Skip to main content
Log in

Mind the Gaps: Ontogeny of Human Brain P-gp and Its Impact on Drug Toxicity

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Available data on human brain P-glycoprotein ontogeny during infancy and childhood are limited. This review discusses the current body of data relating to maturation of human brain P-glycoprotein including transporter expression levels in post-mortem human brain samples, in vivo transporter activity using probe substrates, surrogate marker endpoints, and extrapolations from animal models. Overall, the data tend to confirm that human brain P-glycoprotein activity keeps developing after birth, although with a developmental time frame that remains unclear. This knowledge gap is a concern given the critical role of brain P-glycoprotein in drug safety and efficacy, and the vulnerable nature of the pediatric population. Future research could include the measurement of brain P-glycoprotein activity across age groups using positron emission tomography or central pharmacodynamic responses. For now, caution is advised when extrapolating adult data to children aged younger than 2 years for drugs with P-glycoprotein-dependent central nervous system activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Transporter C, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.

    Google Scholar 

  2. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455(1):152–62.

    CAS  PubMed  Google Scholar 

  3. Sadeque AJ, Wandel C, He H, Shah S, Wood AJ. Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther. 2000;68(3):231–7.

    CAS  PubMed  Google Scholar 

  4. Borron SW, Watts SH, Tull J, Baeza S, Diebold S, Barrow A. Intentional misuse and abuse of Loperamide: a new look at a drug with "low abuse potential". J Emerg Med. 2017;53(1):73–84.

    PubMed  Google Scholar 

  5. Walenga JM, Adiguzel C. Drug and dietary interactions of the new and emerging oral anticoagulants. Int J Clin Pract. 2010;64(7):956–67.

    CAS  PubMed  Google Scholar 

  6. Elmorsi Y, Barber J, Rostami-Hodjegan A. Ontogeny of hepatic drug transporters and relevance to drugs used in pediatrics. Drug Metab Dispos. 2016;44(7):992–8.

    CAS  PubMed  Google Scholar 

  7. Mooij MG, Nies AT, Knibbe CA, Schaeffeler E, Tibboel D, Schwab M, et al. Development of human membrane transporters: drug disposition and pharmacogenetics. Clin Pharmacokinet. 2016;55(5):507–24.

    CAS  PubMed  Google Scholar 

  8. Lam J, Koren G. P-glycoprotein in the developing human brain: a review of the effects of ontogeny on the safety of opioids in neonates. Ther Drug Monit. 2014;36(6):699–705.

    CAS  PubMed  Google Scholar 

  9. Brouwer KL, Aleksunes LM, Brandys B, Giacoia GP, Knipp G, Lukacova V, et al. Human ontogeny of drug transporters: review and recommendations of the pediatric transporter working group. Clin Pharmacol Ther. 2015;98(3):266–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Elzagallaai AA, Greff M, Rieder MJ. Adverse drug reactions in children: the double-edged sword of therapeutics. Clin Pharmacol Ther. 2017;101(6):725–35.

    CAS  PubMed  Google Scholar 

  11. Conroy S, Choonara I, Impicciatore P, Mohn A, Arnell H, Rane A, et al. Survey of unlicensed and off label drug use in paediatric wards in European countries. European network for drug investigation in children. BMJ. 2000;320(7227):79–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schumacher U, Mollgard K. The multidrug-resistance P-glycoprotein (Pgp, MDR1) is an early marker of blood-brain barrier development in the microvessels of the developing human brain. Histochem Cell Biol. 1997;108(2):179–82.

    CAS  PubMed  Google Scholar 

  13. Daood M, Tsai C, Ahdab-Barmada M, Watchko JF. ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics. 2008;39(4):211–8.

    CAS  PubMed  Google Scholar 

  14. Lam J, Baello S, Iqbal M, Kelly LE, Shannon PT, Chitayat D, et al. The ontogeny of P-glycoprotein in the developing human blood-brain barrier: implication for opioid toxicity in neonates. Pediatr Res. 2015;78(4):417–21.

    CAS  PubMed  Google Scholar 

  15. Kellie SJ, Barbaric D, Koopmans P, Earl J, Carr DJ, de Graaf SS. Cerebrospinal fluid concentrations of vincristine after bolus intravenous dosing: a surrogate marker of brain penetration. Cancer. 2002;94(6):1815–20.

    CAS  PubMed  Google Scholar 

  16. Li ST, Grossman DC, Cummings P. Loperamide therapy for acute diarrhea in children: systematic review and meta-analysis. PLoS Med. 2007;4(3):e98.

    PubMed  PubMed Central  Google Scholar 

  17. Chen LW, Chen JS, Tu YF, Wang ST, Wang LW, Tsai YS, et al. Age-dependent vulnerability of cyclosporine-associated encephalopathy in children. Eur J Paediatr Neurol. 2015;19(4):464–71.

