Skip to main content

Advertisement

Log in

Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics

  • Review Article
  • Theme: Celebrating Women in the Pharmaceutical Sciences
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

This review is a summary of factors affecting the drug pharmacokinetics (PK) of dogs versus humans. Identifying these interspecies differences can facilitate canine-human PK extrapolations while providing mechanistic insights into species-specific drug in vivo behavior. Such a cross-cutting perspective can be particularly useful when developing therapeutics targeting diseases shared between the two species such as cancer, diabetes, cognitive dysfunction, and inflammatory bowel disease. Furthermore, recognizing these differences also supports a reverse PK extrapolations from humans to dogs. To appreciate the canine-human differences that can affect drug absorption, distribution, metabolism, and elimination, this review provides a comparison of the physiology, drug transporter/enzyme location, abundance, activity, and specificity between dogs and humans. Supplemental material provides an in-depth discussion of certain topics, offering additional critical points to consider. Based upon an assessment of available state-of-the-art information, data gaps were identified. The hope is that this manuscript will encourage the research needed to support an understanding of similarities and differences in human versus canine drug PK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schneider B, Balbas-Martinez V, Jergens AE, Troconiz IF, Allenspach K, Mochel JP. Model-based reverse translation between veterinary and human medicine: the one health initiative. CPT Pharmacometrics Syst Pharmacol. 2018;7(2):65–8.

    Article  CAS  PubMed  Google Scholar 

  2. Gordon I, Paoloni M, Mazcko C, Khanna C. The Comparative Oncology Trials Consortium: using spontaneously occurring cancers in dogs to inform the cancer drug development pathway. PLoS Med. 2009;6(10):e1000161.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ambrosini YM, Borcherding D, Kanthasamy A, Kim HJ, Willette AA, Jergens A, et al. The gut-brain axis in neurodegenerative diseases and relevance of the canine model: a review. Front Aging Neurosci. 2019;11:130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schutt T, Helboe L, Pedersen LO, Waldemar G, Berendt M, Pedersen JT. Dogs with cognitive dysfunction as a spontaneous model for early Alzheimerʼs disease: a translational study of neuropathological and inflammatory markers. J Alzheimers Dis. 2016;52(2):433–49.

    Article  PubMed  Google Scholar 

  5. Bailey J, Thew M, Balls M. An analysis of the use of dogs in predicting human toxicology and drug safety. Alternatives to laboratory animals : ATLA. 2013;41(5):335–50.

    Article  CAS  PubMed  Google Scholar 

  6. Bentley RT, Ahmed AU, Yanke AB, Cohen-Gadol AA, Dey M. Dogs are manʼs best friend: in sickness and in health. Neuro Oncol. 2017;19(3):312–22.

    PubMed  Google Scholar 

  7. Leenaars CHC, Kouwenaar C, Stafleu FR, Bleich A, Ritskes-Hoitinga M, De Vries RBM, et al. Animal to human translation: a systematic scoping review of reported concordance rates. Journal of Translational Medicine. 2019;17(1):223.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Martinez MN, Mochel JP, Pade D. Considerations in the extrapolation of drug toxicity between humans and dogs. Current Opinion in Toxicology. 2020;23-24:98–105.

    Article  Google Scholar 

  9. Monticello TM, Jones TW, Dambach DM, Potter DM, Bolt MW, Liu M, et al. Current nonclinical testing paradigm enables safe entry to first-in-human clinical trials: the IQ consortium nonclinical to clinical translational database. Toxicol Appl Pharmacol. 2017;334:100–9.

    Article  CAS  PubMed  Google Scholar 

  10. Pan G. Roles of hepatic drug transporters in drug disposition and liver toxicity. Adv Exp Med Biol. 2019;1141:293–340.

    Article  CAS  PubMed  Google Scholar 

  11. Yee SW, Brackman DJ, Ennis EA, Sugiyama Y, Kamdem LK, Blanchard R, et al. Influence of transporter polymorphisms on drug disposition and response: a perspective from the International Transporter Consortium. Clin Pharmacol Ther. 2018;104(5):803–17.

    Article  PubMed  Google Scholar 

  12. Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009;41(2):89–295.

    Article  CAS  PubMed  Google Scholar 

  13. Martinez MN, Court MH, Fink-Gremmels J, Mealey KL. Population variability in animal health: influence on dose-exposure-response relationships: part I: drug metabolism and transporter systems. J Vet Pharmacol Ther. 2018;41(4):E57–67.

    Article  PubMed  Google Scholar 

  14. Martinez SE, Shi J, Zhu HJ, Perez Jimenez TE, Zhu Z, Court MH. Absolute quantitation of drug-metabolizing cytochrome P450 enzymes and accessory proteins in dog liver microsomes using label-free standard-free analysis reveals interbreed variability. Drug Metab Dispos. 2019;47(11):1314–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mealey KL, Martinez SE, Villarino NF, Court MH. Personalized medicine: going to the dogs? Hum Genet. 2019;138(5):467–81.

    Article  PubMed  Google Scholar 

  16. Laulicht B, Tripathi A, Schlageter V, Kucera P, Mathiowitz E. Understanding gastric forces calculated from high-resolution pill tracking. Proc Natl Acad Sci U S A. 2010;107(18):8201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kamba M, Seta Y, Kusai A, Ikeda M, Nishimura K. A unique dosage form to evaluate the mechanical destructive force in the gastrointestinal tract. Int J Pharm. 2000;208(1-2):61–70.

