Skip to main content

Advertisement

Log in

Understanding In Vivo Dissolution of Immediate Release (IR) Solid Oral Drug Products Containing Weak Acid BCS Class 2 (BCS Class 2a) Drugs

  • Research Article
  • Theme: Integrating In Vitro Systems and Physiologically-Based Pharmacokinetics Modeling to Optimize Drug Product Development
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In vivo drug dissolution kinetics of BCS Class 2a IR solid oral drug products remains largely unknown. An understanding to what extent the solubility influences in vivo dissolution is needed to design appropriate in vitro dissolution methods. In this study, nonsteroidal anti-inflammatory drugs (NSAIDs) are used to investigate the in vivo dissolution of BCS Class 2a drugs based on numerical deconvolution analyses. The PK data were obtained from published literature or drug applications submitted to the FDA. It has been hypothesized that the in vivo drug dissolution rate would likely correlate to the solubility of NSAIDs in the media at gastrointestinal pH. Our findings show a short lag time of absorption (Tlag), comparable to the liquid gastric emptying time and independent of the solubility and formulation. In Vivo drug dissolution of NSAIDs was generally rapid and complete within the regular drug residence time in the small intestine while multi-phase absorption was observed in some subjects for all the NSAIDs. The comparisons of in vivo drug dissolution rate, which was characterized by in vivo dissolution half-life (Thalf), indicate that solubility has a minimal impact on in vivo drug dissolution rate for NSAIDs. Gastric emptying regulated by migrating motor complex (MMC) under fasted state most likely governs drug dissolution and absorption of NSAIDs. For BCS Class 2a IR solid oral drug products, large variability of gastric emptying and MMC as well as the strong driving force of intestinal absorption probably outweigh the impact of solubility on drug in vivo dissolution.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. ICH Harmonised Guideline. Biopharmaceutics classification system-based biowaivers M9. Int Counc Harmon Tech Requir Pharm Hum Use. 2020.

  2. Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. The Biopharmaceutics Classification System: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur J Pharm Sci. 2014;57:152–63. https://doi.org/10.1016/j.ejps.2014.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. DeSesso JM, Jacobson CF. Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem Toxicol. 2001;39(3):209–28. https://doi.org/10.1016/s0278-6915(00)00136-8.

    Article  CAS  PubMed  Google Scholar 

  4. Yazdanian M, Briggs K, Jankovsky C, Hawi A. The, “high solubility” definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs. Pharm Res. 2004;21(2):293–9. https://doi.org/10.1023/b:pham.0000016242.48642.71.

    Article  CAS  PubMed  Google Scholar 

  5. Van Den Abeele J, Brouwers J, Mattheus R, Tack J, Augustijns P. Gastrointestinal behavior of weakly acidic BCS Class II drugs in man—case study of diclofenac potassium. J Pharm Sci. 2016;105(2):687–96. https://doi.org/10.1002/jps.24647.

    Article  CAS  Google Scholar 

  6. Koenigsknecht MJ, Baker JR, Wen B, Frances A, Zhang H, Yu A, et al. In vivo dissolution and systemic absorption of immediate release ibuprofen in human gastrointestinal tract under fed and fasted conditions. Mol Pharm. 2017;14(12):4295–304. https://doi.org/10.1021/acs.molpharmaceut.7b00425.

    Article  CAS  PubMed  Google Scholar 

  7. Bermejo M, Paixao P, Hens B, Tsume Y, Koenigsknecht MJ, Baker JR, et al. Linking the gastrointestinal behavior of ibuprofen with the systemic exposure between and within humans-part 1: fasted state conditions. Mol Pharm. 2018;15(12):5454–67. https://doi.org/10.1021/acs.molpharmaceut.8b00515.

    Article  CAS  PubMed  Google Scholar 

  8. Yu A, Koenigsknecht MJ, Hens B, Baker JR, Wen B, Jackson TL, et al. Mechanistic deconvolution of oral absorption model with dynamic gastrointestinal fluid to predict regional rate and extent of GI drug dissolution. AAPS J. 2019;22(1):3. https://doi.org/10.1208/s12248-019-0385-z.

    Article  CAS  PubMed  Google Scholar 

  9. Sjogren E, Westergren J, Grant I, Hanisch G, Lindfors L, Lennernas H, et al. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Eur J Pharm Sci. 2013;49(4):679–98. https://doi.org/10.1016/j.ejps.2013.05.019.

