Skip to main content

Advertisement

Log in

Interaction of Commonly Used Oral Molecular Excipients with P-glycoprotein

  • Research Article
  • Theme: The Biological Effect of Pharmaceutical Excipients
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

P-glycoprotein (P-gp) plays a critical role in drug oral bioavailability, and modulation of this transporter can alter the safety and/or efficacy profile of substrate drugs. Individual oral molecular excipients that inhibit P-gp function have been considered a mechanism for improving drug absorption, but a systematic evaluation of the interaction of excipients with P-gp is critical for informed selection of optimal formulations of proprietary and generic drug products. A library of 123 oral molecular excipients was screened for their ability to inhibit P-gp in two orthogonal cell-based assays. β-Cyclodextrin and light green SF yellowish were identified as modest inhibitors of P-gp with IC50 values of 168 μM (95% CI, 118-251 μM) and 204 μM (95% CI, 5.9-1745 μM), respectively. The lack of effect of most of the tested excipients on P-gp transport provides a wide selection of excipients for inclusion in oral formulations with minimal risk of influencing the oral bioavailability of P-gp substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

    Article  CAS  PubMed  Google Scholar 

  2. Lund M, Petersen TS, Dalhoff KP. Clinical implications of P-glycoprotein modulation in drug-drug interactions. Drugs. 2017;77:859–83.

    Article  CAS  PubMed  Google Scholar 

  3. Kim RB. Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev. 2002;34:47–54.

    Article  CAS  PubMed  Google Scholar 

  4. Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet. 2003;42:59–98.

    Article  CAS  PubMed  Google Scholar 

  5. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 1987;84:7735–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.

    Article  CAS  PubMed  Google Scholar 

  7. Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55:3–29.

    Article  CAS  PubMed  Google Scholar 

  8. Kaur G, Arora M, Ravi Kumar MNV. Oral drug delivery technologies-a decade of developments. J Pharmacol Exp Ther. 2019;370:529–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stewart KD, Johnston JA, Matza LS, Curtis SE, Havel HA, Sweetana SA, Gelhorn H. Preference for pharmaceutical formulation and treatment process attributes. Patient Prefer Adherence. 2016;10:1385–99.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hamman J, Steenekamp J. Excipients with specialized functions for effective drug delivery. Expert Opin Drug Deliv. 2012;9:219–30.

    Article  CAS  PubMed  Google Scholar 

  11. Panakanti R, Narang AS. Impact of excipient interactions on drug bioavailability from solid dosage forms. Pharm Res. 2012;29:2639–59.

    Article  CAS  PubMed  Google Scholar 

  12. Darji MA, Lalge RM, Marathe SP, Mulay TD, Fatima T, Alshammari A, Lee HK, Repka MA, Narasimha Murthy S. Excipient stability in oral solid dosage forms: a review. AAPS PharmSciTech. 2018;19:12–26.

    Article  CAS  PubMed  Google Scholar 

  13. Palcso B, Zelko R. Different types, applications and limits of enabling excipients of pharmaceutical dosage forms. Drug Discov Today Technol. 2018;27:21–39.

    Article  PubMed  Google Scholar 

  14. Dave VS, Saoji SD, Raut NA, Haware RV. Excipient variability and its impact on dosage form functionality. J Pharm Sci. 2015;104:906–15.

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Arieta A. Interactions between active pharmaceutical ingredients and excipients affecting bioavailability: impact on bioequivalence. Eur J Pharm Sci. 2014;65:89–97.

    Article  CAS  PubMed  Google Scholar 

  16. Zarmpi P, Flanagan T, Meehan E, Mann J, Fotaki N. Biopharmaceutical aspects and implications of excipient variability in drug product performance. Eur J Pharm Biopharm 2017;111:1-15, 1.

  17. Pottel J, Armstrong D, Zou L, Fekete A, Huang XP, Torosyan H, Bednarczyk D, Whitebread S, Bhhatarai B, Liang G, Jin H, Ghaemi SN, Slocum S, Lukacs KV, Irwin JJ, Berg EL, Giacomini KM, Roth BL, Shoichet BK, Urban L. The activities of drug inactive ingredients on biological targets. Science. 2020;369:403–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cornaire G, Woodley J, Hermann P, Cloarec A, Arellano C, Houin G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int J Pharm. 2004;278:119–31.

    Article  CAS  PubMed  Google Scholar 

  19. Cornaire G, Woodley JF, Saivin S, Legendre JY, Decourt S, Cloarec A, Houin G. Effect of polyoxyl 35 castor oil and polysorbate 80 on the intestinal absorption of digoxin in vitro. Arzneimittel-Forschung-Drug Research. 2000;50:576–9.

