Skip to main content
Log in

Model Drug as Pore Former for Controlled Release of Water-Soluble Metoprolol Succinate from Ethylcellulose-Coated Pellets Without Lag Phase: Opportunities and Challenges

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of the present study was to evaluate the feasibility of using model drug metoprolol succinate (MS) as a pore former to modify the initial lag phase (i.e., a slow or non-release phase in the first 1–2 h) associated with the drug release from coated pellets. MS-layered cores with high drug-layering efficiency (97% w/w) were first prepared by spraying a highly concentrated drug aqueous solution (60% w/w, 70°C) on non-pareils without using other binders. The presence of MS in ethylcellulose (EC) coating solution significantly improved the coating process by reducing pellets sticking, which often occurs during organic coating. There may be a maximum physical compatibility of MS with EC, and the physical state of the drug in the functional coating layer of EC/MS (80:20) was simultaneously crystalline and non-crystalline (amorphous or solid molecule solution). The lag phase associated with hydroxypropylcellulose (HPC) as a pore former was not observed when MS was used as a pore former. The drug release from EC/MS-coated pellets was pH independent, inversely proportional to the coating levels, and directly related to the pore former levels. The functional coating layer with MS as a pore former was not completely stabilized without curing. Curing at 60°C for 1 day could substantially improve the stability of EC/MS-coated pellets. The physical state of the drug in the free film of EC/MS (85:15) changed partially from amorphous to crystal when cured at 60°C for 1 day, which should be attributed to the incompatibility of the drug with EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

REFERENCES

  1. Bodmeier R. Tableting of coated pellets. Eur J Pharm Biopharm. 1997;43:1–8.

    Article  CAS  Google Scholar 

  2. Appel LE, Beyerinck RA, Chidlaw MB, Curatolo WJ, Friesen DT, Smith KL, Thombre AG. Hydrogel-driven drug dosage form. In: US Patent 2011/0182947 A1; 2011.

  3. Lindstedt B, Ragnarsson G, Hjärtstam J. Osmotic pumping as a release mechanism for membrane-coated drug formulations. Int J Pharm. 1989;56:261–8.

    Article  CAS  Google Scholar 

  4. Ragnarsson G, Sandberg A, Johansson MO, Lindstedt B, Sjögren J. In vitro release characteristics of a membrane-coated pellet formulation—influence of drug solubility and particle size. Int J Pharm. 1992;79:223–32.

    Article  CAS  Google Scholar 

  5. Marucci M, Ragnarsson G, von Corswant C, Welinder A, Jarke A, Iselau F, et al. Polymer leaching from film coating: effects on the coating transport properties. Int J Pharm. 2011;411:43–8.

    Article  CAS  PubMed  Google Scholar 

  6. Haddish-Berhane N, Jeong SH, Haghighi K, Park K. Modeling film-coat non-uniformity in polymer coated pellets: a stochastic approach. Int J Pharm. 2006;323:64–71.

    Article  CAS  PubMed  Google Scholar 

  7. Ensslin S, Moll KP, Paulus K, Mader K. New insight into modified release pellets-Internal structure and drug release mechanism. J Control Release. 2008;128:149–56.

    Article  CAS  PubMed  Google Scholar 

  8. Kaunisto E, Marucci M, Borgguist P, Axelsson A. Mechanistic modeling of drug release from polymer-coated and swelling and dissolving polymer matrix systems. Int J Pharm. 2011;418:54–77.

    Article  CAS  PubMed  Google Scholar 

  9. Appel LE, Friesen DT, Herbig SM, Thombre AG. Controlled release dosage forms combining immediate release and sustained release of low-solubility drug. In: US Patent 2008/0299188 A1; 2008.

  10. Avramoff A, Domb AJ. In-vitro and in-vivo characteristics of a modified-release double-pulse formulation for a water soluble drug. Int J Clin Pharmacol Ther. 2010;48:250–8.

    Article  CAS  PubMed  Google Scholar 

  11. Verma RK, Garg S. Development and evaluation of osmotically controlled oral drug delivery system of glipizide. Eur J Pharm Biopharm. 2004;57:513–25.

    Article  CAS  PubMed  Google Scholar 

  12. Kumaravelrajan R, Narayanan N, Suba V. Development and evaluation of controlled porosity osmotic pump for nifedipine and metoprolol combination. Lipids Health Dis. 2011;10:51–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gunder W, Lippold BH, Lippold BC. Release of drugs from ethyl cellulose microcapsules (diffusion pellets) with pore formers and pore fusion. Eur J Pharm Sci. 1995;3:203–14.