    Article  CAS  PubMed  Google Scholar 

  10. Tsume Y, Langguth P, Garcia-Arieta A, Amidon GL. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen. Biopharm Drug Dispos. 2012;33(7):366–77. https://doi.org/10.1002/bdd.1800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pavliv L, Voss B, Rock A. Pharmacokinetics, safety, and tolerability of a rapid infusion of i.v. ibuprofen in healthy adults. Am J Health Syst Pharm. 2011;68(1):47–51. https://doi.org/10.2146/ajhp100120.

    Article  CAS  PubMed  Google Scholar 

  12. Jensen KM, Grenabo L. Bioavailability of indomethacin after intramuscular injection and rectal administration of solution and suppositories. Acta Pharmacol Toxicol (Copenh). 1985;57(5):322–7. https://doi.org/10.1111/j.1600-0773.1985.tb00052.x.

    Article  CAS  Google Scholar 

  13. Veng-Pedersen P, Modi NB. An Algorithm for constrained deconvolution based on reparameterization. J Pharm Sci. 1992;81(2):175–80. https://doi.org/10.1002/jps.2600810214.

    Article  CAS  PubMed  Google Scholar 

  14. Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan Med Bull. 1999;46(3):183–96.

    CAS  PubMed  Google Scholar 

  15. Turck D, Roth W, Busch U. A review of the clinical pharmacokinetics of meloxicam. Br J Rheumatol. 1996;35(Suppl 1):13–6. https://doi.org/10.1093/rheumatology/35.suppl_1.13.

    Article  PubMed  Google Scholar 

  16. Willis JV, Kendall MJ, Flinn RM, Thornhill DP, Welling PG. The pharmacokinetics of diclofenac sodium following intravenous and oral administration. Eur J Clin Pharmacol. 1979;16(6):405–10. https://doi.org/10.1007/bf00568201.

    Article  CAS  PubMed  Google Scholar 

  17. Oberle RL, Amidon GL. The influence of variable gastric emptying and intestinal transit rates on the plasma level curve of cimetidine; an explanation for the double peak phenomenon. J Pharmacokinet Biopharm. 1987;15(5):529–44. https://doi.org/10.1007/BF01061761.

    Article  CAS  PubMed  Google Scholar 

  18. Hunt JN, Macdonald I. The influence of volume on gastric emptying. J Physiol. 1954;126(3):459–74. https://doi.org/10.1113/jphysiol.1954.sp005222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bateman DN, Whittingham TA. Measurement of gastric emptying by real-time ultrasound. Gut. 1982;23(6):524–7. https://doi.org/10.1136/gut.23.6.524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Braghetto I, Davanzo C, Korn O, Csendes A, Valladares H, Herrera E, et al. Scintigraphic evaluation of gastric emptying in obese patients submitted to sleeve gastrectomy compared to normal subjects. Obes Surg. 2009;19(11):1515–21. https://doi.org/10.1007/s11695-009-9954-z.

    Article  PubMed  Google Scholar 

  21. Ramsbottom N, Knox MT, Hunt JN. Gastric emptying of barium sulphate suspension compared with that of water. Gut. 1977;18(7):541–2. https://doi.org/10.1136/gut.18.7.541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Umenai T, Arai N, Chihara E. Effect of the preliminary hydration on gastric emptying time for water in healthy volunteers. Acta Anaesthesiol Scand. 2009;53(2):223–6. https://doi.org/10.1111/j.1399-6576.2008.01832.x.

    Article  CAS  PubMed  Google Scholar 

  23. Paixão P, Bermejo M, Hens B, Tsume Y, Dickens J, Shedden K, et al. Gastric emptying and intestinal appearance of nonabsorbable drugs phenol red and paromomycin in human subjects: a multi-compartment stomach approach. Eur J Pharm Biopharm. 2018;129:162–74. https://doi.org/10.1016/j.ejpb.2018.05.033.

    Article  CAS  PubMed  Google Scholar 

  24. Rhie JK, Hayashi Y, Welage LS, Frens J, Wald RJ, Barnett JL, et al. Drug marker absorption in relation to pellet size, gastric motility and viscous meals in humans. Pharm Res. 1998;15(2):233–8. https://doi.org/10.1023/a:1011962501270.

    Article  CAS  PubMed  Google Scholar 

  25. Mudie DM, Murray K, Hoad CL, Pritchard SE, Garnett MC, Amidon GL, et al. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol Pharm. 2014;11(9):3039–47. https://doi.org/10.1021/mp500210c.

