Skip to main content

Advertisement

Log in

PK/PD and Bioanalytical Considerations of AAV-Based Gene Therapies: an IQ Consortium Industry Position Paper

  • Review Article
  • Emerging Trends in Preclinical and Clinical Development of Cell and Gene Therapies
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Interest and efforts to use recombinant adeno-associated viruses (AAV) as gene therapy delivery tools to treat disease have grown exponentially. However, gaps in understanding of the pharmacokinetics/pharmacodynamics (PK/PD) and disposition of this modality exist. This position paper comes from the Novel Modalities Working Group (WG), part of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ). The pan-industry WG effort focuses on the nonclinical PK and clinical pharmacology aspects of AAV gene therapy and related bioanalytical considerations.

Traditional PK concepts are generally not applicable to AAV-based therapies due to the inherent complexity of a transgene-carrying viral vector, and the multiple steps and analytes involved in cell transduction and transgene-derived protein expression. Therefore, we explain PK concepts of biodistribution of AAV-based therapies and place key terminologies related to drug exposure and PD in the proper context. Factors affecting biodistribution are presented in detail, and guidelines are provided to design nonclinical studies to enable a stage-gated progression to Phase 1 testing. The nonclinical and clinical utility of transgene DNA, mRNA, and protein analytes are discussed with bioanalytical strategies to measure these analytes. The pros and cons of qPCR vs. ddPCR technologies for DNA/RNA measurement and qualitative vs. quantitative methods for transgene-derived protein are also presented. Last, best practices and recommendations for use of clinical and nonclinical data to project human dose and response are discussed. Together, the manuscript provides a holistic framework to discuss evolving concepts of PK/PD modeling, bioanalytical technologies, and clinical dose selection in gene therapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leborgne C, Barbon E, Alexander JM, Hanby H, Delignat S, Cohen DM, et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat Med. 2020;26(7):1096–101.

    Article  CAS  PubMed  Google Scholar 

  2. Elmore ZC, Oh DK, Simon KE, Fanous MM, Asokan A. Rescuing AAV gene transfer from neutralizing antibodies with an IgG-degrading enzyme. JCI. Insight. 2020;5(19)

  3. Kiessling P, Lledo-Garcia R, Watanabe S, Langdon G, Tran D, Bari M, et al. The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: a randomized phase 1 study. Sci Transl Med. 2017;9(414)

  4. Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122(1):23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther. 2006;14(3):316–27.

    Article  CAS  PubMed  Google Scholar 

  6. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A. 2002;99(18):11854–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. European Medicines Agency. ICH S12 Guideline on nonclinical biodistribution considerations for gene therapy products. 2023.

  8. European Medicine Agency. Guideline on immunogenicity assessment of biotechnology-derived therapeutic proteins. 2006.

  9. US Food and Drug Administration. Guidance for industry: preclinical assessment of investigational cellular and gene therapy products. 2013.

  10. European Medicines Agency. Guideline on the quality, non-clinical and clinical aspects of gene therapy medicinal products. 2018.

  11. US Food and Drug Administration. Guidance for Industry: human gene therapy for rare diseases. 2020.

  12. US Food and Drug Administration. Guidance for industry: design and analysis of shedding studies for virus or bacteria-based gene therapy and oncolytic products. 2015.

  13. European Medicines Agency. ICH considerations: general principles to address virus and vector shedding. 2009.

  14. Vance MA, Mitchell, A., Samulski, R.J. AAV biology, infectivity and therapeutic use from bench to clinic. Gene Therapy. 2015.

  15. Halbert CL, Lam SL, Miller AD. High-efficiency promoter-dependent transduction by adeno-associated virus type 6 vectors in mouse lung. Hum Gene Ther. 2007;18(4):344–54.

    Article  CAS  PubMed  Google Scholar 

  16. Ni L, Scott L Jr, Campbell HM, Pan X, Alsina KM, Reynolds J, et al. Atrial-specific gene delivery using an adeno-associated viral vector. Circ Res. 2019;124(2):256–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu W, Yang Y, Yao F, Dong L, Xia X, Zhang S, et al. AAV-mediated in vivo genome editing in vascular endothelial cells. Methods. 2021;194:12–7.