    Article  CAS  PubMed  Google Scholar 

  18. Kamba M, Seta Y, Kusai A, Nishimura K. Evaluation of the mechanical destructive force in the stomach of dog. Int J Pharm. 2001;228(1-2):209–17.

    Article  CAS  PubMed  Google Scholar 

  19. Itoh T, Higuchi T, Gardner CR, Caldwell L. Effect of particle size and food on gastric residence time of non-disintegrating solids in Beagle dogs. J Pharm Pharmacol. 1986;38(11):801–6.

    Article  CAS  PubMed  Google Scholar 

  20. Martinez MN, Papich MG. Factors influencing the gastric residence of dosage forms in dogs. J Pharm Sci. 2009;98(3):844–60.

    Article  CAS  PubMed  Google Scholar 

  21. Mojaverian P, Ferguson RK, Vlasses PH, Rocci ML Jr, Oren A, Fix JA, et al. Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition. Gastroenterology. 1985;89(2):392–7.

    Article  CAS  PubMed  Google Scholar 

  22. Code CF, Marlett JA. The interdigestive myo-electric complex of the stomach and small bowel of dogs. J Physiol. 1975;246(2):289–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Itoh Z, Aizawa I, Sekiguchi T. The interdigestive migrating complex and its significance in man. Clin Gastroenterol. 1982;11(3):497–521.

    Article  CAS  PubMed  Google Scholar 

  24. Koziolek M, Grimm M, Bollmann T, Schafer KJ, Blattner SM, Lotz R, et al. Characterization of the GI transit conditions in Beagle dogs with a telemetric motility capsule. Eur J Pharm Biopharm. 2019;136:221–30.

    Article  PubMed  Google Scholar 

  25. Koziolek M, Schneider F, Grimm M, Modebeta C, Seekamp A, Roustom T, et al. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies. J Control Release. 2015;220(Pt A):71-8.

  26. Harwood M, Neuhoff S. Establishing the colonic mean residence time for different physical drug entities in Caucasians: a meta-analysis. Simcyp Consortium Meeting; Sheffield, UK2016.

  27. Warrit K, Boscan P, Ferguson LE, Bradley AM, Dowers KL, Rao S, et al. Minimally invasive wireless motility capsule to study canine gastrointestinal motility and pH. Vet J. 2017;227:36–41.

    Article  CAS  PubMed  Google Scholar 

  28. Boscan P. Investigating a noninvasive, at-home diagnostic technique for gastrointestinal disorders. Circle of Discovery [Internet]. 2016. Available from: https://www.pwdfoundation.org/wp-content/uploads/2016/01/D10CA-016-Boscan-FINAL-GI-disorders.pdf.

  29. Dressman JB. Comparison of canine and human gastrointestinal physiology. Pharm Res. 1986;3(3):123–31.

    Article  CAS  PubMed  Google Scholar 

  30. Sagawa K, Li F, Liese R, Sutton SC. Fed and fasted gastric pH and gastric residence time in conscious Beagle dogs. J Pharm Sci. 2009;98(7):2494–500.

    Article  CAS  PubMed  Google Scholar 

  31. Mahar KM, Portelli S, Coatney R, Chen EP. Gastric pH and gastric residence time in fasted and fed conscious Beagle dogs using the Bravo pH system. J Pharm Sci. 2012;101(7):2439–48.

    Article  CAS  PubMed  Google Scholar 

  32. Walsh PL, Stellabott J, Nofsinger R, Xu W, Levorse D, Galipeau K, et al. Comparing dog and human intestinal fluids: implications on solubility and biopharmaceutical risk assessment. AAPS PharmSciTech. 2017;18(4):1408–16.

    Article  CAS  PubMed  Google Scholar 

  33. Akiyama Y, Kimoto T, Mukumoto H, Miyake S, Ito S, Taniguchi T, et al. Prediction accuracy of mechanism-based oral absorption model for dogs. J Pharm Sci. 2019;108(8):2728–36.

    Article  CAS  PubMed  Google Scholar 

  34. Arndt M, Chokshi H, Tang K, Parrott NJ, Reppas C, Dressman JB. Dissolution media simulating the proximal canine gastrointestinal tract in the fasted state. Eur J Pharm Biopharm. 2013;84(3):633–41.

    Article  CAS  PubMed  Google Scholar 

  35. Vertzoni M, Fotaki N, Kostewicz E, Stippler E, Leuner C, Nicolaides E, et al. Dissolution media simulating the intralumenal composition of the small intestine: physiological issues and practical aspects. J Pharm Pharmacol. 2004;56(4):453–62.

    Article  CAS  PubMed  Google Scholar 

  36. Koziolek M, Grimm M, Becker D, Iordanov V, Zou H, Shimizu J, et al. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the Intellicap((R)) system. J Pharm Sci. 2015;104(9):2855–63.

    Article  CAS  PubMed  Google Scholar 

  37. Xiao J, Tran D, Zhang X, Zhang T, Seo S, Zhu H, et al. Biliary excretion-mediated food effects and prediction. AAPS J. 2020;22(6):124.