    Article  CAS  Google Scholar 

  14. Siepmann F, Hoffmann A, Leclercq B, Carlin B, Siepmann J. How to adjust desired drug release patterns from ethylcellulose-coated dosage forms. J Control Release. 2007;119:182–9.

    Article  CAS  PubMed  Google Scholar 

  15. Bodmeier R, Paeratakul O. Constant potassium chloride release from microporous membrane-coated tablets prepared with aqueous colloidal polymer dispersions. Pharm Res. 1991;8:355–9.

    Article  CAS  PubMed  Google Scholar 

  16. Lin WJ, Shiue GR. Elucidation of two water leachable polymers impact on microporous membrane performance and drug permeation. J Memb Sci. 2011;373:189–95.

    Article  CAS  Google Scholar 

  17. Tuntikulwattana S, Mitrevej A, Kerdcharoen T, Williams DB, Sinchaipanid N. Development and optimization of micro/nanoporous osmotic pump tablets. AAPS PharmSciTech. 2010;11:924–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kim JE, Kim SR, Lee SH, Lee CH, Kim DD. The effect of pore formers on the controlled release of cefadroxil from a polyurethane matrix. Int J Pharm. 2000;201:29–36.

    Article  CAS  PubMed  Google Scholar 

  19. Heckötter UM, Larsson A, Sriamornsak P, Kumpugdee-Vollrath M. Effect of annealing time and addition of lactose on release of a model substance from Eudragit® RS coated pellets produced by a fluidized bed coater. Chem Eng Res Des. 2011;89:697–705.

    Article  Google Scholar 

  20. Mishra M, Mishra B. Design and evaluation of microporous membrane coated matrix tablets for a highly water soluble drug. Chem Pharm Bull (Tokyo). 2010;58:995–1000.

    Article  CAS  Google Scholar 

  21. Zhang X, Wang Y, Wang J, Wang Y, Li S. Effect of pore former on the properties of casted film prepared from blends of Eudragit NE 30 D and Eudragit L 30 D-55. Chem Pharm Bull (Tokyo). 2007;55:1261–3.

    Article  CAS  Google Scholar 

  22. Garg A, Gupta M, Bhargava HN. Effect of formulation parameters on the release characteristics of propranolol from asymmetric membrane coated tablets. Eur J Pharm Biopharm. 2007;67:725–31.

    Article  CAS  PubMed  Google Scholar 

  23. Wakode R, Bhanushali R, Bajaj A. Development and evaluation of push-pull based osmotic delivery system for pramipexole. PDA J Pharm Sci Technol. 2008;62:22–31.

    CAS  PubMed  Google Scholar 

  24. Verma RK, Kaushal AM, Garg S. Development and evaluation of extended release formulations of isosorbide mononitrate based on osmotic technology. Int J Pharm. 2003;263:9–24.

    Article  CAS  PubMed  Google Scholar 

  25. Marucci M, Ragnarsson G, Nilsson B, Axelsson A. Osmotic pumping release from ethyl–hydroxypropyl–cellulose-coated pellets: a new mechanistic model. J Control Release. 2010;142:53–60.

    Article  CAS  PubMed  Google Scholar 

  26. Andersson H, Hjärtstam J, Stading M, von Corswant C, Larsson A. Effects of molecular weight on permeability and microstructure of mixed ethyl-hydroxypropyl-cellulose films. Eur J Pharm Sci. 2013;48:240–8.

    Article  CAS  PubMed  Google Scholar 

  27. Lecomte F, Siepmann J, Walther M, MacRae RJ, Bodmeier R. pH-sensitive polymer blends used as coating materials to control drug release from spherical beads: elucidation of the underlying mass transport mechanisms. Pharm Res. 2005;22:1129–41.

    Article  CAS  PubMed  Google Scholar 

  28. Siepmann F, Siepmann J, Walther M, MacRae RJ, Bodmeier R. Polymer blends for controlled release coatings. J Control Release. 2008;125:1–15.

    Article  CAS  PubMed  Google Scholar 

  29. Yang MY, Xie S, Li Q, Wang YL, Chang XY, Shan L, et al. Effects of polyvinylpyrrolidone both as a binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets. Int J Pharm. 2014;465:187–96.

    Article  CAS  PubMed  Google Scholar 

  30. Hema R, Preeti P, Ashwini S, Ulrich PH, Rosario L, Jayanthi IC. Modulated release metoprolol succinate formulation based on ionic interactions: in vivo proof of concept. J Control Release. 2006;111:65–72.