    Article  CAS  PubMed  Google Scholar 

  18. Ouyang Z, Wei K. miRNA in cardiac development and regeneration. Cell Regen. 2021;10(1):14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang J, Liu L, Xu T, Zhang W, Zhao C, Li S, et al. Exploring cell-specific miRNA regulation with single-cell miRNA-mRNA co-sequencing data. BMC Bioinformatics. 2021;22(1):578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Serrano-Mendioroz I, Sampedro A, Alegre M, Enriquez de Salamanca R, Berraondo P, Fontanellas A. An inducible promoter responsive to different porphyrinogenic stimuli improves gene therapy vectors for acute intermittent porphyria. Hum Gene Ther. 2018;29(4):480–91.

    Article  CAS  PubMed  Google Scholar 

  21. Le Guiner C, Stieger K, Toromanoff A, Guilbaud M, Mendes-Madeira A, Devaux M, et al. Transgene regulation using the tetracycline-inducible TetR-KRAB system after AAV-mediated gene transfer in rodents and nonhuman primates. PLoS One. 2014;9(9):e102538.

    Article  PubMed  PubMed Central  Google Scholar 

  22. García-Olloqui P, Rodriguez-Madoz JR, Di Scala M, Abizanda G, Vales Á, Olagüe C, et al. Effect of heart ischemia and administration route on biodistribution and transduction efficiency of AAV9 vectors. J Tissue Eng Regen Med. 2020;14(1):123–34.

    Article  PubMed  Google Scholar 

  23. Chen X, Lim DA, Lawlor MW, Dimmock D, Vite CH, Lester T, et al. Biodistribution of adeno-associated virus gene therapy following cerebrospinal fluid-directed administration. Hum Gene Ther. 2023;34(3-4):94–111.

    Article  CAS  PubMed  Google Scholar 

  24. Richardson RM, Bankiewicz KS, Christine CW, Van Laar AD, Gross RE, Lonser R, et al. Data-driven evolution of neurosurgical gene therapy delivery in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2020;91(11):1210–8.

    Article  PubMed  Google Scholar 

  25. Luxturna [package insert]. Philadelphia, PA, USA: Spark Therapeutics, Inc.; 2022.

  26. Upstaza: EPAR-medicine overview. European Medicines Agency; 2022.

  27. European Medicines Agency. Guideline on the non-clinical studies required before first clinical use of gene therapy medicinal products. 2008.

  28. Greig JA, Calcedo R, Kuri-Cervantes L, Nordin JML, Albrecht J, Bote E, et al. AAV8 Gene Therapy for Crigler-Najjar syndrome in macaques elicited transgene t cell responses that are resident to the liver. Mol Ther Methods Clin Dev. 2018;11:191–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thomsen G, Burghes AHM, Hsieh C, Do J, Chu BTT, Perry S, et al. Biodistribution of onasemnogene abeparvovec DNA, mRNA and SMN protein in human tissue. Nat Med. 2021;27(10):1701–11.

    Article  CAS  PubMed  Google Scholar 

  30. Manini A, Abati E, Nuredini A, Corti S, Comi GP. Adeno-associated virus (AAV)-Mediated gene therapy for duchenne muscular dystrophy: the issue of transgene persistence. Front Neurol. 2021;12:814174.

    Article  PubMed  Google Scholar 

  31. Padula A, Petruzzelli R, Philbert SA, Church SJ, Esposito F, Campione S, et al. Full-length ATP7B reconstituted through protein trans-splicing corrects Wilson disease in mice. Mol Ther Methods Clin Dev. 2022;26:495–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wright JF. Product-Related impurities in clinical-grade recombinant AAV vectors: characterization and risk assessment. Biomedicines. 2014;2(1):80–97.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang TY, Braun M, Lembke W, McBlane F, Kamerud J, DeWall S, et al. Immunogenicity assessment of AAV-based gene therapies: an IQ consortium industry white paper. Mol Ther Methods Clin Dev. 2022;26:471–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. International Pharmaceutical Regulators Programme. Expectations for biodistribution (BD) assessments for gene therapy (GT) products. 2018.

