Skip to main content
Log in

Characterization of CYP3A5 Selective Inhibitors for Reaction Phenotyping of Drug Candidates

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

CYP3A is one of the most important classes of enzymes and is involved in the metabolism of over 70% drugs. While several selective CYP3A4 inhibitors have been identified, the search for a selective CYP3A5 inhibitor has turned out to be rather challenging. Recently, several selective CYP3A5 inhibitors have been identified through high-throughput screening of ~ 11,000 compounds and hit expansion using human recombinant enzymes. We set forth to characterize the three most selective CYP3A5 inhibitors in a more physiologically relevant system of human liver microsomes to understand if these inhibitors can be used for reaction phenotyping studies in drug discovery settings. Gomisin A and T-5 were used as selective substrate reactions for CYP3A4 and CYP3A5 to determine IC50 values of the two enzymes. The results showed that clobetasol propionate and loteprednol etabonate were potent and selective CYP3A5 reversible inhibitors with selectivity of 24-fold against CYP3A4 and 39-fold or more against the other major CYPs. The selectivity of difluprednate in HLM is much weaker than that in the recombinant enzymes due to hydrolysis of the acetate group in HLM. Based on the selectivity data, loteprednol etabonate can be utilized as an orthogonal approach, when experimental fraction metabolized of CYP3A5 is greater than 0.5, to understand CYP3A5 contribution to drug metabolism and its clinical significance. Future endeavors to identify even more selective CYP3A5 inhibitors are warranted to enable accurate determination of CYP3A5 contribution to metabolism versus CYP3A4.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

CLint :

Intrinsic clearance

CYP:

Cytochrome P450

DDI:

Drug-drug interactions

FDA:

U.S. Food and Drug Administration

f m :

Fraction metabolized

HLM:

Human liver microsomes

IC50 :

Half-maximal inhibitory concentration

IS:

Internal standards

K m :

The concentration of substrate which permits the enzyme to achieve half Vmax

k obs :

Inactivation rate constant

LC–MS/MS:

Liquid chromatography with tandem mass spectrometry

MgCl2 :

Magnesium chloride

MRM:

Multiple-reaction monitoring

NADPH:

Nicotinamide adenine dinucleotide phosphate, reduced form

QSAR:

Quantitative structure–activity relationship

rCYP:

Recombinant cytochrome P450

RT:

Room temperature

TDI:

Time-dependent inhibition

V max :

The maximum rate of reaction

References

  1. Saravanakumar A, Sadighi A, Ryu R, Akhlaghi F. Physicochemical properties, biotransformation, and transport pathways of established and newly approved medications: a systematic review of the top 200 most prescribed drugs vs. the FDA-approved drugs between 2005 and 2016. Clin Pharmacokinet. 2019;58(10):1281–94. https://doi.org/10.1007/s40262-019-00750-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Daly AK. Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet. 2006;45(1):13–31. https://doi.org/10.2165/00003088-200645010-00002.

    Article  CAS  PubMed  Google Scholar 

  3. Hines RN. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. 2007;21(4):169–75. https://doi.org/10.1002/jbt.20179.

    Article  CAS  PubMed  Google Scholar 

  4. Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Expression of CYP3A in the human liver–evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–34. https://doi.org/10.1111/j.1432-1033.1997.00625.x.

    Article  CAS  PubMed  Google Scholar 

  5. Wilkening S, Bader A. Differential regulation of CYP3A4 and CYP3A7 by dimethylsulfoxide in primary human hepatocytes. Basic Clin Pharmacol Toxicol. 2004;95(2):92–3. https://doi.org/10.1111/j.1742-7843.2004.950209.x.

    Article  CAS  PubMed  Google Scholar 

  6. Betts S, Björkhem-Bergman L, Rane A, Ekström L. Expression of CYP3A4 and CYP3A7 in human foetal tissues and its correlation with nuclear receptors. Basic Clin Pharmacol Toxicol. 2015;117(4):261–6. https://doi.org/10.1111/bcpt.12392.