    Article  CAS  PubMed  Google Scholar 

  38. Kimura T, Inui K, Sezaki H. Differences in effects on drug absorption between dihydroxy and trihydroxy bile salts. J Pharmacobiodyn. 1985;8(7):578–85.

    Article  CAS  PubMed  Google Scholar 

  39. Bazzoli F, Fromm H, Sarva RP, Sembrat RF, Ceryak S. Comparative formation of lithocholic acid from chenodeoxycholic and ursodeoxycholic acids in the colon. Gastroenterology. 1982;83(4):753–60.

    Article  CAS  PubMed  Google Scholar 

  40. Herstad KMV, Moen AEF, Gaby JC, Moe L, Skancke E. Characterization of the fecal and mucosa-associated microbiota in dogs with colorectal epithelial tumors. PLoS One. 2018;13(5):e0198342.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kalantzi L, Persson E, Polentarutti B, Abrahamsson B, Goumas K, Dressman JB, et al. Canine intestinal contents vs. simulated media for the assessment of solubility of two weak bases in the human small intestinal contents. Pharm Res. 2006;23(6):1373–81.

    Article  CAS  PubMed  Google Scholar 

  42. Fiamoncini J, Curi R, Daniel H. Metabolism of bile acids in the post-prandial state. Essays in biochemistry. 2016;60(5):409–18.

    Article  PubMed  Google Scholar 

  43. Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663–76.

    Article  CAS  PubMed  Google Scholar 

  44. Moschetta A, Xu F, Hagey LR, van Berge-Henegouwen GP, van Erpecum KJ, Brouwers JF, et al. A phylogenetic survey of biliary lipids in vertebrates. J Lipid Res. 2005;46(10):2221–32.

    Article  CAS  PubMed  Google Scholar 

  45. Ikeda Y, Morita SY, Terada T. Cholesterol attenuates cytoprotective effects of phosphatidylcholine against bile salts. Sci Rep. 2017;7(1):306.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sugano K. Aqueous boundary layers related to oral absorption of a drug: from dissolution of a drug to carrier mediated transport and intestinal wall metabolism. Mol Pharm. 2010;7(5):1362–73.

    Article  CAS  PubMed  Google Scholar 

  47. Levitt MD, Furne JK, Strocchi A, Anderson BW, Levitt DG. Physiological measurements of luminal stirring in the dog and human small bowel. J Clin Invest. 1990;86(5):1540–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Macierzanka A, Mackie AR, Krupa L. Permeability of the small intestinal mucus for physiologically relevant studies: impact of mucus location and ex vivo treatment. Sci Rep. 2019;9(1):17516.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Herath M, Hosie S, Bornstein JC, Franks AE, Hill-Yardin EL. The role of the gastrointestinal mucus system in intestinal homeostasis: implications for neurological disorders. Front Cell Infect Microbiol. 2020;10:248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Colotti G, Rinaldi T. The central role of gut microbiota in drug metabolism and personalized medicine. Future Med Chem. 2020;12(13):1197–200.

    Article  CAS  PubMed  Google Scholar 

  51. Li H, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2016;12(1):31–40.

    Article  PubMed  Google Scholar 

  52. Xie Y, Hu F, Xiang D, Lu H, Li W, Zhao A, et al. The metabolic effect of gut microbiota on drugs. Drug Metab Rev. 2020;52(1):139–56.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou X, Cassidy KC, Hudson L, Mohutsky MA, Sawada GA, Hao J. Enterohepatic circulation of glucuronide metabolites of drugs in dog. Pharmacol Res Perspect. 2019;7(4):e00502.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Baj A, Moro E, Bistoletti M, Orlandi V, Crema F, Giaroni C. Glutamatergic signaling along the microbiota-gut-brain axis. Int J Mol Sci. 2019;20(6).

  55. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:392.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vandana UK, Barlaskar NH, Gulzar ABM, Laskar IH, Kumar D, Paul P, et al. Linking gut microbiota with the human diseases. Bioinformation. 2020;16(2):196–208.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Coelho LP, Kultima JR, Costea PI, Fournier C, Pan Y, Czarnecki-Maulden G, et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome. 2018;6(1):72.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Alessandri G, Milani C, Mancabelli L, Mangifesta M, Lugli GA, Viappiani A, et al. Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features. Environ Microbiol. 2019;21(4):1331–43.

    Article  CAS  PubMed  Google Scholar 

  59. Lyu T, Liu G, Zhang H, Wang L, Zhou S, Dou H, et al. Changes in feeding habits promoted the differentiation of the composition and function of gut microbiotas between domestic dogs (Canis lupus familiaris) and gray wolves (Canis lupus). AMB Express. 2018;8(1):123.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vazquez-Baeza Y, Hyde ER, Suchodolski JS, Knight R. Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nat Microbiol. 2016;1:16177.

    Article  CAS  PubMed  Google Scholar 

  61. White R, Atherly T, Guard B, Rossi G, Wang C, Mosher C, et al. Randomized, controlled trial evaluating the effect of multi-strain probiotic on the mucosal microbiota in canine idiopathic inflammatory bowel disease. Gut Microbes. 2017;8(5):451–66.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jergens AE, Guard BC, Redfern A, Rossi G, Mochel JP, Pilla R, et al. Microbiota-related changes in unconjugated fecal bile acids are associated with naturally occurring, insulin-dependent diabetes mellitus in dogs. Front Vet Sci. 2019;6:199.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Barko PC, McMichael MA, Swanson KS, Williams DA. The gastrointestinal microbiome: a review. J Vet Intern Med. 2018;32(1):9–25.