    CAS  PubMed  Google Scholar 

  18. Ose A, Kusuhara H, Yamatsugu K, Kanai M, Shibasaki M, Fujita T, et al. P-glycoprotein restricts the penetration of oseltamivir across the blood-brain barrier. Drug Metab Dispos. 2008;36(2):427–34.

    CAS  PubMed  Google Scholar 

  19. Hatori A, Yui J, Yanamoto K, Yamasaki T, Kawamura K, Takei M, et al. Determination of radioactivity in infant, juvenile and adult rat brains after injection of anti-influenza drug [(1)(1)C]oseltamivir using PET and autoradiography. Neurosci Lett. 2011;495(3):187–91.

    CAS  PubMed  Google Scholar 

  20. Soares RV, Do TM, Mabondzo A, Pons G, Chhun S. Ontogeny of ABC and SLC transporters in the microvessels of developing rat brain. Fundam Clin Pharmacol. 2016;30(2):107–16.

    CAS  PubMed  Google Scholar 

  21. Takashima T, Yokoyama C, Mizuma H, Yamanaka H, Wada Y, Onoe K, et al. Developmental changes in P-glycoprotein function in the blood-brain barrier of nonhuman primates: PET study with R-11C-verapamil and 11C-oseltamivir. J Nucl Med. 2011;52(6):950–7.

    CAS  PubMed  Google Scholar 

  22. Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y, et al. Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci. 2011;100(9):3939–50.

    CAS  PubMed  Google Scholar 

  23. Volk H, Potschka H, Loscher W. Immunohistochemical localization of P-glycoprotein in rat brain and detection of its increased expression by seizures are sensitive to fixation and staining variables. J Histochem Cytochem. 2005;53(4):517–31.

    CAS  PubMed  Google Scholar 

  24. Toth K, Vaughan MM, Slocum HK, Arredondo MA, Takita H, Baker RM, et al. New immunohistochemical "sandwich" staining method for mdr1 P-glycoprotein detection with JSB-1 monoclonal antibody in formalin-fixed, paraffin-embedded human tissues. Am J Pathol. 1994;144(2):227–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bartels AL, Kortekaas R, Bart J, Willemsen AT, de Klerk OL, de Vries JJ, et al. Blood-brain barrier P-glycoprotein function decreases in specific brain regions with aging: a possible role in progressive neurodegeneration. Neurobiol Aging. 2009;30(11):1818–24.

    CAS  PubMed  Google Scholar 

  26. van Assema DM, Lubberink M, Boellaard R, Schuit RC, Windhorst AD, Scheltens P, et al. P-glycoprotein function at the blood-brain barrier: effects of age and gender. Mol Imaging Biol. 2012;14(6):771–6.

    PubMed  PubMed Central  Google Scholar 

  27. Kosztyu P, Dolezel P, Vaclavikova R, Mlejnek P. Can the assessment of ABCB1 gene expression predict its function in vitro? Eur J Haematol. 2015;95(2):150–9.

    CAS  PubMed  Google Scholar 

  28. De Lange ECM, Vd Berg DJ, Bellanti F, Voskuyl RA, Syvanen S. P-glycoprotein protein expression versus functionality at the blood-brain barrier using immunohistochemistry, microdialysis and mathematical modeling. Eur J Pharm Sci. 2018;124:61–70.

    PubMed  Google Scholar 

  29. Bailly JD, Muller C, Jaffrezou JP, Demur C, Gassar G, Bordier C, et al. Lack of correlation between expression and function of P-glycoprotein in acute myeloid leukemia cell lines. Leukemia. 1995;9(5):799–807.

    CAS  PubMed  Google Scholar 

  30. Vasquez EM, Petrenko Y, Jacobssen V, Sifontis NM, Testa G, Sankary H, et al. An assessment of P-glycoprotein expression and activity in peripheral blood lymphocytes of transplant candidates. Transplant Proc. 2005;37(1):175–7.

    CAS  PubMed  Google Scholar 

  31. Krawczenko A, Bielawska-Pohl A, Wojtowicz K, Jura R, Paprocka M, Wojdat E, et al. Expression and activity of multidrug resistance proteins in mature endothelial cells and their precursors: a challenging correlation. PLoS One. 2017;12(2):e0172371.

    PubMed  PubMed Central  Google Scholar 

  32. Thews O, Gassner B, Kelleher DK, Schwerdt G, Gekle M. Impact of extracellular acidity on the activity of P-glycoprotein and the cytotoxicity of chemotherapeutic drugs. Neoplasia. 2006;8(2):143–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Clancy B, Finlay BL, Darlington RB, Anand KJ. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28(5):931–7.

    PubMed  Google Scholar 

  34. Buelke-Sam J. Comparative schedules of development in rats and humans: implications for developmental neurotoxicity testing. Annual meeting of the Society of Toxicology, Salt Lake City, 2003. p. Abstract no 820.

  35. Schmitt G, Parrott N, Prinssen E, Barrow P. The great barrier belief: the blood-brain barrier and considerations for juvenile toxicity studies. Reprod Toxicol. 2017;72:129–35.