    CAS  Google Scholar 

  20. Guan Y, Huang J, Zuo L, Xu J, Si L, Qiu J, Li G. Effect of pluronic P123 and F127 block copolymer on P-glycoprotein transport and CYP3A metabolism. Arch Pharm Res. 2011;34:1719–28.

    Article  CAS  PubMed  Google Scholar 

  21. Gurjar R, Chan CYS, Curley P, Sharp J, Chiong J, Rannard S, Siccardi M, Owen A. Inhibitory effects of commonly used excipients on P-glycoprotein in vitro. Mol Pharm. 2018;15:4835–42.

    Article  CAS  PubMed  Google Scholar 

  22. Hugger ED, Audus KL, Borchardt RT. Effects of poly(ethylene glycol) on efflux transporter activity in Caco-2 cell monolayers. J Pharm Sci. 2002;91:1980–90.

    Article  CAS  PubMed  Google Scholar 

  23. Hugger ED, Novak BL, Burton PS, Audus KL, Borchardt RT. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. J Pharm Sci. 2002;91:1991–2002.

    Article  CAS  PubMed  Google Scholar 

  24. Katneni K, Charman SA, Porter CJ. Impact of Cremophor-EL and polysorbate-80 on digoxin permeability across rat jejunum: delineation of thermodynamic and transporter related events using the reciprocal permeability approach. J Pharm Sci. 2007;96:280–93.

    Article  CAS  PubMed  Google Scholar 

  25. Lo YL, Huang JD. Effects of sodium deoxycholate and sodium caprate on the transport of epirubicin in human intestinal epithelial Caco-2 cell layers and everted gut sacs of rats. Biochem Pharmacol. 2000;59:665–72.

    Article  CAS  PubMed  Google Scholar 

  26. Ma L, Wei Y, Zhou Y, Ma X, Wu X. Effects of Pluronic F68 and Labrasol on the intestinal absorption and pharmacokinetics of rifampicin in rats. Arch Pharm Res. 2011;34:1939–43.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Yao M, Morrison RA, Chong S. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats. Arch Pharm Res. 2003;26:768–72.

    Article  CAS  PubMed  Google Scholar 

  28. Varma MV, Panchagnula R. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci. 2005;25:445–53.

    Article  CAS  PubMed  Google Scholar 

  29. Ashiru DA, Patel R, Basit AW. Polyethylene glycol 400 enhances the bioavailability of a BCS class III drug (ranitidine) in male subjects but not females. Pharm Res. 2008;25:2327–33.

    Article  CAS  PubMed  Google Scholar 

  30. Li M, Si L, Pan H, Rabba AK, Yan F, Qiu J, Li G. Excipients enhance intestinal absorption of ganciclovir by P-gp inhibition: assessed in vitro by everted gut sac and in situ by improved intestinal perfusion. Int J Pharm. 2011;403:37–45.

    Article  CAS  PubMed  Google Scholar 

  31. Shen Y, Lu Y, Jv M, Hu J, Li Q, Tu J. Enhancing effect of Labrasol on the intestinal absorption of ganciclovir in rats. Drug Dev Ind Pharm. 2011;37:1415–21.

    Article  CAS  PubMed  Google Scholar 

  32. Administration USFD. Inactive ingredient search for approved drug products. U.S. Food & Drug Administration; 2020 [updated 01/21/2021. Available from: https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm.

  33. Zou L, Spanogiannopoulos P, Pieper LM, Chien HC, Cai W, Khuri N, Pottel J, Vora B, Ni Z, Tsakalozou E, Zhang W, Shoichet BK, Giacomini KM, Turnbaugh PJ. Bacterial metabolism rescues the inhibition of intestinal drug absorption by food and drug additives. Proc Natl Acad Sci U S A. 2020;117:16009–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gow JM, Hodges LM, Chinn LW, Kroetz DL. Substrate-dependent effects of human ABCB1 coding polymorphisms. J Pharmacol Exp Ther. 2008;325:435–42.

    Article  CAS  PubMed  Google Scholar 

  35. Karlgren M, Simoff I, Backlund M, Wegler C, Keiser M, Handin N, Müller J, Lundquist P, Jareborg AC, Oswald S, Artursson P. A CRISPR-Cas9 generated MDCK cell line expressing human MDR1 without endogenous canine MDR1 (cABCB1): an improved tool for drug efflux studies. J Pharm Sci. 2017;106:2909–13.

    Article  CAS  PubMed  Google Scholar 

  36. Simoff I, Karlgren M, Backlund M, Lindstrom AC, Gaugaz FZ, Matsson P, et al. Complete knockout of endogenous Mdr1 (Abcb1) in MDCK cells by CRISPR-Cas9. J Pharm Sci. 2016;105:1017–21.

