Skip to main content

Advertisement

Log in

Optimal Sampling Strategies for Irinotecan (CPT-11) and its Active Metabolite (SN-38) in Cancer Patients

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Irinotecan (CPT-11) is an anticancer agent widely used in the treatment of a variety of adult solid tumors. The objective of this study was to develop an optimal sampling strategy model that accurately estimates pharmacokinetic parameters of CPT-11 and its active metabolite, SN-38. This study included 221 patients with advanced solid tumors or lymphoma receiving CPT-11 single or combination therapy with 5-fluorouracil (5-FU)/leucovorin (LV) (FOLFIRI) plus bevacizumab from 4 separate clinical trials. Population pharmacokinetic analysis of CPT-11 and SN-38 was performed by non-linear mixed effects modeling. The optimal sampling strategy model was developed using D-optimality with expected distribution approach. The pharmacokinetic profiles of CPT-11 and SN-38 were best described by a 3- and 2-compartment model, respectively, with first-order elimination. Body surface area and co-administration with 5-FU/LV plus bevacizumab were significant covariates (p < 0.01) for volumes of the central compartment of CPT-11 and SN-38, and clearance of CPT-11. Pre-treatment total bilirubin and co-administration with 5-FU/LV and bevacizumab were significant covariates (p < 0.01) for clearance of SN-38. Accurate and precise predictive performance (r2 > 0.99, -2 < bias (%ME) < 0, precision (% RMSE) < 12) of both CPT-11 and SN-38 was achieved using: (i) 6 fixed sampling times collected at 1.5, 3.5, 4, 5.75, 22, 23.5 hours post-infusion; or (ii) 1 fixed time and 2 sampling windows collected at 1.5, [3-5.75], [22-23.5] hours post-infusion. The present study demonstrates that an optimal sampling design with three blood samples achieves accurate and precise pharmacokinetic parameter estimates for both CPT-11 and SN-38.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AIC :

Akaike’s information criteria

BIC :

Bayesian information criteria

BSV :

Between-subject variability

COSSAC :

Conditional sampling use for stepwise approach on correlation tests

IWRES :

Individual weighted residuals

ED-optimality :

D-optimality with expected distribution

FOLFIRI :

Combination of irinotecan (CPT-11) and 5-fluorouracil/leucovorin

HPLC :

High-performance liquid chromatography

IPRED :

Individual predicted

IV :

Intravenous

LLOQ :

Lower limit of quantitation

LRT :

Likelihood ratio test

LV :

Leucovorin

MCMC :

Markov chain Monte Carlo

pcVPC :

Prediction-corrected visual predictive check

PPRED :

Population predicted

SAEM :

Stochastic approximation of the standard expectation maximization

5-FU :

5-fluorouracil

%ME :

Percent mean error

%MAE :

Percent mean absolute error

%RMSE :

Percent root mean squared error

%RSE :

Percent relative standard error

References

  1. Kingsbury WD, Boehm JC, Jakas DR, Holden KG, Hecht SM, Gallagher G, et al. Synthesis of water-soluble (aminoalkyl)camptothecin analogues: inhibition of topoisomerase I and antitumor activity. J Med Chem. 1991 Jan;34(1):98–107.

    Article  CAS  PubMed  Google Scholar 

  2. CAMPTOSAR® (irinotecan HCl) Dosage and Administration | Pfizer Medical Information - US [Internet]. 2019. Available from: https://www.pfizermedicalinformation.com/en-us/camptosar/dosage-admin

  3. Saltz LB, Cox JV, Blanke C, Rosen LS, Fehrenbacher L, Moore MJ, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan study group. N Engl J Med. 2000;343(13):905–14.

    Article  CAS  PubMed  Google Scholar 

  4. Rothenberg ML, Kuhn JG, Burris HA, Nelson J, Eckardt JR, Tristan-Morales M, et al. Phase I and pharmacokinetic trial of weekly CPT-11. J Clin Oncol. 1993;11(11):2194–204.

    Article  CAS  PubMed  Google Scholar 

  5. Fuchs CS, Moore MR, Harker G, Villa L, Rinaldi D, Hecht JR. Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol. 2003;21(5):807–14.

    Article  CAS  PubMed  Google Scholar 

  6. Ratain MJ. Irinotecan dosing: does the CPT in CPT-11 stand for “Can’t predict toxicity”? J Clin Oncol. 2002;20(1):7–8.

