Skip to main content

Advertisement

Log in

Photodegradation of Moxifloxacin in Aqueous and Organic Solvents: A Kinetic Study

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The kinetics of photodegradation of moxifloxacin (MF) in aqueous solution (pH 2.0–12.0), and organic solvents has been studied. MF photodegradation is a specific acid-base catalyzed reaction and follows first-order kinetics. The apparent first-order rate constants (k obs) for the photodegradation of MF range from 0.69 × 10−4 (pH 7.5) to 19.50 × 10−4 min−1 (pH 12.0), and in organic solvents from 1.24 × 10−4 (1-butanol) to 2.04 × 10−4 min−1 (acetonitrile). The second-order rate constant (k 2) for the [H+]-catalyzed and [OH]-catalyzed reactions are 6.61 × 10−2 and 19.20 × 10−2 M−1 min−1, respectively. This indicates that the specific base-catalyzed reaction is about three-fold faster than that of the specific acid-catalyzed reaction probably as a result of the rapid cleavage of diazabicyclononane side chain in the molecule. The k obs-pH profile for the degradation reactions is a V-shaped curve indicating specific acid-base catalysis. The minimum rate of photodegradation at pH 7–8 is due to the presence of zwitterionic species. There is a linear relation between k obs and the dielectric constant and an inverse relation between k obs and the viscosity of the solvent. Some photodegraded products of MF have been identified and pathways proposed for their formation in acid and alkaline solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Sweetman SC. The complete drug reference. 36th ed. London: Pharmaceutical Press; 2009. p. 302.

    Google Scholar 

  2. British Pharmacopoeia. Monograph on moxifloxacin. London: Her Majesty’s Stationary Office; 2013. Electronic version.

    Google Scholar 

  3. O’Neil MJ. The Merck Index. 15th ed. Cambridge: The Royal Society of Chemistry; 2013. p. 1171.

    Google Scholar 

  4. Appelbaum PC, Hunter PA. The fluoroquinolone antibacterials: past, present and future perspective. Int J Antimicrob Agents. 2000;16:5–15.

    Article  CAS  PubMed  Google Scholar 

  5. Eliopulos GM. Activity of newer fluoroquinolones in vitro against gram-positive bacteria. Drugs. 1999;58:23–8.

    Article  Google Scholar 

  6. Sharma SK, George N, Kdhiravan T, Saha PK, Mishra HK, Hanif M. Prevalence of extensively drug resistant tuberculosis among patients with multidrug-resistant tuberculosis: a retrospective hospital-based study. Indian J Med Res. 2009;130:392–5.

    PubMed  Google Scholar 

  7. Soni K. Fluoroquinolones: chemistry & action—a review. Indo Glob J Pharm Sci. 2012;2:43–53.

    CAS  Google Scholar 

  8. Maruri F, Sterling TR, Kaiga AW, Blackman A, Vander Heigden YF, Mayer C, et al. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a propose gyrase numbering system. J Antimicrob Chemother. 2012;67:819–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tarkase KN, Admane SS, Sonkhede NG, Shejwal SR. Development and validation of UV spectrophotometric methods for determination of moxifloxacin HCl in bulk and pharmaceutical formulations. Der Pharma Chemica. 2012;4:1180–5.

    CAS  Google Scholar 

  10. De Guidi G, Giuffrida S, Monti S, Pisu PS, Sortino S, Costanzo LL. Molecular mechanism of phtosensitization induced by drugs XIV: two different behaviors in the photochemistry and photosensitization of antibacterials containing a fluoroquinolone like chromophore. Int J Photoenergy. 1999;1:1–6.

    Article  Google Scholar 

  11. Viola G, Facciola L, Canton M, Vedaldi D, Acqua FD, Aloisi GG, et al. Photophysical and phototoxic properties of the antibacterial fluoroquinolones levofloxacin and moxifloxacin. Chem Biodivers. 2004;1:782–800.