    Article  Google Scholar 

  31. Kendall MJ, Maxwell SR, Sandberg A, Westergren G. Controlled release metoprolol, clinical pharmacokinetic and therapeutic implications. Clin Pharamcokinet. 1991;5:319–30.

    Article  Google Scholar 

  32. Sinchaipanid N, Chitropas P, Mitrevej A. Influences of layering process on theophylline pellet characteristics. Pharm Dev Technol. 2004;9:163–70.

    Article  CAS  PubMed  Google Scholar 

  33. Baki G, Bajdik J, Djuric D, Knop K, Kleinebudde P, Pintye-Hódi K. Role of surface free energy and spreading coefficient in the formulation of active agent-layered pellets. Eur J Pharm Biopharm. 2010;74:324–31.

    Article  CAS  PubMed  Google Scholar 

  34. Ahmad H, Khalifeh I, Alkhalidi B, Aiedeh K, AlKhatib HS. Application of active layering and coating techniques in the development of a multiparticulate, controlled release dosage form of a high-dose, highly soluble drug. Pharm Dev Technol. 2014;19:556–64.

    Article  CAS  PubMed  Google Scholar 

  35. Lee MJ, Seo DY, Lee HE, Wang IC, Kim WS, Jeong MY, et al. In line NIR quantification of film thickness on pharmaceutical pellets during a fluid bed coating process. Int J Pharm. 2011;403:66–72.

    Article  CAS  PubMed  Google Scholar 

  36. Ho L, Cuppok Y, Muschert S, Gordon KC, Pepper M, Shen YC, et al. Effects of film coating thickness and drug layer uniformity on vitro drug release from sustained-release coated pellets: a case study using terahertz pulsed imaging. Int J Pharm. 2009;382:151–9.

    Article  CAS  PubMed  Google Scholar 

  37. Erdmann H, Gebert S, Kolter K, Schepky G. Studies on modifying the tackiness and drug release of Kollicoat EMM 30 D coatings. Drug Dev Ind Pharm. 2003;29:429–40.

    Article  CAS  PubMed  Google Scholar 

  38. Nimkulrat S, Suchiva K, Phinyocheep P, Puttipipatkhachorn S. Influence of selected surfactants on the tackiness of acrylic polymer films. Int J Pharm. 2004;287:27–37.

    Article  CAS  PubMed  Google Scholar 

  39. Wan LSC, Lai WF. The influence of antitack additives on drug release from film-coated granules. Int J Pharm. 1993;94:39–47.

    Article  CAS  Google Scholar 

  40. Felton LA, McGinity JW. Influence of insoluble excipients on film coating systems. Drug Dev Ind Pharm. 2002;28:225–43.

    Article  CAS  PubMed  Google Scholar 

  41. Chan LW, Wong TW, Chua PC, York P, Heng PWS. Anti-tack action of polyvinylpyrrolidone on hydroxypropylmethylcellulose solution. Chem Pharm Bull. 2003;51:107–12.

    Article  CAS  PubMed  Google Scholar 

  42. Marucci M, Arnehed J, Jarke A, Matic H, Nicholas M, Boissier C, et al. Effect of the manufacturing conditions on the structure and permeability of polymer films intended for coating undergoing phase separation. Eur J Pharm Biopharm. 2013;83:301–6.

    Article  CAS  PubMed  Google Scholar 

  43. Marucci M, Hjartstam J, Ragnarsson G, Iselau F, Axelsson A. Coated formulation: new insight into the release mechanism and changes in the film properties with a novel release cell. J Control Release. 2009;139:206–12.

    Article  Google Scholar 

  44. Dashevskya A, Kolterb K, Bodmeier R. pH-independent release of a basic drug from pellets coated with the extended release polymer dispersion Kollicoat® SR 30 D and the enteric polymer dispersion Kollicoat® MAE 30 DP. Eur J Pharm Biopharm. 2004;58:45–9.

    Article  Google Scholar 

  45. Wesseling M, Bodmeier R. Drug release from beads coated with an aqueous colloidal ethylcellulose dispersion, Aquacoat®, or an organic ethylcellulose solution. Eur J Pharm Biopharm. 1999;47:33–8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Important National Science & Technology Specific Projects (Grant no. 2012ZX09301003-001-009) and the State Key Laboratory of Antitoxic Drugs and Toxicology for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Dai, J., Chang, X. et al. Model Drug as Pore Former for Controlled Release of Water-Soluble Metoprolol Succinate from Ethylcellulose-Coated Pellets Without Lag Phase: Opportunities and Challenges. AAPS PharmSciTech 16, 35–44 (2015). https://doi.org/10.1208/s12249-014-0197-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0197-5

KEY WORDS

Navigation