Skip to main content

Advertisement

Log in

Cardiovascular Ion Channel Inhibitor Drug-Drug Interactions with P-glycoprotein

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

P-glycoprotein (Pgp) is an ATP-binding cassette (ABC) transporter that plays a major role in cardiovascular drug disposition by effluxing a chemically and structurally diverse range of cardiovascular therapeutics. Unfortunately, drug-drug interactions (DDIs) with the transporter have become a major roadblock to effective cardiovascular drug administration because they can cause adverse drug reactions (ADRs) or reduce the efficacy of drugs. Cardiovascular ion channel inhibitors are particularly susceptible to DDIs and ADRs with Pgp because they often have low therapeutic indexes and are commonly coadministered with other drugs that are also Pgp substrates. DDIs from cardiovascular ion channel inhibitors with the transporter occur because of inhibition or induction of the transporter and the transporter’s tissue and cellular localization. Inhibiting Pgp can increase absorption and reduce excretion of drugs, leading to elevated drug plasma concentrations and drug toxicity. In contrast, inducing Pgp can have the opposite effect by reducing the drug plasma concentration and its efficacy. A number of in vitro and in vivo studies have already demonstrated DDIs from several cardiovascular ion channel inhibitors with human Pgp and its animal analogs, including verapamil, digoxin, and amiodarone. In this review, Pgp-mediated DDIs and their effects on pharmacokinetics for different categories of cardiovascular ion channel inhibitors are discussed. This information is essential for improving pharmacokinetic predictions of cardiovascular therapeutics, for safer cardiovascular drug administration and for mitigating ADRs emanating from Pgp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kantor ED, Rehm CD, Haas JS, Chan AT, Giovannucci EL. Trends in prescription drug use among adults in the United States from 1999–2012. JAMA. 2015;314(17):1818–30. doi:10.1001/jama.2015.13766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zaidenstein R, Eyal S, Efrati S, Akivison L, Michowitz MK, Nagornov V, et al. Adverse drug events in hospitalized patients treated with cardiovascular drugs and anticoagulants. Pharmacoepidemiol Drug Saf. 2002;11(3):235–8. doi:10.1002/pds.693.

    Article  CAS  PubMed  Google Scholar 

  3. Tabrizchi R. Molecular mechanisms of adverse drug reactions in cardiac tissue. Handb Exp Pharmacol. 2010;196:77–109. doi:10.1007/978-3-642-00663-0_4.

    Article  CAS  Google Scholar 

  4. Gholami K, Ziaie S, Shalviri G. Adverse drug reactions induced by cardiovascular drugs in outpatients. Pharm Pract (Granada). 2008;6(1):51–5.

    Article  Google Scholar 

  5. Mowry JB, Spyker DA, Brooks DE, McMillan N, Schauben JL. Annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 32nd annual report. Clin Toxicol (Phila). 2015;53(10):962–1147. doi:10.3109/15563650.2015.1102927. 2014.

    Article  CAS  Google Scholar 

  6. Karimzadeh I, Namazi S, Shalviri G, Gholami K. Cardiovascular drug adverse reactions in hospitalized patients in cardiac care unit. Afr J Pharm Pharmacol. 2011;5(4):493–9.

    Article  Google Scholar 

  7. Mohebbi N, Shalviri G, Salarifar M, Salamzadeh J, Gholami K. Adverse drug reactions induced by cardiovascular drugs in cardiovascular care unit patients. Pharmacoepidemiol Drug Saf. 2010;19(9):889–94. doi:10.1002/pds.1916.

    Article  PubMed  Google Scholar 

  8. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009;323(5922):1718–22. doi:10.1126/science.1168750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Glaeser H. Importance of P-glycoprotein for drug-drug interactions. Handb Exp Pharmacol. 2011;201:285–97. doi:10.1007/978-3-642-14541-4_7.

    Article  CAS  Google Scholar 

  10. Seelig A. A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem. 1998;251(1-2):252–61.

    Article  CAS  PubMed  Google Scholar 

  11. Wessler JD, Grip LT, Mendell J, Giugliano RP. The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol. 2013;61(25):2495–502. doi:10.1016/j.jacc.2013.02.058.

    Article  CAS  PubMed  Google Scholar 

  12. Luepker RV. Cardiovascular disease: rise, fall, and future prospects. Annu Rev Public Health. 2011;32:1–3. doi:10.1146/annurev-publhealth-112810-151726.

    Article  PubMed  Google Scholar 

  13. Atlas SA. The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm. 2007;13(8 Suppl B):9–20.

    PubMed  Google Scholar 

  14. Helfand M, Peterson K, Christensen V, Dana T, Thakurta S. Drug class review: beta adrenergic blockers: final report update 4. Portland (OR)2009.