    Article  CAS  PubMed  Google Scholar 

  12. Hidalgo ME, Pessoa C, Fernandez E, Cardenas AM. Comparative determination 232 of photodegradation kinetics of quinolones. J Photochem Photobiol A Chem. 1993;73:135–8.

    Article  CAS  Google Scholar 

  13. Burhenne J, Ludwig M, Spiteller M. Polar photodegradation products of quinolones determined by HPLC/MS/MS. Chemosphere. 1999;38:1279–86.

    Article  CAS  Google Scholar 

  14. Kummerer K. Antibiotics in the aquatic environment—a review—part I. Chemosphere. 2009;75:417–34.

    Article  PubMed  Google Scholar 

  15. United States Pharmacopoeia 30–National Formulary 25. Rockville, MD, USA: United States Pharmacopoeial Convention, Inc., Electronic version; 2007.

  16. Lorenzo F, Navaratnam S, Edge R, Allen NS. Primary photophysical properties of moxifloxacin—a fluoroquinolone antibiotic. Photochem Photobiol. 2008;84:1118–25.

    Article  CAS  PubMed  Google Scholar 

  17. Doorslaer XV, Demeestere K, Heynderickx PM, Langenhove HV, Dewulf J. UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption. Appl Catal B Environ. 2011;101:540–7.

    Article  Google Scholar 

  18. Sturini M, Speltini A, Maraschi F, Profumo A, Pretali L, Irastorza EA, et al. Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight. Appl Catal B Environ. 2012;119–120:32–9.

    Article  Google Scholar 

  19. Hubicka U, Zmudzki P, Talik P, Zuromska BW, Krzek J. Photodegradation assessment of ciprofloxacin, moxifloxacin, norfloxacin and ofloxacin in the presence of excipients from tablets by UPLC-MS/MS and DSC. J Chem Cent. 2013;7:1–12.

    Article  Google Scholar 

  20. Torniainen K, Tammilehto S, Ulvi V. The effect of pH, buffer type and drug concentration on the photodegradation of ciprofloxacin. Int J Pharm. 1996;132:53–61.

    Article  CAS  Google Scholar 

  21. Burhenne J, Ludwig M, Nikoloudis P, Spiteller M. Photolytic degradation of fluoroquinolone carboylic acid in aqueous solution. Part I: primary photoproducts and halflives. Environ Sci Pollut Res. 1997;4:10–5.

    Article  CAS  Google Scholar 

  22. Burhenne J, Ludwig M, Spiteller M. Photolytic degradation of fluoroquinolone carboylic acid in aqueous solution. Part II: isolation and structural elucidation of polar photometabolities. Environ Sci Pollut Res. 1997;4:61–7.

    Article  CAS  Google Scholar 

  23. Lovdahl MJ, Priebe SR. Characterization of clinafloxacin photodegradation products by LC-MS/MS andNMR. J Pharm Biomed Anal. 2000;23:521–34.

    Article  CAS  PubMed  Google Scholar 

  24. Salgado HRN, Moreno PRH, Braga AL, Schapoval EES. Photodegradation of sparfloxacin 259 and isolation of its degradation products by preparative HPLC. Rev Cienc Farm Basica Apl. 2005;26:47–54.

    CAS  Google Scholar 

  25. Motwani SK, Khar RK, Ahmad FJ, Chopra S, Kohli K, Talegaonkar S, et al. Stability indicating high performance thin-layer chromatographic determination of gatifloxacin as bulk drug and form polymeric nanoparticles. Anal Chim Acta. 2006;576:253–60.

    Article  CAS  PubMed  Google Scholar 

  26. Budai M, Grof P, Zimmer A, Papai K, Klebovich I, Ludanyi K. UV light induced photodegradation of liposomes encapsulated fluoroquinolones. J Photochem Photobiol A Chem. 2008;198:268–73.

