Skip to main content
Log in

Using Physiologically Based Pharmacokinetic Modeling to Assess the Risks of Failing Bioequivalence Criteria: a Tale of Two Ibuprofen Products

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The aims of the proposed study were to develop and verify a quantitative model-based framework to anticipate the in vivo bioequivalence of ibuprofen immediate release formulations. This stepwise approach integrated virtual bioequivalence trials to simulate the test to reference (T/R) ratio for positive (i.e., bioequivalent) and negative (i.e., non-bioequivalent) control formulations containing ibuprofen, approximated distribution of interoccasion variability (IOV) on ibuprofen peak (Cmax) and extent of exposure (AUC) by bootstrapping resampling methods, post hoc incorporation of IOV to simulated T/R ratios, and power curve analysis. After post hoc incorporation of the bootstrapped IOV to the simulated Cmax T/R geometric mean ratios, the resulting 90% confidence intervals overlapped with the in vivo observations for both pairwise comparisons. On the other hand, simulated and observed AUC TNBE/R geometric mean ratios differed, likely due to the lack of propagating clearance-related IOV to the simulations. This approach is in line with modern regulatory initiatives that advocate leveraging quantitative methods and modeling to modernize generic drug development and review.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amidon GL, Lennernäs H, Shah VP, Crison JR. Theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  Google Scholar 

  2. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol. 2010;62:1607–21.

    Article  CAS  Google Scholar 

  3. Grimm M, Koziolek M, Kühn JP, Weitschies W. Interindividual and intraindividual variability of fasted state gastric fluid volume and gastric emptying of water. Eur J Pharm Biopharm. 2018;127:309–17.

    Article  Google Scholar 

  4. U.S. Food & Drug Administration (FDA). Bioequivalence studies with pharmacokinetic endpoints for drugs submitted under an ANDA — Guidance for Industry. 2013. https://www.fda.gov/files/drugs/published/Bioequivalence-Studies-With-Pharmacokinetic-Endpoints-for-Drugs-Submitted-Under-an-Abbreviated-New-Drug-Application.pdf. Accessed 03 March 2020.

  5. U.S. Food & Drug Administration (FDA). Guidance for Industry SUPAC-MR: modified release solid oral dosage forms scale-up and postapproval changes: Chemistry, Manufacturing, and Controls; In Vitro Dissolution Testing and In Vivo Bioequivalence Documentation. 1997. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/supac-mr-modified-release-solid-oral-dosage-forms-scale-and-postapproval-changes-chemistry. Accessed 03 March 2020.

  6. European Medicines Agency (EMA). Guideline On The Investigation of Bioequivalence. 2010. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf. Accessed 03 March 2020.

  7. U.S. Food & Drug Administration (FDA). Statistical approaches to establishing bioequivalence. 2001. https://www.fda.gov/media/70958/download. Accessed 19 June 2020.

  8. Moreno I, Ochoa D, Román M, Cabaleiro T, Abad-Santos F. Utility of pilot studies for predicting ratios and intrasubject variability in high-variability drugs. Basic Clin Pharmacol Toxicol. 2016;119:215–21.

    Article  CAS  Google Scholar 

  9. Heimbach T, Suarez-Sharp S, Kakhi M, Holmstock N, Olivares-Morales A, Pepin X, et al. Dissolution and translational modeling strategies toward establishing an in vitro-in vivo link-a workshop summary report. AAPS J. 2019;21(2):29.

    Article  Google Scholar 

  10. Fang L, Kim MJ, Li Z, Wang Y, DiLiberti CE, Au J, et al. Model-informed drug development and review for generic products: summary of FDA public workshop. Clin Pharmacol Ther. 2018;104:27–30.

    Article  Google Scholar 

  11. Butler J, Hens B, Vertzoni M, Brouwers J, Berben P, Dressman J, et al. In vitro models for the prediction of in vivo performance of oral dosage forms: recent progress from partnership through the IMI OrBiTo collaboration. Eur J Pharm Biopharm. 2019;136:70–83.