    CAS  PubMed  Google Scholar 

  36. Allegaert K, van den Anker JN. Neonatal pain management: still in search for the holy grail. Int J Clin Pharmacol Ther. 2016;54(7):514–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodieux F, Gotta V, Pfister M, van den Anker JN. Causes and consequences of variability in drug transporter activity in pediatric drug therapy. J Clin Pharmacol. 2016;56(Suppl 7):S173–92.

    CAS  PubMed  Google Scholar 

  38. Marsousi N, Desmeules JA, Rudaz S, Daali Y. Usefulness of PBPK modeling in incorporation of clinical conditions in personalized medicine. J Pharm Sci. 2017;106(9):2380–91.

    CAS  PubMed  Google Scholar 

  39. Chaccour C, Hammann F, Rabinovich NR. Ivermectin to reduce malaria transmission I. pharmacokinetic and pharmacodynamic considerations regarding efficacy and safety. Malar J. 2017;16(1):161.

    PubMed  PubMed Central  Google Scholar 

  40. Viergever RF, Rademaker CM, Ghersi D. Pharmacokinetic research in children: an analysis of registered records of clinical trials. BMJ Open. 2011;1(1):e000221.

    PubMed  PubMed Central  Google Scholar 

  41. Roth-Cline M, Nelson RM. Microdosing studies in children: a US regulatory perspective. Clin Pharmacol Ther. 2015;98(3):232–3.

    CAS  PubMed  Google Scholar 

  42. de Lange EC, Danhof M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet. 2002;41(10):691–703.

    PubMed  Google Scholar 

  43. Westerhout J, Smeets J, Danhof M, de Lange EC. The impact of P-gp functionality on non-steady state relationships between CSF and brain extracellular fluid. J Pharmacokinet Pharmacodyn. 2013;40(3):327–42.

    PubMed  PubMed Central  Google Scholar 

  44. Yamamoto Y, Danhof M, de Lange ECM. Microdialysis: the key to physiologically based model prediction of human CNS target site concentrations. AAPS J. 2017;19(4):891–909.

    PubMed  Google Scholar 

  45. Yamamoto Y, Valitalo PA, van den Berg DJ, Hartman R, van den Brink W, Wong YC, et al. A generic multi-compartmental CNS distribution model structure for 9 drugs allows prediction of human brain target site concentrations. Pharm Res. 2017;34(2):333–51.

    CAS  PubMed  Google Scholar 

  46. Nikisch G, Baumann P, Oneda B, Kiessling B, Weisser H, Mathe AA, et al. Cytochrome P450 and ABCB1 genetics: association with quetiapine and norquetiapine plasma and cerebrospinal fluid concentrations and with clinical response in patients suffering from schizophrenia. A pilot study. J Psychopharmacol. 2011;25(7):896–907.

    CAS  PubMed  Google Scholar 

  47. Basic S, Hajnsek S, Bozina N, Filipcic I, Sporis D, Mislov D, et al. The influence of C3435T polymorphism of ABCB1 gene on penetration of phenobarbital across the blood-brain barrier in patients with generalized epilepsy. Seizure. 2008;17(6):524–30.

    PubMed  Google Scholar 

  48. Rambeck B, Jurgens UH, May TW, Pannek HW, Behne F, Ebner A, et al. Comparison of brain extracellular fluid, brain tissue, cerebrospinal fluid, and serum concentrations of antiepileptic drugs measured intraoperatively in patients with intractable epilepsy. Epilepsia. 2006;47(4):681–94.

    CAS  PubMed  Google Scholar 

  49. Meineke I, Freudenthaler S, Hofmann U, Schaeffeler E, Mikus G, Schwab M, et al. Pharmacokinetic modelling of morphine, morphine-3-glucuronide and morphine-6-glucuronide in plasma and cerebrospinal fluid of neurosurgical patients after short-term infusion of morphine. Br J Clin Pharmacol. 2002;54(6):592–603.

    CAS  PubMed  Google Scholar 

  50. de Lannoy IA, Mandin RS, Silverman M. Renal secretion of vinblastine, vincristine and colchicine in vivo. J Pharmacol Exp Ther. 1994;268(1):388–95.

    PubMed  Google Scholar 

  51. Huang RS, Murry DJ, Foster DR. Role of xenobiotic efflux transporters in resistance to vincristine. Biomed Pharmacother. 2008;62(2):59–64.

    CAS  PubMed  Google Scholar 

  52. Xia CQ, Smith PG. Drug efflux transporters and multidrug resistance in acute leukemia: therapeutic impact and novel approaches to mediation. Mol Pharmacol. 2012;82(6):1008–21.

    CAS  PubMed  Google Scholar 

  53. Imrichova D, Coculova M, Messingerova L, Sulova Z, Breier A. Vincristine-induced expression of P-glycoprotein in MOLM-13 and SKM-1 acute myeloid leukemia cell lines is associated with coexpression of nestin transcript. Gen Physiol Biophys. 2014;33(4):425–31.

