Skip to main content
Log in

Recommendations on the Development of a Bioanalytical Assay for 4β-Hydroxycholesterol, an Emerging Endogenous Biomarker of CYP3A Activity

  • Commentary
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The availability of reliable assays for measuring 4β-hydroxycholesterol (4β-HC), a CYP3A metabolite of cholesterol, is an important step in qualifying this endogenous moiety as a biomarker of CYP3A activity. Liquid and gas chromatographic methods with mass spectrometric detection have been developed with varying sensitivities, with or without derivatization. Care must be taken to chromatographically resolve 4β-HC from the multiple isobaric cholesterol oxidation products present in plasma, including 4α-hydroxycholesterol (4α-HC). Plasma concentrations of 4β-HC are low in humans (10–60 ng/ml), lower than many other cholesterol metabolites and far less than cholesterol itself. Stability of 4β-HC has been established for at least 12 months at −20°C in plasma samples obtained with a typical clinical workflow. Oxidation of plasma cholesterol during storage produces both 4β-HC and 4α-HC, and 4α-HC may be used as assessment of sample quality. As 4β-HC concentrations over time in untreated individuals have low intra-individual variability, assay precision and reproducibility are the key assay attributes in assessing CYP3A4 induction, and potentially inhibition. Assessment of CYP3A4/5 activity with 4β-HC relies on the differences between pre- and post-dose concentrations, in which each subject acts as their own control. To reduce analytical variability, samples from a single subject should be analyzed together to facilitate interpretation of study results. As an endogenous biomarker, 4β-HC offers the opportunity for less invasive assessment of CYP3A induction potential of new drugs during clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Griffiths WJ, Hornshaw M, Woffendin G, Baker SF, Lockhart A, Heidelberger S, et al. Discovering oxysterols in plasma: a window on the metabolome. J Proteome Res. 2008;7(8):3602–12. doi:10.1021/pr8001639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Diczfalusy U, Nylén H, Elander P, Bertilsson L. 4β-Hydroxycholesterol, an endogenous marker of CYP3A4/5 activity in humans. Br J Clin Pharmacol. 2011;71(2):183–9. doi:10.1111/j.1365-2125.2010.03773.x.

    Article  CAS  PubMed Central  Google Scholar 

  3. Gjestad C, Huynh DK, Haslemo T, Molden E. 4β-hydroxycholesterol correlates with dose but not steady-state concentration of carbamazepine: indication of intestinal CYP3A in biomarker formation? Br J Clin Pharm. 2016;81(2):269–76.

    Article  CAS  Google Scholar 

  4. Bodin K, Bretillon L, Aden Y, Bertilsson L, Broomé U, Einarsson C, et al. Antiepileptic drugs increase plasma levels of 4β-hydroxycholesterol in humans: evidence for involvement of cytochrome P450 3A4. J Biol Chem. 2001;276(42):38685–9.

    Article  CAS  PubMed  Google Scholar 

  5. Schroepfer Jr GJ. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 2000;80(1):361–554.

    CAS  PubMed  Google Scholar 

  6. Bodin K, Andersson U, Rystedt E, Ellis E, Norlin M, Pikuleva I, et al. Metabolism of 4 beta-hydroxycholesterol in humans. J Biol Chem. 2002;277(35):31534–40.

    Article  CAS  PubMed  Google Scholar 

  7. Wide K, Larsson H, Bertilsson L, Diczfalusy U. Time course of the increase in 4beta-hydroxycholesterol concentration during carbamazepine treatment of paediatric patients with epilepsy. Br J Clin Pharmacol. 2008;65(5):708–15. doi:10.1111/j.1365-2125.2007.03078.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Diczfalusy U, Kanebratt KP, Bredberg E, Andersson TB, Böttiger Y, Bertilsson L. 4beta-hydroxycholesterol as an endogenous marker for CYP3A4/5 activity. Stability and half-life of elimination after induction with rifampicin. Br J Clin Pharmacol. 2009;67(1):38–43. doi:10.1111/j.1365-2125.2008.03309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kanebratt KP, Diczfalusy U, Bäckström T, Sparve E, Bredberg E, Böttiger Y, et al. Cytochrome P450 induction by rifampicin in healthy subjects: determination using the Karolinska cocktail and the endogenous CYP3A4 marker 4beta-hydroxycholesterol. Clin Pharmacol Ther. 2008;84(5):589–94. doi:10.1038/clpt.2008.132.