  15. Jensen BC, O’Connell TD, Simpson PC. Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure. J Mol Cell Cardiol. 2011;51(4):518–28. doi:10.1016/j.yjmcc.2010.11.014.

    Article  CAS  PubMed  Google Scholar 

  16. Giovannitti Jr JA, Thoms SM, Crawford JJ. Alpha-2 adrenergic receptor agonists: a review of current clinical applications. Anesth Prog. 2015;62(1):31–9. doi:10.2344/0003-3006-62.1.31.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harter K, Levine M, Henderson SO. Anticoagulation drug therapy: a review. West J Emerg Med. 2015;16(1):11–7. doi:10.5811/westjem.2014.12.22933.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smith MEB, Lee NJ, Haney E, Carson S. Drug class review: HMG-CoA reductase inhibitors (statins) and fixed-dose combination products containing a statin: final report update 5. Portland (OR)2009.

  19. Grant AO. Cardiac ion channels. Circ Arrhythm Electrophysiol. 2009;2(2):185–94. doi:10.1161/CIRCEP.108.789081.

    Article  PubMed  Google Scholar 

  20. Padwal R, Straus SE, McAlister FA. Evidence based management of hypertension. Cardiovascular risk factors and their effects on the decision to treat hypertension: evidence based review. BMJ. 2001;322(7292):977–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roush GC, Sica DA. Diuretics for hypertension: a review and update. Am J Hypertens. 2016. doi:10.1093/ajh/hpw030.

    PubMed  Google Scholar 

  22. Dimmeler S. Cardiovascular disease review series. EMBO Mol Med. 2011;3(12):697. doi:10.1002/emmm.201100182.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Amin AS, Tan HL, Wilde AA. Cardiac ion channels in health and disease. Heart Rhythm. 2010;7(1):117–26. doi:10.1016/j.hrthm.2009.08.005.

    Article  PubMed  Google Scholar 

  24. Martens JR, Gelband CH. Ion channels in vascular smooth muscle: alterations in essential hypertension. Proc Soc Exp Biol Med. 1998;218(3):192–203.

    Article  CAS  PubMed  Google Scholar 

  25. Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011;3(8):a003947. doi:10.1101/cshperspect.a003947.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kim JB. Channelopathies. Korean J Pediatr. 2014;57(1):1–18. doi:10.3345/kjp.2014.57.1.1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Giudicessi JR, Ackerman MJ. Potassium-channel mutations and cardiac arrhythmias—diagnosis and therapy. Nat Rev Cardiol. 2012;9(6):319–32. doi:10.1038/nrcardio.2012.3.

    Article  CAS  PubMed  Google Scholar 

  28. Remme CA, Bezzina CR. Sodium channel (dys)function and cardiac arrhythmias. Cardiovasc Ther. 2010;28(5):287–94. doi:10.1111/j.1755-5922.2010.00210.x.

    Article  PubMed  CAS  Google Scholar 

  29. Ho WS, Davis AJ, Chadha PS, Greenwood IA. Effective contractile response to voltage-gated Na+ channels revealed by a channel activator. Am J Physiol Cell Physiol. 2013;304(8):C739–47. doi:10.1152/ajpcell.00164.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suhail M. Na, K-ATPase: ubiquitous multifunctional transmembrane protein and its relevance to various pathophysiological conditions. J Clin Med Res. 2010;2(1):1–17. doi:10.4021/jocmr2010.02.263w.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Roden DM, Darbar D, Kannankeril PJ. Antiarrhythmic drugs. In: Willerson JT, Wellens HJJ, Cohn JN, Holmes DR, editors. Cardiovascular medicine. London: Springer; 2007. p. 2085–102.

    Chapter  Google Scholar 

  32. McDonagh MS, Eden KB, Peterson K. Drug class review: calcium channel blockers: final report. Portland, OR2005.

  33. Buckley N, Dawson A, Whyte I. Calcium channel blockers. Medicine. 2007;35(11):599–602. doi:10.1016/j.mpmed.2007.08.025.

    Article  Google Scholar 

  34. Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 2009;8(12):982–1001. doi:10.1038/nrd2983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Siddoway LA. Amiodarone: guidelines for use and monitoring. Am Fam Physician. 2003;68(11):2189–96.

    PubMed  Google Scholar 

  36. Fuerstenwerth H. On the differences between ouabain and digitalis glycosides. Am J Ther. 2014;21(1):35–42. doi:10.1097/MJT.0b013e318217a609.

    Article  PubMed  Google Scholar 

  37. Hauptman PJ, Kelly RA. Digitalis. Circulation. 1999;99(9):1265–70.

    Article  CAS  PubMed  Google Scholar 

  38. Ziff OJ, Kotecha D. Digoxin: the good and the bad. Trends Cardiovasc Med. 2016. doi:10.1016/j.tcm.2016.03.011.

    PubMed  Google Scholar 

  39. Sharom FJ. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function. Front Oncol. 2014;4:41. doi:10.3389/fonc.2014.00041.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36. doi:10.1038/nrd3028.