    CAS  PubMed  Google Scholar 

  54. Huang R, Murry DJ, Kolwankar D, Hall SD, Foster DR. Vincristine transcriptional regulation of efflux drug transporters in carcinoma cell lines. Biochem Pharmacol. 2006;71(12):1695–704.

    CAS  PubMed  Google Scholar 

  55. Wang F, Zhou F, Kruh GD, Gallo JM. Influence of blood-brain barrier efflux pumps on the distribution of vincristine in brain and brain tumors. Neuro-Oncology. 2010;12(10):1043–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nicolai J, Thevelin L, Bing Q, Stieger B, Chanteux H, Augustijns P, et al. Role of the OATP transporter family and a Benzbromarone-SensitiveEfflux transporter in the hepatocellular disposition of vincristine. Pharm Res. 2017;34(11):2336–48.

    CAS  PubMed  Google Scholar 

  57. Wu JQ, Shao K, Wang X, Wang RY, Cao YH, Yu YQ, et al. In vitro and in vivo evidence for amphotericin B as a P-glycoprotein substrate on the blood-brain barrier. Antimicrob Agents Chemother. 2014;58(8):4464–9.

    PubMed  PubMed Central  Google Scholar 

  58. Wurthwein G, Groll AH, Hempel G, Adler-Shohet FC, Lieberman JM, Walsh TJ. Population pharmacokinetics of amphotericin B lipid complex in neonates. Antimicrob Agents Chemother. 2005;49(12):5092–8.

    PubMed  PubMed Central  Google Scholar 

  59. Hamill RJ, Sobel JD, El-Sadr W, Johnson PC, Graybill JR, Javaly K, et al. Comparison of 2 doses of liposomal amphotericin B and conventional amphotericin B deoxycholate for treatment of AIDS-associated acute cryptococcal meningitis: a randomized, double-blind clinical trial of efficacy and safety. Clin Infect Dis. 2010;51(2):225–32.

    CAS  PubMed  Google Scholar 

  60. Vogelsinger H, Weiler S, Djanani A, Kountchev J, Bellmann-Weiler R, Wiedermann CJ, et al. Amphotericin B tissue distribution in autopsy material after treatment with liposomal amphotericin B and amphotericin B colloidal dispersion. J Antimicrob Chemother. 2006;57(6):1153–60.

    CAS  PubMed  Google Scholar 

  61. Strenger V, Meinitzer A, Donnerer J, Hofer N, Dornbusch HJ, Wanz U, et al. Amphotericin B transfer to CSF following intravenous administration of liposomal amphotericin B. J Antimicrob Chemother. 2014;69(9):2522–6.

    CAS  PubMed  Google Scholar 

  62. Hong Y, Shaw PJ, Tattam BN, Nath CE, Earl JW, Stephen KR, et al. Plasma protein distribution and its impact on pharmacokinetics of liposomal amphotericin B in paediatric patients with malignant diseases. Eur J Clin Pharmacol. 2007;63(2):165–72.

    CAS  PubMed  Google Scholar 

  63. Baley JE, Meyers C, Kliegman RM, Jacobs MR, Blumer JL. Pharmacokinetics, outcome of treatment, and toxic effects of amphotericin B and 5-fluorocytosine in neonates. J Pediatr. 1990;116(5):791–7.

    CAS  PubMed  Google Scholar 

  64. Stevens DA, Clemons KV, Martinez M, Chen V. The brain, amphotericin B, and P-glycoprotein. Antimicrob Agents Chemother. 2015;59(2):1386.

    PubMed  PubMed Central  Google Scholar 

  65. Osei-Twum JA, Wasan KM. Does P-glycoprotein contribute to amphotericin B epithelial transport in Caco-2 cells? Drug Dev Ind Pharm. 2015;41(7):1130–6.

    CAS  PubMed  Google Scholar 

  66. Sethi PK, White CA, Cummings BS, Hines RN, Muralidhara S, Bruckner JV. Ontogeny of plasma proteins, albumin and binding of diazepam, cyclosporine, and deltamethrin. Pediatr Res. 2016;79(3):409–15.

    CAS  PubMed  Google Scholar 

  67. Hargreaves RJ, Rabiner EA. Translational PET imaging research. Neurobiol Dis. 2014;61:32–8.

    PubMed  Google Scholar 

  68. Syvanen S, Eriksson J. Advances in PET imaging of P-glycoprotein function at the blood-brain barrier. ACS Chem Neurosci. 2013;4(2):225–37.

    PubMed  Google Scholar 

  69. Choo EF, Kurnik D, Muszkat M, Ohkubo T, Shay SD, Higginbotham JN, et al. Differential in vivo sensitivity to inhibition of P-glycoprotein located in lymphocytes, testes, and the blood-brain barrier. J Pharmacol Exp Ther. 2006;317(3):1012–8.