    Article  CAS  PubMed  Google Scholar 

  64. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pilla R, Suchodolski JS. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front Vet Sci. 2019;6:498.

    Article  PubMed  Google Scholar 

  66. Hounnou G, Destrieux C, Desme J, Bertrand P, Velut S. Anatomical study of the length of the human intestine. Surg Radiol Anat. 2002;24(5):290–4.

    Article  CAS  PubMed  Google Scholar 

  67. DeSesso JM, Jacobson CF, Williams AL. Anatomical and physiological parameters that influence gastrointestinal absorption. Encyclopedia of Drug Metabolism and Interactions. 2012:1–35.

  68. Martinez MN, Mistry B, Lukacova V, Lentz KA, Polli JE, Hoag SW, et al. Exploring canine-human differences in product performance. Part II: use of modeling and simulation to explore the impact of formulation on ciprofloxacin in vivo absorption and dissolution in dogs. AAPS J. 2017;19(3):712–26.

    Article  CAS  PubMed  Google Scholar 

  69. Hatton GB, Yadav V, Basit AW, Merchant HA. Animal farm: considerations in animal gastrointestinal physiology and relevance to drug delivery in humans. J Pharm Sci. 2015;104(9):2747–76.

    Article  CAS  PubMed  Google Scholar 

  70. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995;16(5):351–80.

    Article  CAS  PubMed  Google Scholar 

  71. Watson CJ, Rowland M, Warhurst G. Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell Physiol. 2001;281(2):C388–97.

    Article  CAS  PubMed  Google Scholar 

  72. He YL, Murby S, Warhurst G, Gifford L, Walker D, Ayrton J, et al. Species differences in size discrimination in the paracellular pathway reflected by oral bioavailability of poly(ethylene glycol) and D-peptides. J Pharm Sci. 1998;87(5):626–33.

    Article  CAS  PubMed  Google Scholar 

  73. van De Waterbeemd H, Smith DA, Beaumont K, Walker DK. Property-based design: optimization of drug absorption and pharmacokinetics. J Med Chem. 2001;44(9):1313–33.

    Article  Google Scholar 

  74. Dahlgren D, Roos C, Johansson P, Tannergren C, Lundqvist A, Langguth P, et al. The effects of three absorption-modifying critical excipients on the in vivo intestinal absorption of six model compounds in rats and dogs. Int J Pharm. 2018;547(1-2):158–68.

    Article  CAS  PubMed  Google Scholar 

  75. Legen I, Kracun M, Salobir M, Kerc J. The evaluation of some pharmaceutically acceptable excipients as permeation enhancers for amoxicillin. Int J Pharm. 2006;308(1-2):84–9.

    Article  CAS  PubMed  Google Scholar 

  76. Trevaskis NL, Shackleford DM, Charman WN, Edwards GA, Gardin A, Appel-Dingemanse S, et al. Intestinal lymphatic transport enhances the post-prandial oral bioavailability of a novel cannabinoid receptor agonist via avoidance of first-pass metabolism. Pharm Res. 2009;26(6):1486–95.

    Article  CAS  PubMed  Google Scholar 

  77. Yanez JA, Wang SW, Knemeyer IW, Wirth MA, Alton KB. Intestinal lymphatic transport for drug delivery. Adv Drug Deliv Rev. 2011;63(10-11):923–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Khoo SM, Edwards GA, Porter CJ, Charman WN. A conscious dog model for assessing the absorption, enterocyte-based metabolism, and intestinal lymphatic transport of halofantrine. J Pharm Sci. 2001;90(10):1599–607.

    Article  CAS  PubMed  Google Scholar 

  79. Humberstone AJ, Porter CJ, Charman WN. A physicochemical basis for the effect of food on the absolute oral bioavailability of halofantrine. J Pharm Sci. 1996;85(5):525–9.

    Article  CAS  PubMed  Google Scholar 

  80. Milton KA, Edwards G, Ward SA, Orme ML, Breckenridge AM. Pharmacokinetics of halofantrine in man: effects of food and dose size. Br J Clin Pharmacol. 1989;28(1):71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lespine A, Chanoit G, Bousquet-Melou A, Lallemand E, Bassissi FM, Alvinerie M, et al. Contribution of lymphatic transport to the systemic exposure of orally administered moxidectin in conscious lymph duct-cannulated dogs. Eur J Pharm Sci. 2006;27(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  82. Martinez MN, El-Kattan A, Awji E, Papich M. Reconciling human-canine differences in oral bioavailability: looking beyond the Biopharmaceutics Classification System. AAPS J. 2019;21(5):99.

    Article  PubMed  Google Scholar 

  83. Papich MG, Martinez MN. Applying biopharmaceutical classification system (BCS) criteria to predict oral absorption of drugs in dogs: challenges and pitfalls. AAPS J. 2015;17(4):948–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11-23, Predicting Drug Disposition via Application of BCS: Transport/Absorption/ Elimination Interplay and Development of a Biopharmaceutics Drug Disposition Classification System.