    Article  PubMed  Google Scholar 

  7. Xie R, Mathijssen RHJ, Sparreboom A, Verweij J, Karlsson MO. Clinical pharmacokinetics of irinotecan and its metabolites in relation with diarrhea. Clin Pharmacol Ther. 2002;72(3):265–75.

    Article  CAS  PubMed  Google Scholar 

  8. Xie R, Mathijssen RHJ, Sparreboom A, Verweij J, Karlsson MO. Clinical pharmacokinetics of irinotecan and its metabolites: a population analysis. J Clin Oncol. 2002;20(15):3293–301.

    Article  CAS  PubMed  Google Scholar 

  9. Klein CE, Gupta E, Reid JM, Atherton PJ, Sloan JA, Pitot HC, et al. Population pharmacokinetic model for irinotecan and two of its metabolites, SN-38 and SN-38 glucuronide. Clin Pharmacol Ther. 2002;72(6):638–47.

    Article  CAS  PubMed  Google Scholar 

  10. Chabot GG, Abigerges D, Catimel G, Culine S, de Forni M, Extra JM, et al. Population pharmacokinetics and pharmacodynamics of irinotecan (CPT-11) and active metabolite SN-38 during phase I trials. Ann Oncol. 1995;6(2):141–51.

    Article  CAS  PubMed  Google Scholar 

  11. de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of Irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet. 2018;57(10):1229–54. https://doi.org/10.1007/s40262-018-0644-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H, et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. 2000;60(24):6921–6.

    CAS  PubMed  Google Scholar 

  13. Han J-Y, Lim H-S, Shin ES, Yoo Y-K, Park YH, Lee J-E, et al. Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol. 2006;24(15):2237–44.

    Article  CAS  PubMed  Google Scholar 

  14. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol. 2004;22(8):1382–8.

    Article  CAS  PubMed  Google Scholar 

  15. Minami H, Sai K, Saeki M, Saito Y, Ozawa S, Suzuki K, et al. Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet Genomics. 2007;17(7):497–504.

    Article  CAS  PubMed  Google Scholar 

  16. Toffoli G, Cecchin E, Corona G, Russo A, Buonadonna A, D’Andrea M, et al. The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol. 2006;24(19):3061–8.

    Article  CAS  PubMed  Google Scholar 

  17. Innocenti F, Schilsky RL, Ramírez J, Janisch L, Undevia S, House LK, et al. Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer. J Clin Oncol. 2014;32(22):2328–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marcuello E, Páez D, Paré L, Salazar J, Sebio A, del Rio E, et al. A genotype-directed phase I-IV dose-finding study of irinotecan in combination with fluorouracil/leucovorin as first-line treatment in advanced colorectal cancer. Br J Cancer. 2011;105(1):53–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Toffoli G, Cecchin E, Gasparini G, D’Andrea M, Azzarello G, Basso U, et al. Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28(5):866–71.

    Article  CAS  PubMed  Google Scholar 

  20. Perera MA, Innocenti F, Ratain MJ. Pharmacogenetic testing for uridine diphosphate glucuronosyltransferase 1A1 polymorphisms: are we there yet? Pharmacotherapy. 2008;28(6):755–68.

    Article  CAS  PubMed  Google Scholar 

  21. Panetta JC, Iacono LC, Adamson PC, Stewart CF. The importance of pharmacokinetic limited sampling models for childhood cancer drug development. Clin Cancer Res. 2003;9(14):5068–77.

    CAS  PubMed  Google Scholar 

  22. Nakashima H, Lieberman R, Karato A, Arioka H, Ohmatsu H, Nomura N, et al. Efficient sampling strategies for forecasting pharmacokinetic parameters of irinotecan (CPT-11): implication for area under the concentration-time curve monitoring. Ther Drug Monit. 1995;17(3):221–9.

    Article  CAS  PubMed  Google Scholar 

  23. Sasaki Y, Mizuno S, Fujii H, Ohtsu T, Wakita H, Igarashi T, et al. A limited sampling model for estimating pharmacokinetics of CPT-11 and its metabolite SN-38. Jpn J Cancer Res. 1995 Jan;86(1):117–23.

    Article  CAS  PubMed  Google Scholar 

  24. Mick R, Gupta E, Vokes EE, Ratain MJ. Limited-sampling models for irinotecan pharmacokinetics- pharmacodynamics: prediction of biliary index and intestinal toxicity. J Clin Oncol. 1996;14(7):2012–9.