    CAS  PubMed  Google Scholar 

  70. Kurnik D, Sofowora GG, Donahue JP, Nair UB, Wilkinson GR, Wood AJ, et al. Tariquidar, a selective P-glycoprotein inhibitor, does not potentiate loperamide's opioid brain effects in humans despite full inhibition of lymphocyte P-glycoprotein. Anesthesiology. 2008;109(6):1092–9.

    CAS  PubMed  Google Scholar 

  71. Wagner CC, Bauer M, Karch R, Feurstein T, Kopp S, Chiba P, et al. A pilot study to assess the efficacy of tariquidar to inhibit P-glycoprotein at the human blood-brain barrier with (R)-11C-verapamil and PET. J Nucl Med. 2009;50(12):1954–61.

    PubMed  PubMed Central  Google Scholar 

  72. Bousquet L, Roucairol C, Hembury A, Nevers MC, Creminon C, Farinotti R, et al. Comparison of ABC transporter modulation by atazanavir in lymphocytes and human brain endothelial cells: ABC transporters are involved in the atazanavir-limited passage across an in vitro human model of the blood-brain barrier. AIDS Res Hum Retrovir. 2008;24(9):1147–54.

    CAS  PubMed  Google Scholar 

  73. Machado CG, Calado RT, Garcia AB, Falcao RP. Age-related changes of the multidrug resistance P-glycoprotein function in normal human peripheral blood T lymphocytes. Braz J Med Biol Res. 2003;36(12):1653–7.

    CAS  PubMed  Google Scholar 

  74. Giraud C, Decleves X, Perrot JY, Manceau S, Pannier E, Firtion G, et al. High levels of P-glycoprotein activity in human lymphocytes in the first 6 months of life. Clin Pharmacol Ther. 2009;85(3):289–95.

    CAS  PubMed  Google Scholar 

  75. Prasad B, Gaedigk A, Vrana M, Gaedigk R, Leeder JS, Salphati L, et al. Ontogeny of hepatic drug transporters as quantified by LC-MS/MS proteomics. Clin Pharmacol Ther. 2016;100(4):362–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Johnson TN, Thomson M. Intestinal metabolism and transport of drugs in children: the effects of age and disease. J Pediatr Gastroenterol Nutr. 2008;47(1):3–10.

    CAS  PubMed  Google Scholar 

  77. Fakhoury M, Litalien C, Medard Y, Cave H, Ezzahir N, Peuchmaur M, et al. Localization and mRNA expression of CYP3A and P-glycoprotein in human duodenum as a function of age. Drug Metab Dispos. 2005;33(11):1603–7.

    CAS  PubMed  Google Scholar 

  78. Sun M, Kingdom J, Baczyk D, Lye SJ, Matthews SG, Gibb W. Expression of the multidrug resistance P-glycoprotein, (ABCB1 glycoprotein) in the human placenta decreases with advancing gestation. Placenta. 2006;27(6–7):602–9.

    CAS  PubMed  Google Scholar 

  79. Vandenbossche J, Huisman M, Xu Y, Sanderson-Bongiovanni D, Soons P. Loperamide and P-glycoprotein inhibition: assessment of the clinical relevance. J Pharm Pharmacol. 2010;62(4):401–12.

    CAS  PubMed  Google Scholar 

  80. Chanzy S, Moretti S, Mayet H, Routon MC, De Gennes C, Mselati JC. Loss of consciousness in a child due to loperamide. Arch Pediatr. 2004;11(7):826–7.

    CAS  PubMed  Google Scholar 

  81. Motala C, Hill ID, Mann MD, Bowie MD. Effect of loperamide on stool output and duration of acute infectious diarrhea in infants. J Pediatr. 1990;117(3):467–71.

    CAS  PubMed  Google Scholar 

  82. Minton NA, Smith PG. Loperamide toxicity in a child after a single dose. Br Med J (Clin Res Ed). 1987;294(6584):1383.

    CAS  Google Scholar 

  83. Megarbane B, Alhaddad H. P-glycoprotein should be considered as an additional factor contributing to opioid-induced respiratory depression in paediatrics: the buprenorphine example. Br J Anaesth. 2013;110(5):842.

    CAS  PubMed  Google Scholar 

  84. Kraft WK. Buprenorphine in neonatal abstinence syndrome. Clin Pharmacol Ther. 2018;103(1):112–9.

    CAS  PubMed  Google Scholar 

  85. Liao MZ, Gao C, Shireman LM, Phillips B, Risler LJ, Neradugomma NK, et al. P-gp/ABCB1 exerts differential impacts on brain and fetal exposure to norbuprenorphine. Pharmacol Res. 2017;119:61–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim HK, Smiddy M, Hoffman RS, Nelson LS. Buprenorphine may not be as safe as you think: a pediatric fatality from unintentional exposure. Pediatrics. 2012;130(6):e1700–3.

    PubMed  Google Scholar 

  87. Toce MS, Burns MM, O'Donnell KA. Clinical effects of unintentional pediatric buprenorphine exposures: experience at a single tertiary care center. Clin Toxicol (Phila). 2017;55(1):12–7.