    Article  CAS  PubMed  Google Scholar 

  7. Zientek MA, Youdim K. Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab Dispos. 2015;43(1):163–81. https://doi.org/10.1124/dmd.114.058750.

    Article  CAS  PubMed  Google Scholar 

  8. Leeder JS, Gaedigk R, Marcucci KA, Gaedigk A, Vyhlidal CA, Schindel BP, et al. Variability of CYP3A7 expression in human fetal liver. J Pharmacol Exp Ther. 2005;314:626–35. https://doi.org/10.1124/jpet.105.086504.

    Article  CAS  PubMed  Google Scholar 

  9. Burk O, Tegude H, Koch I, Hustert E, Wolbold R, Glaeser H, et al. Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J Biol Chem. 2002;277:24280–8. https://doi.org/10.1074/jbc.M202345200.

    Article  CAS  PubMed  Google Scholar 

  10. Langman L, van Gelder T, van Schaik RHN. Chapter 5 - Pharmacogenomics aspect of immunosuppressant therapy. In: Oellerich M, Dasgupta A, editors. Personalized immunosuppression in transplantation. San Diego: Elsevier; 2016. p. 109–24.

    Chapter  Google Scholar 

  11. Hsu M-H, Johnson EF. Active-site differences between substrate-free and ritonavir-bound cytochrome P450 (CYP) 3A5 reveal plasticity differences between CYP3A5 and CYP3A4. J Biol Chem. 2019;294(20):8015–22. https://doi.org/10.1074/jbc.RA119.007928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-Å resolution*. J Biol Chem. 2004;279(37):38091–4. https://doi.org/10.1074/jbc.C400293200.

    Article  CAS  PubMed  Google Scholar 

  13. Tseng E, Walsky RL, Luzietti RA Jr, Harris JJ, Kosa RE, Goosen TC, et al. Relative contributions of cytochrome CYP3A4 versus CYP3A5 for CYP3A-cleared drugs assessed in vitro using a CYP3A4-selective inactivator (CYP3cide). Drug Metab Dispos. 2014;42:1163–73. https://doi.org/10.1124/dmd.114.057000.

    Article  CAS  PubMed  Google Scholar 

  14. Vourvahis M, McFadyen L, Heera J, Clark A. Clinical relevance of CYP3A5 genotype on maraviroc exposures. Drug Metab Dispos. 2015;43(5):771–2. https://doi.org/10.1124/dmd.115.063321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dennison JB, Kulanthaivel P, Barbuch RJ, Renbarger JL, Ehlhardt WJ, Hall SD. Selective metabolism of vincristine in vitro by CYP3A5. Drug Metab Dispos. 2006;34(8):1317–27. https://doi.org/10.1124/dmd.106.009902.

    Article  CAS  PubMed  Google Scholar 

  16. Khan AR, Raza A, Firasat S, Abid A. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis. Pharmacogenomics J. 2020;20(4):553–62. https://doi.org/10.1038/s41397-019-0144-7.

    Article  CAS  PubMed  Google Scholar 

  17. Jin Y, Wang YH, Miao J, Li L, Kovacs RJ, Marunde R, et al. Cytochrome P450 3A5 genotype is associated with verapamil response in healthy subjects. Clin Pharmacol Ther. 2007;82:579–85. https://doi.org/10.1038/sj.clpt.6100208.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu HJ, Yuan SH, Fang Y, Sun XZ, Kong H, Ge WH. The effect of CYP3A5 polymorphism on dose-adjusted cyclosporine concentration in renal transplant recipients: a meta-analysis. Pharmacogenomics J. 2011;11(3):237–46. https://doi.org/10.1038/tpj.2010.26.

    Article  CAS  PubMed  Google Scholar 

  19. Chen L, Prasad GVR. CYP3A5 polymorphisms in renal transplant recipients: influence on tacrolimus treatment. Pharmacogenomics Pers Med. 2018;11:23–33. https://doi.org/10.2147/pgpm.s107710.