    Article  CAS  PubMed  Google Scholar 

  10. Habtewold A, Amogne W, Makonnen E, Yimer G, Nylén H, Riedel KD, et al. Pharmacogenetic and pharmacokinetic aspects of CYP3A induction by efavirenz in HIV patients. Pharmacogenomics J. 2013;13(6):484–9. doi:10.1038/tpj.2012.46.

    Article  CAS  PubMed  Google Scholar 

  11. Björkhem-Bergman L, Bäckström T, Nylén H, Rönquist-Nii Y, Bredberg E, Andersson TB, et al. Comparison of endogenous 4β-hydroxycholesterol with midazolam as markers for CYP3A4 induction by rifampicin. Drug Metab Dispos. 2013;41(8):1488–93. doi:10.1124/dmd.113.052316.

    Article  PubMed  Google Scholar 

  12. Kasichayanula S, Boulton DW, Luo WL, Rodrigues AD, Yang Z, Goodenough A, et al. Validation of 4β-hydroxycholesterol and evaluation of other endogenous biomarkers for the assessment of CYP3A activity in healthy subjects. Br J Clin Pharmacol. 2014;78(5):1122–34. doi:10.1111/bcp.12425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Josephson F, Bertilsson L, Böttiger Y, Flamholc L, Gisslén M, Ormaasen V, et al. CYP3A induction and inhibition by different antiretroviral regimens reflected by changes in plasma 4beta-hydroxycholesterol levels. Eur J Clin Pharmacol. 2008;64(8):775–81. doi:10.1007/s00228-008-0492-8.

    Article  CAS  PubMed  Google Scholar 

  14. Lütjohann D, Marinova M, Schneider B, Oldenburg J, von Bergmann K, Bieber T, et al. 4beta-hydroxycholesterol as a marker of CYP3A4 inhibition in vivo—effects of itraconazole in man. Int J Clin Pharmacol Ther. 2009;47(12):709–15.

    Article  PubMed  Google Scholar 

  15. Ikegami T, Honda A, Miyazaki T, Kohjima M, Nakamuta M, Matsuzaki Y. Increased serum oxysterol concentrations in patients with chronic hepatitis C virus infection. Biochem Biophys Res Commun. 2014;446(3):736–40. doi:10.1016/j.bbrc.2014.01.176. 11.

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki Y, Itoh H, Fujioka T, Sato F, Kawasaki K, Sato Y, et al. Association of plasma concentration of 4α-hydroxycholesterol with CYP3A5 polymorphism and plasma concentration of indoxyl sulfate in stable kidney transplant recipients. Drug Metab Dispos. 2014;42(1):105–10. doi:10.1124/dmd.113.054171.

    Article  CAS  PubMed  Google Scholar 

  17. Diczfalusy U, Miura J, Roh HK, Mirghani RA, Sayi J, Larsson H, et al. 4Beta-hydroxycholesterol is a new endogenous CYP3A marker: relationship to CYP3A5 genotype, quinine 3-hydroxylation and sex in Koreans, Swedes and Tanzanians. Pharmacogenet Genomics. 2008;18(3):201–8. doi:10.1111/j.1365-2125.2008.03309.

    Article  CAS  PubMed  Google Scholar 

  18. Gebeyehu E, Engidawork E, Bijnsdorp A, Aminy A, Diczfalusy U, Aklillu E. Sex and CYP3A5 genotype influence total CYP3A activity: high CYP3A activity and a unique distribution of CYP3A5 variant alleles in Ethiopians. Pharmacogenomics J. 2011;11(2):130–7. doi:10.1038/tpj.2010.16.

    Article  CAS  PubMed  Google Scholar 

  19. Breuer O. Identification and quantitation of cholest-5-ene-3 beta, 4 beta-diol in rat liver and human plasma. J Lipid Res. 1995;36(11):2275–81.

    CAS  PubMed  Google Scholar 

  20. Diczfalusy U. Analysis of cholesterol oxidation products in biological samples. J AOAC Int. 2004;87(2):467–73.

    CAS  PubMed  Google Scholar 

  21. Dzeletovic S, Breuer O, Lund E, Diczfalusy U. Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal Biochem. 1995;225(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  22. van de Merbel NC, Bronsema KJ, van Hout MW, Nilsson R, Sillén H. A validated liquid chromatography-tandem mass spectrometry method for the quantitative determination of 4β-hydroxycholesterol in human plasma. J Pharm Biomed Anal. 2011;55(5):1089–95. doi:10.1016/j.jpba.2011.03.017.