    Google Scholar 

  35. US Food and Drug Administration. Guidance for industry: long term follow-up after administration of human gene therapy products. 2020.

  36. US Food and Drug Administration. Guidance for industry: chemistry, manufacturing, and control (CMC) information for human gene therapy investigational new drug applications (INDs). 2020.

  37. Pleger ST, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R, et al. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Science Translational medicine. 2011;3(92):92ra64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morris JA, Boshoff CH, Schor NF, Wong LM, Gao G, Davidson BL. Next-generation strategies for gene-targeted therapies of central nervous system disorders: a workshop summary. Molecular Therapy. 2021;29(12):3332–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schuettrumpf J, Liu J-H, Couto LB, Addya K, Leonard DGB, Zhen Z, et al. Inadvertent germline transmission of AAV2 vector: findings in a rabbit model correlate with those in a human clinical trial. Molecular Therapy. 2006;13(6):1064–73.

    Article  CAS  PubMed  Google Scholar 

  40. Deyle DR, Russell DW. Adeno-associated virus vector integration. Curr Opin Mol Ther. 2009;11(4):442–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. European Medicines Agency. ICH considerations: general principles to address the risk of inadvertent germline integration of gene therapy vectors 2006.

  42. Laurén A, Braun M, Byrne P, Cazzin C, Colletti K, Cox C, et al. Applying context of use to quantitative polymerase chain reaction method validation and analysis: a recommendation from the European Bioanalysis Forum. Bioanalysis. 2021;13(23):1723–9.

    Article  PubMed  Google Scholar 

  43. Laurén A, Braun M, Cazzin C, Colleti K, Cox C, Dietz L, et al. Quantitative polymerase chain reaction in the bioanalytical laboratory and technical and scientific considerations for nonclinical and clinical assay characterization, validation and sample analysis. Bioanalysis. 2022;14(16):1085–93.

    Article  PubMed  Google Scholar 

  44. Long BR, Veron P, Kuranda K, Hardet R, Mitchell N, Hayes GM, et al. Early phase clinical immunogenicity of valoctocogene roxaparvovec, an AAV5-mediated gene therapy for hemophilia A. Mol Ther. 2021;29(2):597–610.

    Article  CAS  PubMed  Google Scholar 

  45. US Food and Drug Administration. Considerations for the design of early-phase clinical trials of cellular and gene therapy products: guidance for industry. 2015.

  46. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  PubMed  Google Scholar 

  47. Chen N, Sun K, Chemuturi NV, Cho H, Xia CQ. The perspective of DMPK on recombinant adeno-associated virus-based gene therapy: past learning, current support, and future contribution. Aaps j. 2022;24(1):31.

    Article  PubMed  Google Scholar 

  48. Aksenov S, Roberts JC, Mugundu G, Mueller KT, Bhattacharya I, Tortorici MA. Current and next steps toward prediction of human dose for gene therapy using translational dose-response studies. Clin Pharmacol Ther. 2021;110(5):1176–9.

    Article  PubMed  Google Scholar 

  49. Tang F, Wong H, Ng CM. Rational clinical dose selection of adeno-associated virus-mediated gene therapy based on allometric principles. Clin Pharmacol Ther. 2021;110(3):803–7.

    Article  PubMed  Google Scholar 

  50. Sun K, Liao MZ. Clinical pharmacology considerations on recombinant adeno-associated virus-based gene therapy. J Clin Pharmacol. 2022;62:S79–94.

    Article  CAS  PubMed  Google Scholar 

  51. Belov A, Schultz K, Forshee R, Tegenge MA. Opportunities and challenges for applying model-informed drug development approaches to gene therapies. CPT Pharmacometrics Syst Pharmacol. 2021;10(4):286–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Havlik LP, Das A, Mietzsch M, Oh DK, Ark J, McKenna R, et al. Receptor switching in newly evolved adeno-associated viruses. J Virol. 2021;95(19):e0058721.