  85. Xing CY, Tarumi T, Liu J, Zhang Y, Turner M, Riley J, et al. Distribution of cardiac output to the brain across the adult lifespan. J Cereb Blood Flow Metab. 2017;37(8):2848–56.

    Article  PubMed  Google Scholar 

  86. Smith KA, Meyer MW. Distribution of cardiac output in dogs during intravenous infusion of betahistine. Stroke. 1976;7(3):257–60.

    Article  CAS  PubMed  Google Scholar 

  87. Chan R, De Bruyn T, Wright M, Broccatelli F. Comparing mechanistic and preclinical predictions of volume of distribution on a large set of drugs. Pharm Res. 2018;35(4):87.

    Article  PubMed  Google Scholar 

  88. Berry LM, Li C, Zhao Z. Species differences in distribution and prediction of human V(ss) from preclinical data. Drug Metab Dispos. 2011;39(11):2103–16.

    Article  CAS  PubMed  Google Scholar 

  89. Bilbrey GL, Herbin L, Carter NW, Knochel JP. Skeletal muscle resting membrane potential in potassium deficiency. J Clin Invest. 1973;52(12):3011–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chow E, Huizinga JD. Myogenic electrical control activity in longitudinal muscle of human and dog colon. J Physiol. 1987;392:21–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lassen UV, Sten-Knudsen O. Direct measurements of membrane potential and membrane resistance of human red cells. J Physiol. 1968;195(3):681–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McComas AJ, Mrozek K, Gardner-Medwin D, Stanton WH. Electrical properties of muscle fibre membranes in man. J Neurol Neurosurg Psychiatry. 1968;31(5):434–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Parker JC, Castranova V, Goldfinger JM. Dog red blood cells: Na and K diffusion potentials with extracellular ATP. J Gen Physiol. 1977;69(4):417–30.

    Article  CAS  PubMed  Google Scholar 

  94. Ruark CD, Hack CE, Robinson PJ, Mahle DA, Gearhart JM. Predicting passive and active tissue:plasma partition coefficients: interindividual and interspecies variability. J Pharm Sci. 2014;103(7):2189–98.

    Article  CAS  PubMed  Google Scholar 

  95. Ward KW, Smith BR. A comprehensive quantitative and qualitative evaluation of extrapolation of intravenous pharmacokinetic parameters from rat, dog, and monkey to humans. II. Volume of distribution and mean residence time. Drug Metab Dispos. 2004;32(6):612–9.

    Article  CAS  PubMed  Google Scholar 

  96. Di L, Umland JP, Chang G, Huang Y, Lin Z, Scott DO, et al. Species independence in brain tissue binding using brain homogenates. Drug Metab Dispos. 2011;39(7):1270–7.

    Article  CAS  PubMed  Google Scholar 

  97. Smith SA, Waters NJ. Pharmacokinetic and pharmacodynamic considerations for drugs binding to alpha-1-acid glycoprotein. Pharm Res. 2018;36(2):30.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Otagiri M. A molecular functional study on the interactions of drugs with plasma proteins. Drug Metab Pharmacokinet. 2005;20(5):309–23.

    Article  CAS  PubMed  Google Scholar 

  99. Colclough N, Ruston L, Wood JM, MacFaul PA. Species differences in drug plasma protein binding. MedChemComm. 2014;5(7):963–7.

    Article  CAS  Google Scholar 

  100. Kosa T, Maruyama T, Otagiri M. Species differences of serum albumins: I. Drug binding sites. Pharm Res. 1997;14(11):1607–12.

    Article  CAS  PubMed  Google Scholar 

  101. Kaneko K, Fukuda H, Chuang VT, Yamasaki K, Kawahara K, Nakayama H, et al. Subdomain IIIA of dog albumin contains a binding site similar to site II of human albumin. Drug Metab Dispos. 2008;36(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  102. Ketrat S, Japrung D, Pongprayoon P. Exploring how structural and dynamic properties of bovine and canine serum albumins differ from human serum albumin. J Mol Graph Model. 2020;98:107601.

    Article  CAS  PubMed  Google Scholar 

  103. Lee P, Wu X. Review: modifications of human serum albumin and their binding effect. Curr Pharm Des. 2015;21(14):1862–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ramaswamy M, Wallace TL, Cossum PA, Wasan KM. Species differences in the proportion of plasma lipoprotein lipid carried by high-density lipoproteins influence the distribution of free and liposomal nystatin in human, dog, and rat plasma. Antimicrob Agents Chemother. 1999;43(6):1424–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Trepanier LA. Idiosyncratic toxicity associated with potentiated sulfonamides in the dog. J Vet Pharmacol Ther. 2004;27(3):129–38.

    Article  CAS  PubMed  Google Scholar 

  106. Trepanier LA, Cribb AE, Spielberg SP, Ray K. Deficiency of cytosolic arylamine N-acetylation in the domestic cat and wild felids caused by the presence of a single NAT1-like gene. Pharmacogenetics. 1998;8(2):169–79.

    Article  CAS  PubMed  Google Scholar 

  107. Garattini E, Terao M. The role of aldehyde oxidase in drug metabolism. Expert Opin Drug Metab Toxicol. 2012;8(4):487–503.