    Article  CAS  PubMed  Google Scholar 

  41. Staud F, Cerveny L, Ceckova M. Pharmacotherapy in pregnancy; effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure. J Drug Target. 2012;20(9):736–63. doi:10.3109/1061186X.2012.716847.

    Article  CAS  PubMed  Google Scholar 

  42. Couture L, Nash JA, Turgeon J. The ATP-binding cassette transporters and their implication in drug disposition: a special look at the heart. Pharmacol Rev. 2006;58(2):244–58. doi:10.1124/pr.58.2.7.

    Article  CAS  PubMed  Google Scholar 

  43. Meissner K, Sperker B, Karsten C, Meyer Z, Schwabedissen H, Seeland U, et al. Expression and localization of P-glycoprotein in human heart: effects of cardiomyopathy. J Histochem Cytochem. 2002;50(10):1351–6.

    Article  CAS  PubMed  Google Scholar 

  44. Cascorbi I, Paul M, Kroemer HK. Pharmacogenomics of heart failure—focus on drug disposition and action. Cardiovasc Res. 2004;64(1):32–9. doi:10.1016/j.cardiores.2004.06.003.

    Article  CAS  PubMed  Google Scholar 

  45. Chung FS, Eyal S, Muzi M, Link JM, Mankoff DA, Kaddoumi A, et al. Positron emission tomography imaging of tissue P-glycoprotein activity during pregnancy in the non-human primate. Br J Pharmacol. 2010;159(2):394–404. doi:10.1111/j.1476-5381.2009.00538.x.

    Article  CAS  PubMed  Google Scholar 

  46. Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet. 2003;42(1):59–98. doi:10.2165/00003088-200342010-00003.

    Article  CAS  PubMed  Google Scholar 

  47. Ehle M, Patel C, Giugliano RP. Digoxin: clinical highlights: a review of digoxin and its use in contemporary medicine. Crit Pathw Cardiol. 2011;10(2):93–8. doi:10.1097/HPC.0b013e318221e7dd.

    Article  PubMed  Google Scholar 

  48. Rowland M, Tozer TN. Clinical pharmacokinetics and pharmacodynamics: concepts and applications. 4th ed. Philadelphia: Lipponcott Williams & Wilkins; 2010.

    Google Scholar 

  49. Katoh M, Nakajima M, Yamazaki H, Yokoi T. Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport. Eur J Pharm Sci. 2001;12(4):505–13. doi:10.1016/S0928-0987(00)00215-3.

    Article  CAS  PubMed  Google Scholar 

  50. Kakumoto M, Takara K, Sakaeda T, Tanigawara Y, Kita T, Okumura K. MDR1-mediated interaction of digoxin with antiarrhythmic or antianginal drugs. Biol Pharm Bull. 2002;25(12):1604–7.

    Article  CAS  PubMed  Google Scholar 

  51. Robinson K, Johnston A, Walker S, Mulrow JP, McKenna WJ, Holt DW. The digoxin-amiodarone interaction. Cardiovasc Drugs Ther. 1989;3(1):25–8.

    Article  CAS  PubMed  Google Scholar 

  52. Stollberger C, Finsterer J. Relevance of P-glycoprotein in stroke prevention with dabigatran, rivaroxaban, and apixaban. Herz. 2015;40 Suppl 2:140–5. doi:10.1007/s00059-014-4188-9.

    Article  PubMed  Google Scholar 

  53. Fenner KS, Troutman MD, Kempshall S, Cook JA, Ware JA, Smith DA, et al. Drug–drug interactions mediated through P-glycoprotein: clinical relevance and in vitro–in vivo correlation using digoxin as a probe drug. Clin Pharmacol Ther. 2009;85(2):173–81. doi:10.1038/clpt.2008.195.

    Article  CAS  PubMed  Google Scholar 

  54. Laer S, Scholz H, Buschmann I, Thoenes M, Meinertz T. Digitoxin intoxication during concomitant use of amiodarone. Eur J Clin Pharmacol. 1998;54(1):95–6.

    Article  CAS  PubMed  Google Scholar 

  55. Rausl D, Fotaki N, Zanoski R, Vertzoni M, Cetina-Cizmek B, Khan MZ, et al. Intestinal permeability and excretion into bile control the arrival of amlodipine into the systemic circulation after oral administration. J Pharm Pharmacol. 2006;58(6):827–36. doi:10.1211/jpp.58.6.0013.

    Article  CAS  PubMed  Google Scholar 

  56. Schwartz JB. Effects of amlodipine on steady-state digoxin concentrations and renal digoxin clearance. J Cardiovasc Pharmacol. 1988;12(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  57. Nishio S, Watanabe H, Kosuge K, Uchida S, Hayashi H, Ohashi K. Interaction between amlodipine and simvastatin in patients with hypercholesterolemia and hypertension. Hypertens Res. 2005;28(3):223–7. doi:10.1291/hypres.28.223.