    Article  PubMed  Google Scholar 

  23. Goodenough AK, Onorato JM, Ouyang Z, Chang S, Rodrigues AD, Kasichayanula S, et al. Quantification of 4-beta-hydroxycholesterol in human plasma using automated sample preparation and LC-ESI-MS/MS analysis. Chem Res Toxicol. 2011;24(9):1575–85. doi:10.1021/tx2001898.

    Article  CAS  PubMed  Google Scholar 

  24. Xu Y, Yuan Y, Smith L, Edom R, Weng N, Mamidi R, et al. LC-ESI-MS/MS quantification of 4β-hydroxycholesterol and cholesterol in plasma samples of limited volume. J Pharm Biomed Anal. 2013;85:145–54. doi:10.1016/j.jpba.2013.07.016.

    Article  CAS  PubMed  Google Scholar 

  25. Huang MQ, Lin W, Wang W, Zhang W, Lin ZJ, Weng N. Quantitation of P450 3A4 endogenous biomarker - 4β-hydroxycholesterol - in human plasma using LC/ESI-MS/MS. Biomed Chromatogr. 2014;28(6):794–801. doi:10.1002/bmc.3131.

    Article  CAS  PubMed  Google Scholar 

  26. Xue YJ, Hoffmann M, Tong Z, Wu XI, Vallejo M, Melo B. Use of 4β-hydroxycholesterol in animal and human plasma samples as a biomarker for CYP3A induction. Bioanalysis. 2016;8(3):215–28. doi:10.4155/bio.15.241.

    Article  CAS  PubMed  Google Scholar 

  27. Myant NB. The biology of cholesterol and related steroids. London: Heinemann Medical Books; 1982.

    Google Scholar 

  28. Smith LL, Teng JI, Lin YY, McGehee MF. Sterol metabolism—XLVII. Oxidized cholesterol esters in human tissues. J Steroid Biochem. 1981;14:889–900.

    Article  CAS  PubMed  Google Scholar 

  29. Honda A, Yamashita K, Miyazaki H, Shirai M, Ikegami T, Xu G, et al. Highly sensitive analysis of sterol profiles in human serum by LC-ESI-MS/MS. J Lipid Res. 2008;49(9):2063–73. doi:10.1194/jlr.D800017-JLR200.

    Article  CAS  PubMed  Google Scholar 

  30. Honda A, Yamashita K, Hara T, Ikegami T, Miyazaki T, Shirai M, et al. Highly sensitive quantification of key regulatory oxysterols in biological samples by LC-ESI-MS/MS. J Lipid Res. 2009;50(2):350–7. doi:10.1194/jlr.D800040-JLR200.

    Article  CAS  PubMed  Google Scholar 

  31. Breuer O, Dzeletovic S, Lund E, Diczfalusy U. The oxysterols cholest-5-ene-3 beta, 4 alpha-diol, cholest-5-ene-3 beta,4 beta-diol and cholestane-3 beta,5 alpha,6 alpha-triol are formed during in vitro oxidation of low density lipoprotein, and are present in human atherosclerotic plaques. Biochim Biophys Acta. 1996;1302(2):145–52.

    Article  PubMed  Google Scholar 

  32. Turley WA, Burrell RC, Bosacorsi SJ, Goodenough AK, Onorato JM. Synthesis of [D4]- and [D7]-4β-hydroxycholesterol for use in a novel drug-drug interaction assay. Label Compd Radiopharm. 2012;55:6115. doi:10.10002/jrc.1952t.

  33. Griffiths WJ, Wang Y, Alvelius G, Liu S, Bodin K, Sjövall J. Analysis of oxysterols by electrospray tandem mass spectrometry. J Am Soc Mass Spectrom. 2006;17(3):341–62.

    Article  CAS  PubMed  Google Scholar 

  34. Karu K, Turton J, Wang Y, Griffiths WJ. Nano-liquid chromatography-tandem mass spectrometry analysis of oxysterols in brain: monitoring of cholesterol autoxidation. Chem Phys Lipids. 2011;164(6):411–24. doi:10.1016/j.chemphyslip.2011.04.011.