    Article  CAS  Google Scholar 

  27. Wang J, Li W, Li C-G, Hu Y-Z. Photodegradation of fleroxacin injection: different products with different concentration levels. AAPS PharmSciTech. 2011;12:872–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ahmad I, Bano R, Sheraz MA, Ahmed S, Mirza T, Ansari SA. Photodegradation of levofloxacin in aqueous and organic solvents: a kinetic study. Acta Pharma. 2013;63:221–7.

    Google Scholar 

  29. Hutchinson DJ, Johnson CE, Klein KC. Stability of extemporaneously prepared moxifloxacin oral suspensions. Am J Health Syst Pharm. 2009;66:665–7.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar MT, Srikanth G, Rao JV, Rao KS. Development and validation of HPLC-UV method for the estimation of levofloxacin in human plasma. Int J Pharm Pharm Sci. 2011;3:247–50.

    CAS  Google Scholar 

  31. Rama Subbaiah P, Kumudhavalli MV, Saravanan C, Kumar M, Chandira RM. Method development and validation for estimation of moxifloxacin HCl in tablet dosage form by RP-HPLC method. Pharm Anal Acta. 2010;1:1–2.

    Google Scholar 

  32. Sultana N, Arayne MS, Akhtar M, Shamim S. High-performance liquid chromatography assay for moxifloxacin in bulk, pharmaceutical formulations and serum: application to in-vitro metal interactions. J Chin Chem Soc. 2010;57:1–10.

    Google Scholar 

  33. Dewani AP, Barik BB, Kanungo SK, Wattyani BR, Chandewar AV. Development and validation of RP-HPLC method for the determination of moxifloxacin in presence of its degradation products. Am-Eurasian J Sci Res. 2011;6:192–200.

    CAS  Google Scholar 

  34. Kunagu VS, Janardhan M. Development and validation of stability-indicating RP-HPLC method for estimation of moxifloxacin in moxifloxacin HCl tablets. Int J Pharm Invent. 2012;2:24–33.

    Google Scholar 

  35. Wang N, Zhu L, Zhao X, Yang W, Sun H. Improved HPLC method for the determination 285 of moxifloxacin in application to a pharmacokinetics study in patients with infectious diseases. ISRN Pharmacol. 2013;2013:1–7.

    Google Scholar 

  36. Motwani SK, Khar RK, Ahmad FJ, Chopra S, Kohli K, Talegaonkar S. Application of a validated stability indicating densitometric thin-layer chromatographic method to stress degradation studies on moxifloxacin. Anal Chim Acta. 2007;582:75–82.

    Article  CAS  PubMed  Google Scholar 

  37. Devi ML, Chandrasekhar KB. A validated, specific stability-indicating RP-LC method for moxifloxacin and its related substances. Chromatographia. 2009;69:993–9.

    Article  Google Scholar 

  38. Hatchard CG, Parker CA. A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proc R Soc Lond A. 1956;235:518–36.

    Article  CAS  Google Scholar 

  39. Ahmed S, Sheraz MA, Yorucu C, Rehman IU. Quantitative determination of tolfenamic acid and its pharmaceutical formulation using FTIR and UV spectrometry. Cent Eur J Chem. 2013;11:1533–41.

    Article  CAS  Google Scholar 

  40. Finholt P, Jurgensen G, Kristiansen H. Catalytic effect of buffers on degradation of penicillin G in aqueous solution. J Pharm Sci. 1965;54:387–93.

    Article  CAS  PubMed  Google Scholar 

  41. Connors KA, Amidon CL, Stella VJ, editors. Chemical stability of pharmaceuticals: a hand book for pharmacists. 2nd ed. New York: Wiley; 1986. p. 198–207. 250–256.

    Google Scholar 

  42. Zia H, Teharan M, Zargarbashi R. Kinetics of carbenicillin degradation in aqueous solution. Can J Pharm Sci. 1974;9:112–7.