    Article  CAS  PubMed  Google Scholar 

  108. Ramirez DA, Collins KP, Aradi AE, Conger KA, Gustafson DL. Kinetics of cyclophosphamide metabolism in humans, dogs, cats, and mice and relationship to cytotoxic activity and pharmacokinetics. Drug Metab Dispos. 2019;47(3):257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Abbott JM, Calinski D, Hollenberg P. Metabolism of cyclophosphamide by CYP 2B6 and associated polymorphisms. The FASEB Journal. 2013;27(S1):1007.7-.7.

  110. Griskevicius L, Yasar U, Sandberg M, Hidestrand M, Eliasson E, Tybring G, et al. Bioactivation of cyclophosphamide: the role of polymorphic CYP2C enzymes. Eur J Clin Pharmacol. 2003;59(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  111. Graham RA, Downey A, Mudra D, Krueger L, Carroll K, Chengelis C, et al. In vivo and in vitro induction of cytochrome P450 enzymes in Beagle dogs. Drug Metab Dispos. 2002;30(11):1206–13.

    Article  CAS  PubMed  Google Scholar 

  112. Chen J, Tran C, Xiao L, Palamanda J, Klapmuts T, Kumari P, et al. Co-induction of CYP3A12 and 3A26 in dog liver slices by xenobiotics: species difference between human and dog CYP3A induction. Drug Metab Lett. 2009;3(1):61–6.

    Article  PubMed  Google Scholar 

  113. Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos. 2006;34(5):880–6.

    Article  CAS  PubMed  Google Scholar 

  114. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270(1):414–23.

    CAS  PubMed  Google Scholar 

  115. Heikkinen AT, Friedlein A, Matondo M, Hatley OJ, Petsalo A, Juvonen R, et al. Quantitative ADME proteomics—CYP and UGT enzymes in the Beagle dog liver and intestine. Pharm Res. 2015;32(1):74–90.

    Article  CAS  PubMed  Google Scholar 

  116. Heikkinen AT, Fowler S, Gray L, Li J, Peng Y, Yadava P, et al. In vitro to in vivo extrapolation and physiologically based modeling of cytochrome P450 mediated metabolism in Beagle dog gut wall and liver. Mol Pharm. 2013;10(4):1388–99.

    Article  CAS  PubMed  Google Scholar 

  117. Ho MD, Ring N, Amaral K, Doshi U, Li AP. Human enterocytes as an in vitro model for the evaluation of intestinal drug metabolism: characterization of drug-metabolizing enzyme activities of cryopreserved human enterocytes from twenty-four donors. Drug Metab Dispos. 2017;45(6):686–91.

    Article  CAS  PubMed  Google Scholar 

  118. Achour B, Barber J, Rostami-Hodjegan A. Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: a meta-analysis. Drug Metab Dispos. 2014;42(8):1349–56.

    Article  PubMed  Google Scholar 

  119. Funk-Keenan J, Sacco J, Wong YY, Rasmussen S, Motsinger-Reif A, Trepanier LA. Evaluation of polymorphisms in the sulfonamide detoxification genes CYB5A and CYB5R3 in dogs with sulfonamide hypersensitivity. J Vet Intern Med. 2012;26(5):1126–33.

    Article  CAS  PubMed  Google Scholar 

  120. Pade D, Jamei M, Turner DB, Mistry B, Martinez MN. Danazol oral absorption modelling in the fasted dog: an example of mechanistic understanding of formulation effects on drug pharmacokinetics. Eur J Pharm Biopharm. 2019;141:191–209.

    Article  CAS  PubMed  Google Scholar 

  121. Yague E, Armesilla AL, Harrison G, Elliott J, Sardini A, Higgins CF, et al. P-glycoprotein (MDR1) expression in leukemic cells is regulated at two distinct steps, mRNA stabilization and translational initiation. J Biol Chem. 2003;278(12):10344–52.

    Article  PubMed  Google Scholar 

  122. Heikkinen AT, Friedlein A, Lamerz J, Jakob P, Cutler P, Fowler S, et al. Mass spectrometry-based quantification of CYP enzymes to establish in vitro/in vivo scaling factors for intestinal and hepatic metabolism in Beagle dog. Pharm Res. 2012;29(7):1832–42.

    Article  CAS  PubMed  Google Scholar 

  123. Kyokawa Y, Nishibe Y, Wakabayashi M, Harauchi T, Maruyama T, Baba T, et al. Induction of intestinal cytochrome P450 (CYP3A) by rifampicin in Beagle dogs. Chem Biol Interact. 2001;134(3):291–305.

    Article  CAS  PubMed  Google Scholar 

  124. Court MH. Feline drug metabolism and disposition: pharmacokinetic evidence for species differences and molecular mechanisms. Vet Clin North Am Small Anim Pract. 2013;43(5):1039–54.

    Article  PubMed  Google Scholar 

  125. Alexander SPH, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, et al. THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: introduction and other protein targets. Br J Pharmacol. 2019;176(Suppl 1):S1–S20.

    PubMed  PubMed Central  Google Scholar 

  126. Estudante M, Morais JG, Soveral G, Benet LZ. Intestinal drug transporters: an overview. Adv Drug Deliv Rev. 2013;65(10):1340–56.