    Article  PubMed  Google Scholar 

  53. Sun KF, Zhang ZW, Ko G, Bradshaw EL. Physiologically based pharmacokinetic modeling for the biodistribution of adeno-associated virus serotype 8 after intravenous administration in mice and non-human primates molecular therapy. 2021;29(4):129-30 (Abstract 251).

  54. Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018;8:87-104.

  55. Chowdhury EA, Meno-Tetang G, Chang HY, Wu S, Huang HW, Jamier T, et al. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Adv Drug Deliv Rev. 2021;170:214–37.

    Article  CAS  PubMed  Google Scholar 

  56. EMA Public Assessment Report (EPAR) (EMA/CHMP/571076/2022). Upstaza. 2022.

  57. Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, et al. Current clinical applications of in vivo gene therapy with AAVs. Mol Ther. 2021;29(2):464–88.

    Article  CAS  PubMed  Google Scholar 

  58. Verdera HC, Kuranda K, Mingozzi F. AAV vector immunogenicity in humans: a long journey to successful gene transfer. Mol Ther. 2020;28(3):723–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xia E, Munegowda MA, Cao H, Hu J. Lung gene therapy-how to capture illumination from the light already present in the tunnel. Genes Dis. 2014;1(1):40–52.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Spronck EA. Abstract 974. A single administration of AAV5-hFIX in newborn, juvenile and adult mice leads to stable hFIX expression up to 18 months after dosing. Molecular Therapy. 2020;28(4)

  61. Wang L, Bell P, Lin J, Calcedo R, Tarantal AF, Wilson JM. AAV8-mediated hepatic gene transfer in infant rhesus monkeys (Macaca mulatta). Mol Ther. 2011;19(11):2012–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang L, Wang H, Bell P, McMenamin D, Wilson JM. Hepatic gene transfer in neonatal mice by adeno-associated virus serotype 8 vector. Hum Gene Ther. 2012;23(5):533–9.

    Article  CAS  PubMed  Google Scholar 

  63. Duncan AW, Dorrell C, Grompe M. Stem cells and liver regeneration. Gastroenterology. 2009;137(2):466–81.

    Article  PubMed  Google Scholar 

  64. Nathwani AC. Gene therapy for hemophilia. Hematology Am Soc Hematol Educ Program. 2019;2019(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, et al. Dynamics of cell generation and turnover in the human heart. Cell. 2015;161(7):1566–75.

    Article  CAS  PubMed  Google Scholar 

  66. ZOLGENSMA [package insert]. Bannockburn, IL, USA: Novartis Gene Therapies, Inc.; 2022.

  67. Paulk NK. Gene therapy: it's time to talk about high-dose AAV. 2020.

  68. Monahan PE, Negrier C, Tarantino M, Valentino LA, Mingozzi F. Emerging Immunogenicity and genotoxicity considerations of adeno-associated virus vector gene therapy for hemophilia. J Clin Med. 2021;10(11)

  69. Pasi KJ, Rangarajan S, Mitchell N, Lester W, Symington E, Madan B, et al. Multiyear follow-up of AAV5-hFVIII-SQ gene therapy for hemophilia A. N Engl J Med. 2020;382(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  70. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31(4):317–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nathwani AC, Reiss U, Tuddenham E, Chowdary P, McIntosh J, Riddell A, et al. Adeno-associated mediated gene transfer for hemophilia B: 8 year follow up and impact of removing “empty viral particles” on safety and efficacy of gene transfer. Blood. 2018;132:491.

    Article  Google Scholar 

  72. Ozelo MC, Mahlangu J, Pasi KJ, Giermasz A, Leavitt AD, Laffan M, et al. Valoctocogene roxaparvovec gene therapy for hemophilia A. New England Journal of Medicine. 2022;386(11):1013–25.

    Article  CAS  PubMed  Google Scholar 

  73. US Food and Drug Administration. Guidance for industry: gene therapy clinical trials—observing subjects for delayed adverse events; Availability 2006.