    Google Scholar 

  88. Hayes BD, Klein-Schwartz W, Doyon S. Toxicity of buprenorphine overdoses in children. Pediatrics. 2008;121(4):e782–6.

    PubMed  Google Scholar 

  89. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin a. J Clin Invest. 1995;96(4):1698–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Brophy GM, Mazzeo AT, Brar S, Alves OL, Bunnell K, Gilman C, et al. Exposure of cyclosporin a in whole blood, cerebral spinal fluid, and brain extracellular fluid dialysate in adults with traumatic brain injury. J Neurotrauma. 2013;30(17):1484–9.

    PubMed  PubMed Central  Google Scholar 

  91. Taque S, Peudenier S, Gie S, Rambeau M, Gandemer V, Bridoux L, et al. Central neurotoxicity of cyclosporine in two children with nephrotic syndrome. Pediatr Nephrol. 2004;19(3):276–80.

    PubMed  Google Scholar 

  92. Menache CC, du Plessis AJ, Wessel DL, Jonas RA, Newburger JW. Current incidence of acute neurologic complications after open-heart operations in children. Ann Thorac Surg. 2002;73(6):1752–8.

    PubMed  Google Scholar 

  93. Wijdicks EF. Neurotoxicity of immunosuppressive drugs. Liver Transpl. 2001;7(11):937–42.

    CAS  PubMed  Google Scholar 

  94. Yanagimachi M, Naruto T, Tanoshima R, Kato H, Yokosuka T, Kajiwara R, et al. Influence of CYP3A5 and ABCB1 gene polymorphisms on calcineurin inhibitor-related neurotoxicity after hematopoietic stem cell transplantation. Clin Transpl. 2010;24(6):855–61.

    CAS  Google Scholar 

  95. Reddy GK, Brown B, Nanda A. Fatal consequences of a simple mistake: how can a patient be saved from inadvertent intrathecal vincristine? Clin Neurol Neurosurg. 2011;113(1):68–71.

    PubMed  Google Scholar 

  96. Jackson DV Jr, Sethi VS, Spurr CL, McWhorter JM. Pharmacokinetics of vincristine in the cerebrospinal fluid of humans. Cancer Res. 1981;41(4):1466–8.

    PubMed  Google Scholar 

  97. Tomiwa K, Hazama F, Mikawa H. Neurotoxicity of vincristine after the osmotic opening of the blood-brain barrier. Neuropathol Appl Neurobiol. 1983;9(5):345–54.

    CAS  PubMed  Google Scholar 

  98. Krugman L, Bryan JN, Mealey KL, Chen A. Vincristine-induced central neurotoxicity in a collie homozygous for the ABCB1Delta mutation. J Small Anim Pract. 2012;53(3):185–7.

    CAS  PubMed  Google Scholar 

  99. Eiden C, Palenzuela G, Hillaire-Buys D, Margueritte G, Cociglio M, Hansel-Esteller S, et al. Posaconazole-increased vincristine neurotoxicity in a child: a case report. J Pediatr Hematol Oncol. 2009;31(4):292–5.

    PubMed  Google Scholar 

  100. Rothmond DA, Weickert CS, Webster MJ. Developmental changes in human dopamine neurotransmission: cortical receptors and terminators. BMC Neurosci. 2012;13:18.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Chugani DC, Muzik O, Juhasz C, Janisse JJ, Ager J, Chugani HT. Postnatal maturation of human GABAA receptors measured with positron emission tomography. Ann Neurol. 2001;49(5):618–26.

    CAS  PubMed  Google Scholar 

  102. Chugani HT, Kumar A, Muzik O. GABA(a) receptor imaging with positron emission tomography in the human newborn: a unique binding pattern. Pediatr Neurol. 2013;48(6):459–62.

    PubMed  Google Scholar 

  103. Talos DM, Chang M, Kosaras B, Fitzgerald E, Murphy A, Folkerth RD, et al. Antiepileptic effects of levetiracetam in a rodent neonatal seizure model. Pediatr Res. 2013;73(1):24–30.

    CAS  PubMed  Google Scholar 

  104. Saunders NR, Dziegielewska KM, Mollgard K, Habgood MD. Recent developments in understanding barrier mechanisms in the developing brain: drugs and drug transporters in pregnancy, susceptibility or protection in the fetal brain? Annu Rev Pharmacol Toxicol. 2019;59:487–505.

    CAS  PubMed  Google Scholar 

  105. Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR. Barriers in the developing brain and Neurotoxicology. Neurotoxicology. 2012;33(3):586–604.

    CAS  PubMed  Google Scholar 

  106. Hoffmann P, Beckman D, McLean LA, Yan JH. Aliskiren toxicity in juvenile rats is determined by ontogenic regulation of intestinal P-glycoprotein expression. Toxicol Appl Pharmacol. 2014;275(1):36–43.