    Article  CAS  PubMed  Google Scholar 

  127. Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, et al. Membrane transporters in drug development. Nature Reviews Drug Discovery. 2010;9(3):215–36.

    Article  CAS  PubMed  Google Scholar 

  128. Harwood MD, Zhang M, Pathak SM, Neuhoff S. The regional-specific relative and absolute expression of gut transporters in adult Caucasians: a meta-analysis. Drug Metab Dispos. 2019;47(8):854–64.

    Article  CAS  PubMed  Google Scholar 

  129. Burt HJ, Riedmaier AE, Harwood MD, Crewe HK, Gill KL, Neuhoff S. Abundance of hepatic transporters in Caucasians: a meta-analysis. Drug Metab Dispos. 2016;44(10):1550–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lai Y. Identification of interspecies difference in hepatobiliary transporters to improve extrapolation of human biliary secretion. Expert Opin Drug Metab Toxicol. 2009;5(10):1175–87.

    Article  CAS  PubMed  Google Scholar 

  131. Basit A, Radi Z, Vaidya VS, Karasu M, Prasad B. Kidney cortical transporter expression across species using quantitative proteomics. Drug Metab Dispos. 2019;47(8):802–8.

    Article  CAS  PubMed  Google Scholar 

  132. Al-Majdoub ZM, Al Feteisi H, Achour B, Warwood S, Neuhoff S, Rostami-Hodjegan A, et al. Proteomic quantification of human blood-brain barrier SLC and ABC transporters in healthy individuals and dementia patients. Mol Pharm. 2019;16(3):1220–33.

    Article  CAS  PubMed  Google Scholar 

  133. Braun C, Sakamoto A, Fuchs H, Ishiguro N, Suzuki S, Cui Y, et al. Quantification of transporter and receptor proteins in dog brain capillaries and choroid plexus: relevance for the distribution in brain and CSF of selected BCRP and P-gp substrates. Mol Pharm. 2017;14(10):3436–47.

    Article  CAS  PubMed  Google Scholar 

  134. Morris ME, Rodriguez-Cruz V, Felmlee MA. SLC and ABC transporters: expression, localization, and species differences at the blood-brain and the blood-cerebrospinal fluid barriers. AAPS J. 2017;19(5):1317–31.

    Article  PubMed  Google Scholar 

  135. Nies AT. The role of membrane transporters in drug delivery to brain tumors. Cancer Lett. 2007;254(1):11–29.

    Article  CAS  PubMed  Google Scholar 

  136. Redzic Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids and Barriers of the CNS. 2011;8(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Wittenburg LA, Ramirez D, Conger H, Gustafson DL. Simultaneous absolute quantitation of ATP-binding cassette transporters in normal dog tissues by signature peptide analysis using a LC/MS/MS method. Res Vet Sci. 2019;122:93–101.

    Article  CAS  PubMed  Google Scholar 

  138. Wang L, Prasad B, Salphati L, Chu X, Gupta A, Hop CE, et al. Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics. Drug Metab Dispos. 2015;43(3):367–74.

    Article  PubMed  Google Scholar 

  139. Matsunaga N, Ufuk A, Morse BL, Bedwell DW, Bao J, Mohutsky MA, et al. Hepatic organic anion transporting polypeptide-mediated clearance in the Beagle dog: assessing in vitro-in vivo relationships and applying cross-species empirical scaling factors to improve prediction of human clearance. Drug Metab Dispos. 2019;47(3):215–26.

    Article  CAS  PubMed  Google Scholar 

  140. Wilby AJ, Maeda K, Courtney PF, Debori Y, Webborn PJ, Kitamura Y, et al. Hepatic uptake in the dog: comparison of uptake in hepatocytes and human embryonic kidney cells expressing dog organic anion-transporting polypeptide 1B4. Drug Metab Dispos. 2011;39(12):2361–9.

    Article  CAS  PubMed  Google Scholar 

  141. Zhang J, He K, Cai L, Chen YC, Yang Y, Shi Q, et al. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse. Chem Biol Interact. 2016;255:45–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Harwood MD, Russell MR, Neuhoff S, Warhurst G, Rostami-Hodjegan A. Lost in centrifugation: accounting for transporter protein losses in quantitative targeted absolute proteomics. Drug Metab Dispos. 2014;42(10):1766–72.

    Article  PubMed  Google Scholar 

  143. Timchalk C. Comparative inter-species pharmacokinetics of phenoxyacetic acid herbicides and related organic acids. evidence that the dog is not a relevant species for evaluation of human health risk. Toxicology. 2004;200(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  144. Zou L, Stecula A, Gupta A, Prasad B, Chien HC, Yee SW, et al. Molecular mechanisms for species differences in organic anion transporter 1, OAT1: implications for renal drug toxicity. Mol Pharmacol. 2018;94(1):689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Neuhoff S, Gaohua L, Burt H, Jamei M, Li L, Tucker GT, et al. Accounting for transporters in renal clearance: towards a mechanistic kidney model (Mech KiM). In: Sugiyama Y, Steffansen B, editors. Transporters in drug development: discovery, optimization, clinical study and regulation. New York: Springer New York; 2013. p. 155–77.