    Article  CAS  PubMed  Google Scholar 

  26. FDA Guidance for Industry: Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs — General Considerations. United States Food and Drug Administration. 2014.

  27. Gupta A. Recent trends of fast dissolving tablet - an overview of formulation technology. Int J Pharma Biol Archive. 2010;1(1):1–10.

  28. Hens B, Tsume Y, Bermejo M, Paixao P, Koenigsknecht MJ, Baker JR, et al. Low buffer capacity and alternating motility along the human gastrointestinal tract: implications for in vivo dissolution and absorption of ionizable drugs. Mol Pharm. 2017;14(12):4281–94. https://doi.org/10.1021/acs.molpharmaceut.7b00426.

    Article  CAS  PubMed  Google Scholar 

  29. Kambayashi A, Sako K, Kondo H. Characterization of the buccal and gastric transit of orally disintegrating tablets in humans using gamma scintigraphy. Int J Pharm. 2020;576: 118937. https://doi.org/10.1016/j.ijpharm.2019.118937.

    Article  CAS  PubMed  Google Scholar 

  30. Litou C, Vertzoni M, Goumas C, Vasdekis V, Xu W, Kesisoglou F, et al. Characteristics of the Human upper gastrointestinal contents in the fasted state under hypo- and A-chlorhydric gastric conditions under conditions of typical drug - drug interaction studies. Pharm Res. 2016;33(6):1399–412. https://doi.org/10.1007/s11095-016-1882-8.

    Article  CAS  PubMed  Google Scholar 

  31. Clements JA, Heading RC, Nimmo WS, Prescott LF. Kinetics of acetaminophen absorption and gastric emptying in man. Clin Pharmacol Ther. 1978;24(4):420–31. https://doi.org/10.1002/cpt1978244420.

    Article  CAS  PubMed  Google Scholar 

  32. Feher J. 8.3 - Intestinal and Colonic Chemoreception and Motility. In: Feher J, editor. Quantitative Human Physiology (Second Edition). Academic Press; 2017. p. 796–809.

  33. Dooley CP, Di Lorenzo C, Valenzuela JE. Variability of migrating motor complex in humans. Dig Dis Sci. 1992;37(5):723–8. https://doi.org/10.1007/BF01296429.

    Article  CAS  PubMed  Google Scholar 

  34. Higaki K, Choe SY, Lobenberg R, Welage LS, Amidon GL. Mechanistic understanding of time-dependent oral absorption based on gastric motor activity in humans. Eur J Pharm Biopharm. 2008;70(1):313–25. https://doi.org/10.1016/j.ejpb.2008.02.022.

    Article  CAS  PubMed  Google Scholar 

  35. Meyer JH, Elashoff J, Porter-Fink V, Dressman J, Amidon GL. Human postprandial gastric emptying of 1–3-millimeter spheres. Gastroenterology. 1988;94(6):1315–25. https://doi.org/10.1016/0016-5085(88)90669-5.

    Article  CAS  PubMed  Google Scholar 

  36. Lipka E, Lee ID, Langguth P, Spahn-Langguth H, Mutschler E, Amidon GL. Celiprolol double-peak occurrence and gastric motility: nonlinear mixed effects modeling of bioavailability data obtained in dogs. J Pharmacokinet Biopharm. 1995;23(3):267–86. https://doi.org/10.1007/BF02354285.

    Article  CAS  PubMed  Google Scholar 

  37. Van Den Abeele J, Schilderink R, Schneider F, Mols R, Minekus M, Weitschies W, et al. Gastrointestinal and systemic disposition of diclofenac under fasted and fed state conditions supporting the evaluation of in vitro predictive tools. Mol Pharm. 2017;14(12):4220–32. https://doi.org/10.1021/acs.molpharmaceut.7b00253.

    Article  CAS  Google Scholar 

  38. Abuhelwa AY, Foster DJR, Upton RN. A Quantitative review and meta-models of the variability and factors affecting oral drug absorption-Part II: gastrointestinal transit time. AAPS J. 2016;18(5):1322–33. https://doi.org/10.1208/s12248-016-9953-7.

    Article  CAS  PubMed  Google Scholar 

  39. Yuen KH. The transit of dosage forms through the small intestine. Int J Pharm. 2010;395(1–2):9–16. https://doi.org/10.1016/j.ijpharm.2010.04.045.