    CAS  PubMed  Google Scholar 

  107. Ek CJ, Wong A, Liddelow SA, Johansson PA, Dziegielewska KM, Saunders NR. Efflux mechanisms at the developing brain barriers: ABC-transporters in the fetal and postnatal rat. Toxicol Lett. 2010;197(1):51–9.

    CAS  PubMed  Google Scholar 

  108. Matsuoka Y, Okazaki M, Kitamura Y, Taniguchi T. Developmental expression of P-glycoprotein (multidrug resistance gene product) in the rat brain. J Neurobiol. 1999;39(3):383–92.

    CAS  PubMed  Google Scholar 

  109. Morimoto K, Nagami T, Matsumoto N, Wada S, Kano T, Kakinuma C, et al. Developmental changes of brain distribution and localization of oseltamivir and its active metabolite Ro 64-0802 in rats. J Toxicol Sci. 2012;37(6):1217–23.

    CAS  PubMed  Google Scholar 

  110. Gazzin S, Strazielle N, Schmitt C, Fevre-Montange M, Ostrow JD, Tiribelli C, et al. Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood-brain interfaces. J Comp Neurol. 2008;510(5):497–507.

    CAS  PubMed  Google Scholar 

  111. Goralski KB, Acott PD, Fraser AD, Worth D, Sinal CJ. Brain cyclosporin a levels are determined by ontogenic regulation of mdr1a expression. Drug Metab Dispos. 2006;34(2):288–95.

    CAS  PubMed  Google Scholar 

  112. Tsai CE, Daood MJ, Lane RH, Hansen TW, Gruetzmacher EM, Watchko JF. P-glycoprotein expression in mouse brain increases with maturation. Biol Neonate. 2002;81(1):58–64.

    CAS  PubMed  Google Scholar 

  113. Buelke-Sam J, editor. Comparative schedules of development in rats and humans: Implications for developmental neurotoxicity testing. Abstract 820 presented at the Society of Toxicology Annual Meeting, Salt Lake City, UT, USA, 9–13 March, 2003.

  114. Nicolas JM, Bouzom F, Hugues C, Ungell AL. Oral drug absorption in pediatrics: the intestinal wall, its developmental changes and current tools for predictions. Biopharm Drug Dispos. 2016.

  115. Johnson TN, Tanner MS, Taylor CJ, Tucker GT. Enterocytic CYP3A4 in a paediatric population: developmental changes and the effect of coeliac disease and cystic fibrosis. Br J Clin Pharmacol. 2001;51(5):451–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Stenling R, Fredrikzon B, Nyhlin H, Helander HF, Falkmer S. Surface ultrastructure of the small intestine mucosa in healthy children and adults: a scanning electron microscopic study with some methodological aspects. Ultrastruct Pathol. 1984;6(2–3):131–40.

    CAS  PubMed  Google Scholar 

  117. Cornes JS. Number, size, and distribution of Peyer's patches in the human small intestine: part II the effect of age on Peyer's patches. Gut. 1965;6(3):230–3.

    Google Scholar 

  118. Syvanen S, Lindhe O, Palner M, Kornum BR, Rahman O, Langstrom B, et al. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos. 2009;37(3):635–43.

    PubMed  Google Scholar 

  119. Uchida Y, Wakayama K, Ohtsuki S, Chiba M, Ohe T, Ishii Y, et al. Blood-brain barrier pharmacoproteomics-based reconstruction of the in vivo brain distribution of P-glycoprotein substrates in cynomolgus monkeys. J Pharmacol Exp Ther. 2014;350(3):578–88.

    PubMed  Google Scholar 

  120. Hoshi Y, Uchida Y, Tachikawa M, Inoue T, Ohtsuki S, Terasaki T. Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J Pharm Sci. 2013;102(9):3343–55.

    CAS  PubMed  Google Scholar 

  121. Maharaj AR, Edginton AN. Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacometrics Syst Pharmacol. 2014;3(11):1–13.

    Google Scholar 

  122. Leong R, Vieira ML, Zhao P, Mulugeta Y, Lee CS, Huang SM, et al. Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials. Clin Pharmacol Ther. 2012;91(5):926–31.

    CAS  PubMed  Google Scholar 

  123. Rioux N, Waters NJ. Physiologically based pharmacokinetic modeling in pediatric oncology drug development. Drug Metab Dispos. 2016;44(7):934–43.

    CAS  PubMed  Google Scholar 

  124. Maharaj AR, Barrett JS, Edginton AN. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J. 2013;15(2):455–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56.

    CAS  PubMed  Google Scholar 

  126. Zhou W, Johnson TN, Xu H, Cheung S, Bui KH, Li J, et al. Predictive performance of physiologically based pharmacokinetic and population pharmacokinetic modeling of Renally cleared drugs in children. CPT Pharmacometrics Syst Pharmacol. 2016;5(9):475–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet. 2006;45(10):1013–34.

    CAS  PubMed  Google Scholar 

  128. Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59(6):691–704.