    Article  CAS  Google Scholar 

  20. Skiles JL, Chiang C, Li CH, Martin S, Smith EL, Olbara G, et al. CYP3A5 genotype and its impact on vincristine pharmacokinetics and development of neuropathy in Kenyan children with cancer. Pediatr Blood Cancer. 2018;65(3):1–14. https://doi.org/10.1002/pbc.26854.

    Article  CAS  Google Scholar 

  21. Noll EM, Eisen C, Stenzinger A, Espinet E, Muckenhuber A, Klein C, et al. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. Nat Med. 2016;22:278–87. https://doi.org/10.1038/nm.4038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mao Q, Wang L, Liang Y, Dong G, Xia W, Hu J, et al. CYP3A5 suppresses metastasis of lung adenocarcinoma through ATOH8/Smad1 axis. Am J Cancer Res. 2020;10:3194–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gorjala P, Kittles RA, Goodman OB Jr, Mitra R. Role of CYP3A5 in modulating androgen receptor signaling and its relevance to African American men with prostate cancer. Cancers. 2020;12(4):989–1005. https://doi.org/10.3390/cancers12040989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang F, Chen L, Yang Y-C, Wang X-m, Wang R-Y, Li L, et al. CYP3A5 functions as a tumor suppressor in hepatocellular carcinoma by regulating mTORC2/Akt signaling. Cancer Res. 2015;75:1470–81. https://doi.org/10.1158/0008-5472.can-14-1589.

  25. Buck E, Sprick M, Gaida MM, Grüllich C, Weber TF, Herpel E, et al. Tumor response to irinotecan is associated with CYP3A5 expression in colorectal cancer. Oncol Lett. 2019;17:3890–8. https://doi.org/10.3892/ol.2019.10043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Werk AN, Cascorbi I. Functional gene variants of CYP3A4. Clin Pharmacol Ther. 2014;96(3):340–8. https://doi.org/10.1038/clpt.2014.129.

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Buchman CD, Seetharaman J, Miller DJ, Huber AD, Wu J, et al. Unraveling the structural basis of selective inhibition of human cytochrome P450 3A5. J Am Chem Soc. 2021;143:18467–80. https://doi.org/10.1021/jacs.1c07066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li X, Song X, Kamenecka TM, Cameron MD. Discovery of a highly selective CYP3A4 inhibitor suitable for reaction phenotyping studies and differentiation of CYP3A4 and CYP3A5. Drug Metab Dispos. 2012;40(9):1803–9. https://doi.org/10.1124/dmd.112.046144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walsky RL, Obach RS, Hyland R, Kang P, Zhou S, West M, et al. Selective mechanism-based inactivation of CYP3A4 by CYP3cide (PF-04981517) and its utility as an in vitro tool for delineating the relative roles of CYP3A4 versus CYP3A5 in the metabolism of drugs. Drug Metab Dispos. 2012;40:1686–97. https://doi.org/10.1124/dmd.112.045302.

    Article  CAS  PubMed  Google Scholar 

  30. Wright WC, Chenge J, Wang J, Girvan HM, Yang L, Chai SC, et al. Clobetasol propionate is a heme-mediated selective inhibitor of human cytochrome P450 3A5. J Med Chem. 2020;63:1415–33. https://doi.org/10.1021/acs.jmedchem.9b02067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Di L. Reaction phenotyping to assess victim drug-drug interaction risks. Expert Opin Drug Discovery. 2017;12(11):1105–15. https://doi.org/10.1080/17460441.2017.1367280.

    Article  CAS  Google Scholar 

  32. Wu J, Guan X, Dai Z, He R, Ding X, Yang L, et al. Molecular probes for human cytochrome P450 enzymes: recent progress and future perspectives. Coord Chem Rev. 2021;427:213600. https://doi.org/10.1016/j.ccr.2020.213600.

    Article  CAS  Google Scholar 

  33. Li X, Jeso V, Heyward S, Walker GS, Sharma R, Micalizio GC, et al. Characterization of T-5 N-oxide formation as the first highly selective measure of CYP3A5 activity. Drug Metab Dispos. 2014;42:334–42. https://doi.org/10.1124/dmd.113.054726.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu J-J, Cao Y-F, Feng L, He Y-Q, Hong JY, Dou T-Y, et al. A Naturally occurring isoform-specific probe for highly selective and sensitive detection of human cytochrome P450 3A5. J Med Chem. 2017;60:3804–13. https://doi.org/10.1021/acs.jmedchem.7b00001.