    Article  CAS  PubMed  Google Scholar 

  25. Mathijssen RH, van Alphen RJ, de Jonge MJ, Verweij J, de Bruijn P, Loos WJ, et al. Sparse-data set analysis for irinotecan and SN-38 pharmacokinetics in cancer patients co-treated with cisplatin. Anti-Cancer Drugs. 1999;10(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  26. Poujol S, Pinguet F, Ychou M, Abderrahim A, Duffour J, Bressolle F. A limited sampling strategy to estimate the pharmacokinetic parameters of irinotecan and its active metabolite, SN-38, in patients with metastatic digestive cancer receiving the FOLFIRI regimen. Oncol Rep. 2007;15.

  27. D’Argenio DZ. Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments. Math Biosci. 1990;99(1):105–18.

    Article  PubMed  Google Scholar 

  28. D’Argenio DZ. Optimal sampling times for pharmacokinetic experiments. J Pharmacokinet Biopharm. 1981;9(6):739–56.

    Article  PubMed  Google Scholar 

  29. Foracchia M, Hooker A, Vicini P, Ruggeri A. POPED, a software for optimal experiment design in population kinetics. Comput Methods Prog Biomed. 2004;74(1):29–46.

    Article  Google Scholar 

  30. Nyberg J, Ueckert S, Strömberg EA, Hennig S, Karlsson MO, Hooker AC. PopED: an extended, parallelized, nonlinear mixed effects models optimal design tool. Comput Methods Prog Biomed. 2012;108(2):789–805.

    Article  Google Scholar 

  31. Iyer L, Das S, Janisch L, Wen M, Ramírez J, Karrison T, et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. 2002;2(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  32. Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramírez J, Relling M, et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol. 2009;27(16):2604–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van der Bol JM, Mathijssen RHJ, Creemers G-JM, Planting AST, Loos WJ, Wiemer EAC, et al. A CYP3A4 phenotype-based dosing algorithm for individualized treatment of Irinotecan. Clin Cancer Res. 2010;16(2):736–42.

    Article  PubMed  CAS  Google Scholar 

  34. Mathijssen RHJ, de Jong FA, van Schaik RHN, Lepper ER, Friberg LE, Rietveld T, et al. Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes. J Natl Cancer Inst. 2004;96(21):1585–92.

    Article  CAS  PubMed  Google Scholar 

  35. de Jong FA, Kehrer DFS, Mathijssen RHJ, Creemers G-J, de Bruijn P, van Schaik RHN, et al. Prophylaxis of irinotecan-induced diarrhea with neomycin and potential role for UGT1A1*28 genotype screening: a double-blind, randomized, placebo-controlled study. Oncologist. 2006;11(8):944–54.

    Article  PubMed  CAS  Google Scholar 

  36. Toffoli G, Sharma MR, Marangon E, Posocco B, Gray E, Mai Q, et al. Genotype-guided dosing study of FOLFIRI plus Bevacizumab in patients with metastatic colorectal Cancer. Clin Cancer Res. 2017;23(4):918–24.

    Article  CAS  PubMed  Google Scholar 

  37. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504.

    Article  CAS  PubMed  Google Scholar 

  38. Monolix 2018R1 User guide [Internet]. Monolix 2017. 2019. Available from: http://monolix.lixoft.com/single-page/

  39. Population parameter using SAEM algorithm [Internet]. Monolix 2017. 2019. Available from: http://monolix.lixoft.com/tasks/population-parameter-estimation-using-saem/

  40. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19(6):716–23.

    Article  Google Scholar 

  41. Schwarz G. Estimating the dimension of a model. Ann Stat. 1978 Jul 14;6(2):461–4.

    Article  Google Scholar 

  42. Rsmlx package | R Documentation [Internet]. 2019. Available from: https://www.rdocumentation.org/packages/Rsmlx/versions/2.0.2

  43. PopED package | R Documentation [Internet]. 2019. Available from: https://www.rdocumentation.org/packages/PopED/versions/0.4.0

  44. Ogungbenro K, Aarons L. An effective approach for obtaining optimal sampling windows for population pharmacokinetic experiments. J Biopharm Stat. 2009;19(1):174–89.

    Article  PubMed  Google Scholar 

  45. mlxR package | R Documentation [Internet]. 2019. Available from: https://www.rdocumentation.org/packages/mlxR/versions/4.0.0

  46. lme4 package | R Documentation [Internet]. 2019. Available from: https://www.rdocumentation.org/packages/lme4/versions/1.1-19

  47. Rowinsky EK, Grochow LB, Ettinger DS, Sartorius SE, Lubejko BG, Chen TL, et al. Phase I and pharmacological study of the novel topoisomerase I inhibitor 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11) administered as a ninety-minute infusion every 3 weeks. Cancer Res. 1994;54(2):427–36.