    Google Scholar 

  74. Ferla R, Alliegro M, Marteau JB, Dell’Anno M, Nusco E, Pouillot S, et al. Non-clinical safety and efficacy of an AAV2/8 Vector administered intravenously for treatment of mucopolysaccharidosis type VI. Mol Ther Methods Clin Dev. 2017;6:143–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dong L, Meng Y, Sui Z, Wang J, Wu L, Fu B. Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material. Sci Rep. 2015;5:13174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang LH, Lin PH, Tsai KW, Wang LJ, Huang YH, Kuo HC, et al. The effects of storage temperature and duration of blood samples on DNA and RNA qualities. PLoS One. 2017;12(9):e0184692.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jerome KR, Huang ML, Wald A, Selke S, Corey L. Quantitative stability of DNA after extended storage of clinical specimens as determined by real-time PCR. J Clin Microbiol. 2002;40(7):2609–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gorovits B, Marshall JC, Smith J, Whiteley LO, Neubert H. Bioanalysis of adeno-associated virus gene therapy therapeutics: regulatory expectations. Bioanalysis. 2019;11(21):2011–24.

    Article  CAS  PubMed  Google Scholar 

  79. Ma H, Bell KN, Loker RN. qPCR and qRT-PCR analysis: regulatory points to consider when conducting biodistribution and vector shedding studies. Mol Ther Methods Clin Dev. 2021;20:152–68.

    Article  PubMed  Google Scholar 

  80. Corsaro B, Yang TY, Murphy R, Sonderegger I, Exley A, Bertholet S, et al. 2020 white paper on recent issues in bioanalysis: vaccine assay validation, qPCR assay validation, QC for CAR-T flow cytometry, NAb assay harmonization and ELISpot validation (part 3 - recommendations on immunogenicity assay strategies, NAb assays, biosimilars and FDA/EMA immunogenicity guidance/guideline, gene & cell therapy and vaccine assays). Bioanalysis. 2021;13(6):415–63.

    Article  CAS  PubMed  Google Scholar 

  81. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.

    Article  CAS  PubMed  Google Scholar 

  82. Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, et al. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem. 2013;59(6):892–902.

    Article  CAS  PubMed  Google Scholar 

  83. US Food and Drug Administration. Guidance for industry: bioanalytical method validation. 2018.

  84. Wissel M, Poirier M, Satterwhite C, Lin J, Islam R, Zimmer J, et al. Recommendations on qPCR/ddPCR assay validation by GCC. Bioanalysis. 2022;14(12):853–63.

    Article  CAS  PubMed  Google Scholar 

  85. Hays A, Islam R, Matys K, Williams D. Best practices in qPCR and dPCR validation in regulated bioanalytical laboratories. Aaps j. 2022;24(2):36.

    Article  PubMed  Google Scholar 

  86. European Medicines Agency Guideline on bioanalytical method validation. 2012.

Download references

Acknowledgements

The authors would like to thank IQ TALG for support of this work. We acknowledge Bing Hu (Alexion) and Naidong Weng (Glaxo Smith Kline) for initial input. We are extremely grateful to Erin Graham and Frances Xin (Spark Therapeutics Inc., Roche) for formatting the manuscript and aiding with the placement of references. Figures were made using Servier Medical Art, a free service at smart.servier.com and a valid Roche license from BioRender.com. V.J and N.C are co-leads of the IQ working group.

Author information

Authors and Affiliations

Authors

Contributions

U.K, K.S and NC wrote, drafted, and finalized the manuscript. All authors have contributed to the contents, review, and references of the article.

Corresponding authors

Correspondence to Uma Kavita or Kefeng Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Disclosure

The content of this article represents the authors’ opinions and may not necessarily represent the views of their employers.

Additional information

Responsible Editors: Vittal Shivva, Yan Ni, Steven Louie and Mario L. Rocci Jr.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 354 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavita, U., Sun, K., Braun, M. et al. PK/PD and Bioanalytical Considerations of AAV-Based Gene Therapies: an IQ Consortium Industry Position Paper. AAPS J 25, 78 (2023). https://doi.org/10.1208/s12248-023-00842-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00842-1

Keywords

Navigation