    Article  CAS  Google Scholar 

  12. Loisios-Konstantinidis I, Cristofoletti R, Fotaki N, Turner DB, Dressman J. Establishing virtual bioequivalence and clinically relevant specifications using in vitro biorelevant dissolution testing and physiologically-based population pharmacokinetic modeling. case example: Naproxen. Eur J Pharm Sci. 2020. https://doi.org/10.1016/j.ejps.2019.105170.

  13. Sumner T, et al. Methodology for global-sensitivity analysis of time-dependent outputs in systems biology modelling. J R Soc Interface. 2012;9:2156–66.

    Article  CAS  Google Scholar 

  14. Cristofoletti R, Dressman JB. Bridging the gap between in vitro dissolution and the time course of ibuprofen-mediating pain relief. J Pharm Sci. 2016;105(12):3658–67.

    Article  CAS  Google Scholar 

  15. Morris MD. Factorial sampling plans for preliminary computational experiments. Technimetrics. 1999;33(2):161–74.

    Article  Google Scholar 

  16. Cristofoletti R, Dressman JB. FaSSIF-V3, but not compendial media, appropriately detects differences in the peak and extent of exposure between reference and test formulations of ibuprofen. Eur J Pharm Biopharm. 2016;105:134–40.

    Article  CAS  Google Scholar 

  17. Fuchs A, Leigh M, Kloefer B, Dressman JB. Advances in the design of fasted state simulating intestinal fluids: FaSSIF-V3. Eur J Pharm Biopharm. 2015;94:229–40.

    Article  CAS  Google Scholar 

  18. Pathak SM, Ruff A, Kostewicz ES, Patel N, Turner DB, Jamei M. Model-based analysis of biopharmaceutic experiments to improve mechanistic oral absorption modeling: an integrated in vitro in vivo extrapolation perspective using ketoconazole as a model drug. Mol Pharm. 2017;14:4305–20.

    Article  CAS  Google Scholar 

  19. Cristofoletti R, Hens B, Patel N, Esteban VV, Schmidt S, Dressman J. Integrating drug- and formulation-related properties with gastrointestinal tract variability using a product-specific particle size approach: case example ibuprofen. J Pharm Sci. 2019;108:3842–7.

    Article  Google Scholar 

  20. Le VNP, et al. Influence of granulation and compaction on the particle size of ibuprofen--development of a size analysis method. Int J Pharm. 2006;321:72–7.

    Article  CAS  Google Scholar 

  21. Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A. The Simcyp population-based ADME simulator. Expert Opin Drug Metab Toxicol. 2009;5:211–23.

    Article  CAS  Google Scholar 

  22. Kolewe ME, Roberts SC, Henson MA. A population balance equation model of aggregation dynamics in Taxus suspension cell cultures. Biotechnol Bioeng. 2012;109:472–82.

    Article  CAS  Google Scholar 

  23. Martin W, Koselowske G, Töberich H, Kerkmann T, Mangold B, Augustin J. Pharmacokinetics and absolute bioavailability of ibuprofen after oral administration of ibuprofen lysine in man. Biopharm Drug Dispos. 1990;11(3):265–78.

    Article  CAS  Google Scholar 

  24. Abduljalil K, Cain T, Humphries H, Rostami-Hodjegan A. Deciding on success criteria for predictability of pharmacokinetic parameters from in vitro studies: an analysis based on in vivo observations. Drug Metab Dispos. 2014;42(9):1478–84.

    Article  Google Scholar 

  25. Guest EJ, Aarons L, Houston JB, Rostami-Hodjegan A, Galetin A. Critique of the two-fold measure of prediction success for ratios: application for the assessment of drug-drug interactions. Drug Metab Dispos. 2011;39(2):170–3.

    Article  CAS  Google Scholar 

  26. R Core Team. R: A language and environment for statistical computing. 2019. https://www.R-project.org/. Accessed 03 March 2020.

  27. Legg TJ, Laurent AL, Leyva R, Kellstein D. Ibuprofen sodium is absorbed faster than standard ibuprofen tablets: results of two open-label, randomized, crossover pharmacokinetic studies. Drugs R D. 2014;14(4):283–90.