    PubMed  PubMed Central  Google Scholar 

  129. Ogungbenro K, Aarons L, Cresim ECPG. A physiologically based pharmacokinetic model for Valproic acid in adults and children. Eur J Pharm Sci. 2014;63:45–52.

    CAS  PubMed  Google Scholar 

  130. Hornik CP, Wu H, Edginton AN, Watt K, Cohen-Wolkowiez M, Gonzalez D. Development of a pediatric physiologically-based pharmacokinetic model of clindamycin using opportunistic pharmacokinetic data. Clin Pharmacokinet. 2017;56(11):1343–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Willmann S, Becker C, Burghaus R, Coboeken K, Edginton A, Lippert J, et al. Development of a paediatric population-based model of the pharmacokinetics of rivaroxaban. Clin Pharmacokinet. 2014;53(1):89–102.

    CAS  PubMed  Google Scholar 

  132. Thai HT, Mazuir F, Cartot-Cotton S, Veyrat-Follet C. Optimizing pharmacokinetic bridging studies in paediatric oncology using physiologically-based pharmacokinetic modelling: application to docetaxel. Br J Clin Pharmacol. 2015;80(3):534–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Abdel-Rahman SM, Amidon GL, Kaul A, Lukacova V, Vinks AA, Knipp GT, et al. Summary of the National Institute of Child Health and Human Development-best pharmaceuticals for children act pediatric formulation initiatives workshop-pediatric biopharmaceutics classification system working group. Clin Ther. 2012;34(11):S11–24.

    PubMed  PubMed Central  Google Scholar 

  134. Fenneteau F, Li J, Nekka F. Assessing drug distribution in tissues expressing P-glycoprotein using physiologically based pharmacokinetic modeling: identification of important model parameters through global sensitivity analysis. J Pharmacokinet Pharmacodyn. 2009;36(6):495–522.

    CAS  PubMed  Google Scholar 

  135. Fenneteau F, Turgeon J, Couture L, Michaud V, Li J, Nekka F. Assessing drug distribution in tissues expressing P-glycoprotein through physiologically based pharmacokinetic modeling: model structure and parameters determination. Theor Biol Med Model. 2009;6:2. https://doi.org/10.1186/742-4682-6-2.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ball K, Bouzom F, Scherrmann JM, Walther B, Decleves X. Physiologically based pharmacokinetic modelling of drug penetration across the blood-brain barrier--towards a mechanistic IVIVE-based approach. AAPS J. 2013;15(4):913–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Sjostedt N, Kortejarvi H, Kidron H, Vellonen KS, Urtti A, Yliperttula M. Challenges of using in vitro data for modeling P-glycoprotein efflux in the blood-brain barrier. Pharm Res. 2014;31(1):1–19.

    PubMed  Google Scholar 

  138. Yamamoto Y, Valitalo PA, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, et al. Predicting drug concentration-time profiles in multiple CNS compartments using a comprehensive physiologically-based pharmacokinetic model. CPT Pharmacometrics Syst Pharmacol. 2017.

  139. Yamamoto Y, Valitalo PA, Wong YC, Huntjens DR, Proost JH, Vermeulen A, et al. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach. Eur J Pharm Sci. 2017;112:168–79.

    PubMed  Google Scholar 

  140. Ketharanathan N, Yamamoto Y, Rohlwink UK, Wildschut ED, Mathot RAA, de Lange ECM, et al. Combining brain microdialysis and translational pharmacokinetic modeling to predict drug concentrations in pediatric severe traumatic brain injury: the next step toward evidence-based pharmacotherapy? J Neurotrauma. 2019;36(1):111–7.

    PubMed  Google Scholar 

  141. Baello S, Iqbal M, Gibb W, Matthews SG. Astrocyte-mediated regulation of multidrug resistance p-glycoprotein in fetal and neonatal brain endothelial cells: age-dependent effects. Physiol Rep. 2016;4(16):e12853.

    PubMed  PubMed Central  Google Scholar 

  142. Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia. 2013;61(12):1939–58.

    PubMed  PubMed Central  Google Scholar 

  143. Baello S, Iqbal M, Bloise E, Javam M, Gibb W, Matthews SG. TGF-beta1 regulation of multidrug resistance P-glycoprotein in the developing male blood-brain barrier. Endocrinology. 2014;155(2):475–84.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Laura Griffin, PhD, of iMed Comms, Macclesfield, UK, an Ashfield Company, part of UDG Healthcare plc for editing assistance that was funded by UCB Pharma in accordance with Good Publications Practice (GPP3) guidelines (http://www.ismpp.org/gpp3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Nicolas.

Ethics declarations

Conflict of Interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolas, JM., de Lange, E.C.M. Mind the Gaps: Ontogeny of Human Brain P-gp and Its Impact on Drug Toxicity. AAPS J 21, 67 (2019). https://doi.org/10.1208/s12248-019-0340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0340-z

KEY WORDS

Navigation