    Article  CAS  PubMed  Google Scholar 

  40. Davis SS, Hardy JG, Fara JW. Transit of pharmaceutical dosage forms through the small intestine. Gut. 1986;27(8):886–92. https://doi.org/10.1136/gut.27.8.886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ibekwe VC, Fadda HM, McConnell EL, Khela MK, Evans DF, Basit AW. Interplay between intestinal pH, transit time and feed status on the in vivo performance of pH responsive ileo-colonic release systems. Pharm Res. 2008;25(8):1828–35. https://doi.org/10.1007/s11095-008-9580-9.

    Article  CAS  PubMed  Google Scholar 

  42. Lee KJ, Vos R, Janssens J, Tack J. Influence of duodenal acidification on the sensorimotor function of the proximal stomach in humans. Am J Physiol Gastrointest Liver Physiol. 2004;286(2):G278–84. https://doi.org/10.1152/ajpgi.00086.2003.

    Article  CAS  PubMed  Google Scholar 

  43. Madsen JL, Krogsgaard OW. Gastrointestinal scintiscanning: dosimetry. Eur J Nucl Med. 1989;15(5):260–1. https://doi.org/10.1007/BF00257544.

    Article  CAS  PubMed  Google Scholar 

  44. Perez de la Cruz Moreno M, Oth M, Deferme S, Lammert F, Tack J, Dressman J. Characterization of fasted-state human intestinal fluids collected from duodenum and jejunum. J Pharm Pharmacol. 2006;58(8):1079–89. https://doi.org/10.1211/jpp.58.8.0009.

    Article  CAS  PubMed  Google Scholar 

  45. Krieg BJ, Taghavi SM, Amidon GL, Amidon GE. In vivo predictive dissolution: transport analysis of the CO2, bicarbonate in vivo buffer system. J Pharm Sci. 2014;103(11):3473–90. https://doi.org/10.1002/jps.24108.

    Article  CAS  PubMed  Google Scholar 

  46. Al-Gousous J, Sun KX, McNamara DP, Hens B, Salehi N, Langguth P, Bermejo M, Amidon GE, Amidon GL. Mass transport analysis of the enhanced buffer capacity of the bicarbonate-CO2 buffer in a phase-heterogenous system: physiological and pharmaceutical significance. Mol Pharm. 2018;15(11):5291–301. https://doi.org/10.1021/acs.molpharmaceut.8b00783.

    Article  CAS  PubMed  Google Scholar 

  47. Al-Gousous J, Salehi N, Amidon GE, Ziff RM, Langguth P, Amidon GL. Mass transport analysis of bicarbonate buffer: effect of the CO2-H2CO3 hydration-dehydration kinetics in the fluid boundary layer and the apparent effective p Ka controlling dissolution of acids and bases. Mol Pharm. 2019;16(6):2626–35. https://doi.org/10.1021/acs.molpharmaceut.9b00187.

    Article  CAS  PubMed  Google Scholar 

  48. Dalenbäck J, Fändriks L, Olbe L, Sjövall H. Mechanisms behind changes in gastric acid and bicarbonate outputs during the human interdigestive motility cycle. Am J Physiol. 1996 Jan;270(1 Pt 1):G113–22. https://doi.org/10.1152/ajpgi.1996.270.1.G113.

    Article  PubMed  Google Scholar 

  49. Yu LX, Lipka E, Crison JR, Amidon GL. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv Drug Deliv Rev. 1996;19(3):359–76. https://doi.org/10.1016/0169-409x(96)00009-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Drs Zhang and Wu were supported in part by the appointments to the Research Participation Program at the Center for Drug Evaluation and Research, administered by the Oak Ridge Institute for Science and Education.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the conceptualization, methodology, data analyses, interpretation and in the development of the manuscript.

Corresponding author

Correspondence to Min Li.

Ethics declarations

Conflict of Interest

The findings and conclusions in this work have not been formally disseminated by the United States Food and Drug Administration and should not be construed to represent any Agency determination or policy.

Additional information

Guest Editors: Rodrigo Cristofoletti and Lawrence Yu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, X., Wu, D. et al. Understanding In Vivo Dissolution of Immediate Release (IR) Solid Oral Drug Products Containing Weak Acid BCS Class 2 (BCS Class 2a) Drugs. AAPS J 23, 113 (2021). https://doi.org/10.1208/s12248-021-00639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-021-00639-0

KEY WORDS

Navigation