    Article  CAS  Google Scholar 

  28. Troconiz IF, Armenteros S, Planelles MV, Benitez J, Calvos R, Dominguez R. Pharmacokinetic-pharmacodynamic modelling of the antipyretic effect of two oral formulations of ibuprofen. Clin Pharmacokinet. 2001;38(6):505–18.

    Article  Google Scholar 

  29. Sugano K, Terada K. Rate- and extent-limiting factors of oral drug absorption: theory and applications. J Pharm Sci. 2015;104(9):2777–88.

    Article  CAS  Google Scholar 

  30. Blume H, Mutschler E. Bioaquivalenz, Qualitatsbewertung wirkstoffgleicher Fertigarzneimittel, Teil I/II, Isosorbiddinitrat 6. Erg¨anzungslieferung, Govi-Verlag Pharmazeutischer Verlag, Frankfurt/Main-Eschborn; 1996.

  31. Lozoya-Agullo I, Araújo F, González-Álvarez I, Merino-Sanjuán M, González-Álvarez M, Bermejo M, et al. PLGA nanoparticles are effective to control the colonic release and absorption on ibuprofen. Eur J Pharm Sci. 2018;115:119–25.

    Article  CAS  Google Scholar 

  32. Atkinson HC, Stanescu I, Frampton C, Salem II, Beasley CPH, Robson R. Pharmacokinetics and bioavailability of a fixed-dose combination of ibuprofen and paracetamol after intravenous and Oral administration. Clin Drug Investig. 2015;35:625–32.

    Article  CAS  Google Scholar 

  33. Davit BM, Nwakama PE, Buehler GJ, Conner DP, Haidar SH, Patel DT, et al. Comparing generic and innovator drugs: a review of 12 years of bioequivalence data from the United States Food and Drug Administration. Ann Pharmacother. 2009;43:1583–97.

    Article  CAS  Google Scholar 

  34. Mitra A. Maximizing the role of physiologically based Oral absorption modeling in generic drug development. Clin Pharmacol Ther. 2019;105:307–9.

    Article  Google Scholar 

  35. Lionberger RA. Innovation for generic drugs: science and research under the generic drug user fee amendments of 2012. Clin Pharmacol Ther. 2019;105:878–85.

    Article  Google Scholar 

  36. Lionberger RA. Decision science for generic drug development and review. J Clin Pharmacol. 2019;59:1249–51.

    CAS  PubMed  Google Scholar 

  37. Manolis E, Musuamba FT, Karlsson KE. Regulatory considerations for building an in silico clinical pharmacology backbone by 2030. Clin Pharmacol Ther. 2020;107:746–8. https://doi.org/10.1002/cpt.1772.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Simcyp® Limited for providing an academic license of the Simcyp® Simulator v18.2 and 19.1 as well as the license of the SIVA® toolkit v3 to the Center for Pharmacometrics and Systems Pharmacology, University of Florida without charge. Bart Hens acknowledges the Flemish Research Council (FWO: applicant number 12R2119N). Ioannis Loisios-Konstantinidis would like to thank the European Union’s Horizon 2020 Research and Innovation Program under grant agreement No 674909 (PEARRL).

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

I.L.K., B.H, A.M., S.K., C.C., and R.C. wrote the manuscript; R.C. designed the research; I.L.K., B.H. and R.C. performed the research; I.L.K., B.H., S.K., C.C., and R.C. analyzed the data.

Corresponding author

Correspondence to Rodrigo Cristofoletti.

Ethics declarations

Conflict of Interest

The authors declare that they have have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ioannis Loisios-Konstantinidis and Bart Hens are equal first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loisios-Konstantinidis, I., Hens, B., Mitra, A. et al. Using Physiologically Based Pharmacokinetic Modeling to Assess the Risks of Failing Bioequivalence Criteria: a Tale of Two Ibuprofen Products. AAPS J 22, 113 (2020). https://doi.org/10.1208/s12248-020-00495-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-00495-4

KEY WORDS

Navigation