    CAS  PubMed  Google Scholar 

  48. de Forni M, Bugat R, Chabot GG, Culine S, Extra JM, Gouyette A, et al. Phase I and pharmacokinetic study of the camptothecin derivative irinotecan, administered on a weekly schedule in cancer patients. Cancer Res. 1994;54(16):4347–54.

    PubMed  Google Scholar 

  49. Abigerges D, Chabot GG, Armand JP, Hérait P, Gouyette A, Gandia D. Phase I and pharmacologic studies of the camptothecin analog irinotecan administered every 3 weeks in cancer patients. J Clin Oncol. 1995;13(1):210–21.

    Article  CAS  PubMed  Google Scholar 

  50. Canal P, Gay C, Dezeuze A, Douillard JY, Bugat R, Brunet R, et al. Pharmacokinetics and pharmacodynamics of irinotecan during a phase II clinical trial in colorectal cancer. Pharmacology and molecular mechanisms Group of the European Organization for research and treatment of Cancer. J Clin Oncol. 1996;14(10):2688–95.

    Article  CAS  PubMed  Google Scholar 

  51. Mathijssen RHJ, Verweij J, Loos WJ, de Bruijn P, Nooter K, Sparreboom A. Irinotecan pharmacokinetics-pharmacodynamics: the clinical relevance of prolonged exposure to SN-38. Br J Cancer. 2002;87(2):144–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sasaki Y, Hakusui H, Mizuno S, Morita M, Miya T, Eguchi K, et al. A pharmacokinetic and pharmacodynamic analysis of CPT-11 and its active metabolite SN-38. Jpn J Cancer Res. 1995;86(1):101–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Slatter JG, Schaaf LJ, Sams JP, Feenstra KL, Johnson MG, Bombardt PA, et al. Pharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following I.V. infusion of [(14)C]CPT-11 in cancer patients. Drug Metab Dispos. 2000;28(4):423–33.

    CAS  PubMed  Google Scholar 

  54. Sparreboom A, de Jonge MJ, de Bruijn P, Brouwer E, Nooter K, Loos WJ, et al. Irinotecan (CPT-11) metabolism and disposition in cancer patients. Clin Cancer Res. 1998;4(11):2747–54.

    CAS  PubMed  Google Scholar 

  55. Schaaf LJ, Hammond LA, Tipping SJ, Goldberg RM, Goel R, Kuhn JG, et al. Phase 1 and pharmacokinetic study of intravenous irinotecan in refractory solid tumor patients with hepatic dysfunction. Clin Cancer Res. 2006;12(12):3782–91.

    Article  CAS  PubMed  Google Scholar 

  56. Bosma PJ, Seppen J, Goldhoorn B, Bakker C, Oude Elferink RP, Chowdhury JR, et al. Bilirubin UDP-glucuronosyltransferase 1 is the only relevant bilirubin glucuronidating isoform in man. J Biol Chem. 1994;269(27):17960–4.

    CAS  PubMed  Google Scholar 

  57. Rivory LP, Robert J. Identification and kinetics of a beta-glucuronide metabolite of SN-38 in human plasma after administration of the camptothecin derivative irinotecan. Cancer Chemother Pharmacol. 1995;36(2):176–9.

    Article  CAS  PubMed  Google Scholar 

  58. Saltz LB, Kanowitz J, Kemeny NE, Schaaf L, Spriggs D, Staton BA, et al. Phase I clinical and pharmacokinetic study of irinotecan, fluorouracil, and leucovorin in patients with advanced solid tumors. J Clin Oncol. 1996;14(11):2959–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Pauline Traynard at Lixoft for her expert advice on Monolix and the Information Technology Services Research Computing group at University of North Carolina at Chapel Hill for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert R. Bies or Federico Innocenti.

Ethics declarations

The UNC IRB determined this was a non-human subjects research. The IRB Number is 13–1277.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 29.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karas, S., Etheridge, A.S., Tsakalozou, E. et al. Optimal Sampling Strategies for Irinotecan (CPT-11) and its Active Metabolite (SN-38) in Cancer Patients. AAPS J 22, 59 (2020). https://doi.org/10.1208/s12248-020-0429-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-0429-4

Key words

Navigation