    Chapter  Google Scholar 

  146. Knauer MJ, Urquhart BL, Meyer zu Schwabedissen HE, Schwarz UI, Lemke CJ, Leake BF, et al. Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ Res. 2010;106(2):297–306.

    Article  CAS  PubMed  Google Scholar 

  147. Benet LZ, Bowman CM, Sodhi JK. How transporters have changed basic pharmacokinetic understanding. AAPS J. 2019;21(6):103.

    Article  PubMed  Google Scholar 

  148. Abdulla T, Pade D, Neuhoff S, Jamei M. Propofol: a tail of drug disposition and dynamics in different dog breeds. San Antonio: American Association of Pharmaceutical Scientist - PharmSci 360; 2019.

    Google Scholar 

  149. Kimoto E, Bi YA, Kosa RE, Tremaine LM, Varma MVS. Hepatobiliary clearance prediction: species scaling from monkey, dog, and rat, and in vitro-in vivo extrapolation of sandwich-cultured human hepatocytes using 17 drugs. J Pharm Sci. 2017;106(9):2795–804.

    Article  CAS  PubMed  Google Scholar 

  150. Pade D, Neuhoff S, Mistry B, Jamei M, Myers M, Martinez MN. PBPK modelling of collie plasma and brain concentrations as impacted by P-gp to explore loperamide-induced CNS toxicity. Wroclaw: 14th International Congress of European Association for Veterinary Pharmacology and Toxicology; 2018.

    Google Scholar 

  151. Shida S, Yamazaki H. Human plasma concentrations of five cytochrome P450 probes extrapolated from pharmacokinetics in dogs and minipigs using physiologically based pharmacokinetic modeling. Xenobiotica. 2016;46(9):759–64.

    Article  CAS  PubMed  Google Scholar 

  152. Takano R, Furumoto K, Shiraki K, Takata N, Hayashi Y, Aso Y, et al. Rate-limiting steps of oral absorption for poorly water-soluble drugs in dogs; prediction from a miniscale dissolution test and a physiologically-based computer simulation. Pharm Res. 2008;25(10):2334–44.

    Article  CAS  PubMed  Google Scholar 

  153. Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586–97.

    Article  CAS  PubMed  Google Scholar 

  154. Ambrosini YM, Park Y, Jergens AE, Shin W, Min S, Atherly T, et al. Recapitulation of the accessible interface of biopsy-derived canine intestinal organoids to study epithelial-luminal interactions. PLoS One. 2020;15(4):e0231423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chandra L, Borcherding DC, Kingsbury D, Atherly T, Ambrosini YM, Bourgois-Mochel A, et al. Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biol. 2019;17(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kingsbury DD, Mochel JP, Atherly T, Chandra LC, Phillips RL, Hostetter J, et al. Mo1059—comparison of endoscopically (Egd/Colo) procured enteroids and colonoids from normal dogs and dogs with naturally occurring chronic enteropathies (IBD). Gastroenterology. 2018;154(6, Supplement 1):S-686-S-7.

    Article  Google Scholar 

  157. Mochel JP, Jergens AE, Kingsbury D, Kim HJ, Martin MG, Allenspach K. Intestinal stem cells to advance drug development, precision, and regenerative medicine: a paradigm shift in translational research. AAPS J. 2017;20(1):17.

    Article  PubMed  Google Scholar 

  158. Lennarella-Servantez C, Gabriel V, Atherly T, Minkler S, Thenuwara S, Mao S. Collection, culture, and characterization of canine healthy bladder and urothelial carcinoma organoids: reverse translational clinical research in the veterinary patient. Barcelona: European College of Veterinary Internal Medicine Annual Conference; 2020.

    Google Scholar 

  159. Martinez MN, Greene J, Kenna L, Kissell L, Kuhn M. The impact of infection and inflammation on drug metabolism, active transport, and systemic drug concentrations in veterinary species. Drug Metab Dispos. 2020;48(8):631–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express our appreciation to Drs. Yuching Yang and Xinyuan Zhang, Center for Drug Evaluation and Research, Office of Clinical Pharmacology, FDA, for providing a critique of this manuscript.

Funding

This collaboration is part of the Cooperative Research and Development Agreement (CRADA) between the US FDA Center for Veterinary Medicine and Certara UK Limited, Simcyp Division. No external funding was involved in the development of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn N. Martinez.

Ethics declarations

Ethics in Animal and Clinical Investigations

As only available study data were used in the development of this manuscript, no additional human or animal testing occurred for the purpose of generating this review.

Conflict of Interest

JPM is a founder and COO of 3D Health Solutions, Inc. SN and DP are employees and shareholders of Certara UK, Simcyp Division.

Additional information

Guest Editors: Diane Burgess, Marilyn Morris and Meena Subramanyam

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Marilyn N. Martinez communicating author

The information in these materials is not a formal dissemination of information by FDA and does not constitute an advisory opinion, does not necessarily represent the formal position of FDA, and does not bind or otherwise obligate or commit the agency to the views expressed. This collaboration should not be construed as FDA endorsement or preference for a company or specific modeling software.

Supplementary information

ESM 1

(DOCX 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, M.N., Mochel, J.P., Neuhoff, S. et al. Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS J 23, 59 (2021). https://doi.org/10.1208/s12248-021-00590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-021-00590-0

KEY WORDS

Navigation