    Article  CAS  PubMed  Google Scholar 

  37. Levy ES, Samy KE, Lamson NG, Whitehead KA, Kroetz DL, Desai TA. Reversible inhibition of efflux transporters by hydrogel microdevices. Eur J Pharm Biopharm. 2019;145:76–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hubatsch I, Ragnarsson EG, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007;2:2111–9.

    Article  CAS  PubMed  Google Scholar 

  39. Gerber W, Hamman JH, Steyn JD. Excipient-drug pharmacokinetic interactions: effect of disintegrants on efflux across excised pig intestinal tissues. J Food Drug Anal. 2018;26:S115–S24.

    Article  CAS  PubMed  Google Scholar 

  40. Takizawa Y, Goto N, Furuya T, Hayashi M. Influene of pharmaceutical excipients on the membrane transport of a P-glycoprotein substrate in the rat small intestine. Eur J Drug Metab Pharmacokinet. 2020;45:645–52.

    Article  CAS  PubMed  Google Scholar 

  41. Takizawa Y, Kishimoto H, Nakagawa M, Sakamoto N, Tobe Y, Furuya T, Tomita M, Hayashi M. Effects of pharmaceutical excipients on membrane permeability in rat small intestine. Int J Pharm. 2013;453:363–70.

    Article  CAS  PubMed  Google Scholar 

  42. Conceicao J, Adeoye O, Cabral-Marques HM, Lobo JMS. Cyclodextrins as excipients in tablet formulations. Drug Discov Today. 2018;23:1274–84.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Cui YL, Gao LN, Jiang HL. Effects of beta-cyclodextrin on the intestinal absorption of berberine hydrochloride, a P-glycoprotein substrate. Int J Biol Macromol. 2013;59:363–71.

    Article  CAS  PubMed  Google Scholar 

  44. Arima H, Yunomae K, Hirayama F, Uekama K. Contribution of P-glycoprotein to the enhancing effects of dimethyl-beta-cyclodextrin on oral bioavailability of tacrolimus. J Pharmacol Exp Ther. 2001;297:547–55.

    CAS  PubMed  Google Scholar 

  45. Arima H, Yunomae K, Morikawa T, Hirayama F, Uekama K. Contribution of cholesterol and phospholipids to inhibitory effect of dimethyl-beta-cyclodextrin on efflux function of P-glycoprotein and multidrug resistance-associated protein 2 in vinblastine-resistant Caco-2 cell monolayers. Pharm Res. 2004;21:625–34.

    Article  CAS  PubMed  Google Scholar 

  46. Cai C, Zhu H, Chen J. Overexpression of caveolin-1 increases plasma membrane fluidity and reduces P-glycoprotein function in Hs578T/Dox. Biochem Biophys Res Commun. 2004;320:868–74.

    Article  CAS  PubMed  Google Scholar 

  47. Kamau SW, Kramer SD, Gunthert M, Wunderli-Allenspach H. Effect of the modulation of the membrane lipid composition on the localization and function of P-glycoprotein in MDR1-MDCK cells. In Vitro Cell Dev Biol Anim. 2005;41:207–16.

    Article  CAS  PubMed  Google Scholar 

  48. Pathak SM, Musmade P, Dengle S, Karthik A, Bhat K, Udupa N. Enhanced oral absorption of saquinavir with methyl-beta-cyclodextrin-Preparation and in vitro and in vivo evaluation. Eur J Pharm Sci. 2010;41:440–51.

    Article  CAS  PubMed  Google Scholar 

  49. Yunomae K, Arima H, Hirayama F, Uekama K. Involvement of cholesterol in the inhibitory effect of dimethyl-beta-cyclodextrin on P-glycoprotein and MRP2 function in Caco-2 cells. FEBS Lett. 2003;536:225–31.

    Article  CAS  PubMed  Google Scholar 

  50. Durk MR, Jones NS, Liu J, Nagapudi K, Mao C, Plise EG, Wong S, Chen JZ, Chen Y, Chinn LW, Chiang PC. Understanding the effect of hydroxypropyl-beta-cyclodextrin on fenebrutinib absorption in an itraconazole-fenebrutinib drug-drug interaction study. Clin Pharmacol Ther. 2020;108:1224–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zou L, Pottel J, Khuri N, Ngo HX, Ni Z, Tsakalozou E, Warren MS, Huang Y, Shoichet BK, Giacomini KM. Interactions of oral molecular excipients with breast cancer resistance protein. BCRP Mol Pharm. 2020;17:748–56.

