): influence of the copolymer composition on self-assembling properties and release of candesartan cilexetil. Eur J Pharm Biopharm. 2007;65(3):379–87.

    Article  CAS  PubMed  Google Scholar 

  36. Villasmil-Sanchez S, Rabasco AM, Gonzalez-Rodriguez ML. Thermal and 31P-NMR studies to elucidate sumatriptan succinate entrapment behavior in phosphatidylcholine/cholesterol liposomes. Comparative 31P-NMR analysis on negatively and positively-charged liposomes. Colloids Surf B: Biointerfaces. 2013;105:14–23.

    Article  CAS  PubMed  Google Scholar 

  37. Wang M, Yuan Y, Gao Y, Ma HM, Xu HT, Zhang XN, et al. Preparation and characterization of 5-fluorouracil pH-sensitive niosome and its tumor-targeted evaluation: in vitro and in vivo. Drug Dev Ind Pharm. 2012;38(9):1134–41.

    Article  CAS  PubMed  Google Scholar 

  38. Dong Y, Feng SS. Poly(d, l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(30):6068–76.

    Article  CAS  PubMed  Google Scholar 

  39. Nasr M, Mansour S, Mortada ND, Elshamy AA. Vesicular aceclofenac systems: a comparative study between liposomes and niosomes. J Microencapsul. 2008;25(7):499–512.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zerrin Sezgin-Bayindir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sezgin-Bayindir, Z., Antep, M.N. & Yuksel, N. Development and Characterization of Mixed Niosomes for Oral Delivery Using Candesartan Cilexetil as a Model Poorly Water-Soluble Drug. AAPS PharmSciTech 16, 108–117 (2015). https://doi.org/10.1208/s12249-014-0213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0213-9

KEY WORDS

Navigation