    Article  CAS  PubMed  Google Scholar 

  35. Tang Z, Guengerich FP. Dansylation of unactivated alcohols for improved mass spectral sensitivity and application to analysis of cytochrome P450 oxidation products in tissue extracts. Anal Chem. 2010;82(18):7706–12. doi:10.1021/ac1015497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saldanha T, Frankland Sawaya ACH, Eberlin MN, Bragagnolo N. HPLC separation and determination of 12 cholesterol oxidation products in fish: comparative study of RI, UV, and APCI-MS detectors. J Agric Food Chem. 2006;14;54(12):4107–13.

    Article  Google Scholar 

  37. Shui G, Cheong WF, Jappar IA, Hoi A, Xue Y, Fernandis AZ, et al. Derivatization-independent cholesterol analysis in crude lipid extracts by liquid chromatography/mass spectrometry: applications to a rabbit model for atherosclerosis. J Chromatogr A. 2011;1218(28):4357–65. doi:10.1016/j.chroma.2011.05.011.

    Article  CAS  PubMed  Google Scholar 

  38. Burkard I, Rentsch KM, Von Eckardstein A. Determination of 24S- and 27-hydroxycholesterol in plasma by high-performance liquid chromatography-mass spectrometry. J Lipid Res. 2004;45(4):776–81.

    Article  CAS  PubMed  Google Scholar 

  39. Karuna R, von Eckardstein A, Rentsch KM. Dopant assisted-atmospheric pressure photoionization (DA-APPI) liquid chromatography-mass spectrometry for the quantification of 27-hydroxycholesterol in plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;15;877(3):261–8. doi:10.1016/j.jchromb.2008.12.033.

    Article  Google Scholar 

  40. Jian W, Edom RW, Weng N. Important considerations for quantitation of small-molecule biomarkers using LC-MS. Bioanalysis. 2012;4(20):2431–4. doi:10.4155/bio.12.247.

    Article  CAS  PubMed  Google Scholar 

  41. Houghton R, Horro Pita C, Ward I, Macarthur R. Generic approach to validation of small-molecule LC–MS/MS biomarker assays. Bioanalysis. 2009;1(8):1365–74. doi:10.4155/bio.09.139.

    Article  CAS  PubMed  Google Scholar 

  42. Lee JW, Devanarayan V, Chen Barrett Y, Weiner R, Allinson J, Fountain S, et al. Fit-for-purpose method development and validation for successful biomarker measurement. Pharm Res. 2006;23(2):312–28.

    Article  CAS  PubMed  Google Scholar 

  43. van de Merbel NC, de Vries R. Aging of biological matrices and its effect on bioanalytical method performance. Bioanalysis. 2013;5(19):2393–407.

    Article  PubMed  Google Scholar 

  44. Dutreix C, Lorenzo S, Wang Y. Comparison of two endogenous biomarkers of CYP3A4 activity in a drug-drug interaction study between midostaurin and rifampicin. Eur J Clin Pharmacol. 2014;70(8):915–20. doi:10.1007/s00228-014-1675-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dutreix C, Munarini F, Lorenzo S, Roesel J, Wang Y. Investigation into CYP3A4-mediated drug-drug interactions on midostaurin in healthy volunteers. Cancer Chemother Pharm. 2013;72(6):1223–34. doi:10.1007/s00280-013-2287-6.

    Article  CAS  Google Scholar 

  46. Björkhem I. Do oxysterols control cholesterol homeostasis? J Clin Invest. 2002;110(6):725–30.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Leif Bertilsson for extensive conversations preceding the work of this group in defining the scope and background for the paper, and Tony Parry for providing the Astra Zeneca experience with non-derivatized assays. The authors are grateful to those who provided input into this work, in particular Frank La Creta, Jialin Mao, and Marcel Hop for their review of the manuscript. All authors contributed equally to the literature review and writing of this paper and are all listed in alphabetical order.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Françoise Aubry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aubry, AF., Dean, B., Diczfalusy, U. et al. Recommendations on the Development of a Bioanalytical Assay for 4β-Hydroxycholesterol, an Emerging Endogenous Biomarker of CYP3A Activity. AAPS J 18, 1056–1066 (2016). https://doi.org/10.1208/s12248-016-9949-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9949-3

Keywords

Navigation