    CAS  Google Scholar 

  43. Schwartz MA, Bara E, Rubycz I, Granatek AP. Stability of methacillin. J Pharm Sci. 1965;54:149–50.

    Article  CAS  PubMed  Google Scholar 

  44. Maulding HV, Nazareno JP, Pearson JE, Michaelis AF. Practical kinetics III: benzodiazepine hydrolysis. J Pharm Sci. 1975;64:278–84.

    Article  CAS  PubMed  Google Scholar 

  45. Mollica JA, Rehm CR, Smith JB, Govan HK. Hydrolysis of benzothiadiazines. J Pharm Sci. 1971;57:1380–4.

    Article  Google Scholar 

  46. Notari RE, Caiola SM. Catalysis of streptovitacin A dehydration: kinetics and mechanism. J Pharm Sci. 1969;58:1203–8.

    Article  CAS  PubMed  Google Scholar 

  47. Garrett ER, Seyda K. Prediction of stability in pharmaceutical preparations XX: stability evaluation and bioanalysis of cocaine and benzoylecgonine by high performance liquid chromatography. J Pharm Sci. 1983;72:258–71.

    Article  CAS  PubMed  Google Scholar 

  48. Notari RE, Chin ML, Wittebort R. Arabinosylcytosine stability in aqueous solution: 313 pH profile and shelf life productions. J Pharm Sci. 1972;61:1189–96.

    Article  CAS  PubMed  Google Scholar 

  49. Hamilton-Miller JMT. The effect of pH and of temperature on the stability and bioactivity of nystatin and amphotericin B. J Pharm Pharmacol. 1973;25:401–7.

    Article  CAS  PubMed  Google Scholar 

  50. Notari RE, DeYoung JL. Kinetics and mechanisms of degradation of the antileukemic agent 5-azacytidine in aqueous solution. J Pharm Sci. 1975;64:1148–57.

    Article  CAS  PubMed  Google Scholar 

  51. Langlois M-H, Montagut M, Dubost J-P, Grellet J, Saux M-C. Protonation equilibrium and lipophilicity of moxifloxacin. J Pharm Biomed Anal. 2005;37:389–93.

    Article  CAS  PubMed  Google Scholar 

  52. Lemaire S, Tulkens PM, Bambeke FV. Contrasting effects of acidic pH on the extracellular and intracellular activities of the anti-gram-positive flouroquinolones moxifloxacin and delafloxacin against Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55:649–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Nangia A, Lam F, Hung CT. A stability of aqueous solution of norfloxacin. Drug Dev Ind Pharm. 1991;17:681–94.

    Article  CAS  Google Scholar 

  54. Hubicka U, Krzek J, Zuromska B, Walczak M, Zylewski M, Pawlowski D. Determination of photostability and photodegradation products of moxifloxacin in the presence of metal ions in solutions and solid phase. Kinetics and identification of photoproducts. Photochem Photobiol Sci. 2012;11:351–7.

    Article  CAS  PubMed  Google Scholar 

  55. Park HR, Kim TH, Bark KM. Physicochemical properties of quinolone antibiotics in various environments. Eur J Med Chem. 2002;37:443–60.

    Article  CAS  PubMed  Google Scholar 

  56. Ahmad I, Tollin G. Solvent effects on flavin electron transfer reactions. Biochemistry. 1981;20:5925–8.

    Article  CAS  PubMed  Google Scholar 

  57. Ahmad I, Fasihullah Q, Vaid FHM. Photolysis of formylmethylflavin in aqueous and organic solvents. Photochem Photobiol Sci. 2006;5:680–5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ali Sheraz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Bano, R., Musharraf, S.G. et al. Photodegradation of Moxifloxacin in Aqueous and Organic Solvents: A Kinetic Study. AAPS PharmSciTech 15, 1588–1597 (2014). https://doi.org/10.1208/s12249-014-0184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0184-x

KEY WORDS

Navigation