    Article  CAS  PubMed  Google Scholar 

  52. Administration USFD. In vitro drug interaction studies - cytochrome P450 enzyme- and transporter-mediated drug interactions guidance for industry. U.S. Food & Drug Administration; 2020 [updated 05/07/2020. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions.

  53. Tiberghien F, Loor F. Ranking of P-glycoprotein substrates and inhibitors by a calcein-AM fluorometry screening assay. Anti-Cancer Drugs. 1996;7:568–78.

    Article  CAS  PubMed  Google Scholar 

  54. Caetano-Pinto P, Janssen MJ, Gijzen L, Verscheijden L, Wilmer MJ, Masereeuw R. Fluorescence-based transport assays revisited in a human renal proximal tubule cell line. Mol Pharm. 2016;13:933–44.

    Article  CAS  PubMed  Google Scholar 

  55. Olson DP, Taylor BJ, Ivy SP. Detection of MRP functional activity: calcein AM but not BCECF AM as a multidrug resistance-related protein (MRP1) substrate. Cytometry. 2001;46:105–13.

    Article  CAS  PubMed  Google Scholar 

  56. Reznicek J, Ceckova M, Ptackova Z, Martinec O, Tupova L, Cerveny L, Staud F. MDR1 and BCRP transporter-mediated drug-drug interaction between rilpivirine and abacavir and effect on intestinal absorption. Antimicrob Agents Chemother. 2017;61.

  57. Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J. Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem. 2003;46:1716–25.

    Article  CAS  PubMed  Google Scholar 

  58. Sjostedt N, Deng F, Rauvala O, Tepponen T, Kidron H. Interaction of food additives with intestinal efflux transporters. Mol Pharm. 2017;14:3824–33.

    Article  CAS  PubMed  Google Scholar 

  59. Kiss L, Hellinger E, Pilbat AM, Kittel A, Torok Z, Furedi A, et al. Sucrose esters increase drug penetration, but do not inhibit P-glycoprotein in caco-2 intestinal epithelial cells. J Pharm Sci. 2014;103:3107–19.

    Article  CAS  PubMed  Google Scholar 

  60. Lo YL. Relationships between the hydrophilic-lipophilic balance values of pharmaceutical excipients and their multidrug resistance modulating effect in Caco-2 cells and rat intestines. J Control Release. 2003;90:37–48.

    Article  CAS  PubMed  Google Scholar 

  61. Ruiz-Picazo A, Gonzalez-Alvarez M, Gonzalez-Alvarez I, Bermejo M. Effect of common excipients on intestinal drug absorption in Wistar rats. Mol Pharm. 2020;17:2310–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Per Artutsson and Maria Kalgren for the MDCK-hMDR1-cMDR1-knockout stable cell lines. We also thank Drs. Xiaomin Liang (Gilead Sciences) and Eugene Chen (Genentech) for advice on the digoxin flux assays. Drs. Chenling Xiong, Katherina Chua, Josefina Priotti, and Nura El-Haj provided insightful discussions of the data.

Funding

This research was made possible by Grant U01FD004979/U01FD005978 from the US Food and Drug Administration (FDA), which supports the University of California, San Francisco–Stanford Center of Excellence in Regulatory Sciences and Innovation (UCSF-Stanford CERSI). Funding for the research described in the article was provided by the Office of Generic Drugs through the UCSF–Stanford CERSI. Ruchika Bajaj was partially supported by American Heart Association postdoctoral fellowship Award No. 19POST34370101.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ling Zou, Eleftheria Tsakalozou, Zhanglin Ni, Kathleen M. Giacomini, and Deanna L. Kroetz

Investigation: Ruchika Bajaj, Lisa B. Chong, and Ling Zou

Formal analysis: Ruchika Bajaj, Lisa B. Chong, and Ling Zou

Supervision: Kathleen M. Giacomini and Deanna L. Kroetz

Writing original draft: Ruchika Bajaj and Deanna L. Kroetz

Writing, review, and editing: Ruchika Bajaj, Lisa B. Chong, Ling Zou, Eleftheria Tsakalozou, Zhanglin Ni, Kathleen M. Giacomini, and Deanna L. Kroetz

Corresponding author

Correspondence to Deanna L Kroetz.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Disclaimer

Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the HHS or FDA.

Additional information

Guest Editors: Marilyn N. Martinez, Balint Sinko and Fang Wu

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, R., Chong, L.B., Zou, L. et al. Interaction of Commonly Used Oral Molecular Excipients with P-glycoprotein. AAPS J 23, 106 (2021). https://doi.org/10.1208/s12248-021-00631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-021-00631-8

KEY WORDS

Navigation