    Article  CAS  PubMed  Google Scholar 

  35. Wu JJ, Ge GB, He YQ, Wang P, Dai ZR, Ning J, et al. Gomisin A is a novel isoform-specific probe for the selective sensing of human cytochrome P450 3A4 in liver microsomes and living cells. AAPS J. 2016;18:134–45. https://doi.org/10.1208/s12248-015-9827-4.

    Article  CAS  PubMed  Google Scholar 

  36. Cao YF, Zhang YY, Li J, Ge GB, Hu D, Liu HX, et al. CYP3A catalyses schizandrin biotransformation in human, minipig and rat liver microsomes. Xenobiotica. 2010;40:38–47. https://doi.org/10.3109/00498250903366052.

    Article  CAS  PubMed  Google Scholar 

  37. Ge G-B, Ning J, Hu L-H, Dai Z-R, Hou J, Cao Y-F, et al. A highly selective probe for human cytochrome P450 3A4: isoform selectivity, kinetic characterization and its applications. Chem Commun. 2013;49:9779–81. https://doi.org/10.1039/C3CC45250F.

    Article  CAS  Google Scholar 

  38. Ning J, Yu ZL, Hu LH, Wang C, Huo XK, Deng S, et al. Characterization of phase I metabolism of resibufogenin and evaluation of the metabolic effects on its antitumor activity and toxicity. Drug Metab Dispos. 2015;43:299–308. https://doi.org/10.1124/dmd.114.060996.

    Article  CAS  PubMed  Google Scholar 

  39. Zientek M, Youdim K. Simultaneous determination of multiple CYP inhibition constants using a cocktail-probe approach. Methods Mol Biol (Clifton, NJ). 2013;987:11–23. https://doi.org/10.1007/978-1-62703-321-3_2.

    Article  CAS  Google Scholar 

  40. Zientek M, Miller H, Smith D, Dunklee MB, Heinle L, Thurston A, et al. Development of an in vitro drug-drug interaction assay to simultaneously monitor five cytochrome P450 isoforms and performance assessment using drug library compounds. J Pharmacol Toxicol Methods. 2008;58:206–14. https://doi.org/10.1016/j.vascn.2008.05.131.

    Article  CAS  PubMed  Google Scholar 

  41. Yates P, Eng H, Di L, Obach RS. Statistical methods for analysis of time-dependent inhibition of cytochrome p450 enzymes. Drug Metab Dispos. 2012;40(12):2289–96. https://doi.org/10.1124/dmd.112.047233.

    Article  CAS  PubMed  Google Scholar 

  42. Lu Y, Hendrix CW, Bumpus NN. Cytochrome P450 3A5 plays a prominent role in the oxidative metabolism of the anti-human immunodeficiency virus drug maraviroc. Drug Metab Dispos. 2012;40(12):2221–30. https://doi.org/10.1124/dmd.112.048298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Substantial contributions to the conception or design of the work or the acquisition, analysis, or interpretation of data for the work: JC, LT, SJ, MH, GG, ED, DM, GB, YC, and LD.

Drafting the work or revising it critically for important intellectual content: JC, LT, SJ, ED, and LD.

Final approval of the version to be published: JC, LT, SJ, MH, GG, ED, DM, GB, YC, and LD.

Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: JC, LT, SJ, MH, GG, ED, DM, GB, YC, and LD.

Corresponding author

Correspondence to Li Di.

Ethics declarations

Conflict of Interest

The authors are employees of Pfizer Inc., New York, NY, USA, and may hold Pfizer stocks.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Tang, L.W.T., Jordan, S. et al. Characterization of CYP3A5 Selective Inhibitors for Reaction Phenotyping of Drug Candidates. AAPS J 26, 26 (2024). https://doi.org/10.1208/s12248-024-00894-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-024-00894-x

Keywords

Navigation