    Article  CAS  PubMed  Google Scholar 

  58. Elsby R, Surry DD, Smith VN, Gray AJ. Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions. Xenobiotica. 2008;38(7-8):1140–64. doi:10.1080/00498250802050880.

    Article  CAS  PubMed  Google Scholar 

  59. Haslam IS, Jones K, Coleman T, Simmons NL. Induction of P-glycoprotein expression and function in human intestinal epithelial cells (T84). Biochem Pharmacol. 2008;76(7):850–61. doi:10.1016/j.bcp.2008.07.020.

    Article  CAS  PubMed  Google Scholar 

  60. Mendell J, Zahir H, Matsushima N, Noveck R, Lee F, Chen S, et al. Drug-drug interaction studies of cardiovascular drugs involving P-glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor. Am J Cardiovasc Drugs. 2013;13(5):331–42. doi:10.1007/s40256-013-0029-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rameis H. Quinidine-digoxin interaction: are the pharmacokinetics of both drugs altered? Int J Clin Pharmacol Ther Toxicol. 1985;23(3):145–53.

    CAS  PubMed  Google Scholar 

  62. Riganti C, Campia I, Polimeni M, Pescarmona G, Ghigo D, Bosia A. Digoxin and ouabain induce P-glycoprotein by activating calmodulin kinase II and hypoxia-inducible factor-1alpha in human colon cancer cells. Toxicol Appl Pharmacol. 2009;240(3):385–92. doi:10.1016/j.taap.2009.07.026.

    Article  CAS  PubMed  Google Scholar 

  63. Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, et al. Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther. 2001;299(2):620–8.

    CAS  PubMed  Google Scholar 

  64. Emi Y, Tsunashima D, Ogawara K-I, Higaki K, Kimura T. Role of P-glycoprotein as a secretory mechanism in quinidine absorption from rat small intestine. J Pharm Sci. 1998;87(3):295–9. doi:10.1021/js970294v.

    Article  CAS  PubMed  Google Scholar 

  65. Vallakati A, Chandra PA, Pednekar M, Frankel R, Shani J. Dronedarone-induced digoxin toxicity: new drug, new interactions. Am J Ther. 2013;20(6):e717–9. doi:10.1097/MJT.0b013e31821106c9.

    Article  PubMed  Google Scholar 

  66. Horie A, Ishida K, Shibata K, Taguchi M, Ozawa A, Hirono K, et al. Pharmacokinetic variability of flecainide in younger Japanese patients and mechanisms for renal excretion and intestinal absorption. Biopharm Drug Dispos. 2014;35(3):145–53. doi:10.1002/bdd.1877.

    Article  CAS  PubMed  Google Scholar 

  67. Lewis GP, Holtzman JL. Interaction of flecainide with digoxin and propranolol. Am J Cardiol. 1984;53(5):52B–7.

    Article  CAS  PubMed  Google Scholar 

  68. Holtzman CW, Wiggins BS, Spinler SA. Role of P-glycoprotein in statin drug interactions. Pharmacotherapy. 2006;26(11):1601–7. doi:10.1592/phco.26.11.1601.

    Article  CAS  PubMed  Google Scholar 

  69. Cavet ME, West M, Simmons NL. Transport and epithelial secretion of the cardiac glycoside, digoxin, by human intestinal epithelial (Caco-2) cells. Br J Pharmacol. 1996;118(6):1389–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gozalpour E, Wilmer MJ, Bilos A, Masereeuw R, Russel FG, Koenderink JB. Heterogeneous transport of digitalis-like compounds by P-glycoprotein in vesicular and cellular assays. Toxicol In Vitro. 2016;32:138–45. doi:10.1016/j.tiv.2015.12.009.

    Article  CAS  PubMed  Google Scholar 

  71. Pauli-Magnus C, Murdter T, Godel A, Mettang T, Eichelbaum M, Klotz U, et al. P-glycoprotein-mediated transport of digitoxin, alpha-methyldigoxin and beta-acetyldigoxin. Naunyn Schmiedeberg’s Arch Pharmacol. 2001;363(3):337–43.

    Article  CAS  Google Scholar 

  72. Zhang C, Kwan P, Zuo Z, Baum L. In vitro concentration dependent transport of phenytoin and phenobarbital, but not ethosuximide, by human P-glycoprotein. Life Sci. 2010;86(23-24):899–905. doi:10.1016/j.lfs.2010.04.008.

    Article  CAS  PubMed  Google Scholar 

  73. Baltes S, Gastens AM, Fedrowitz M, Potschka H, Kaever V, Loscher W. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology. 2007;52(2):333–46. doi:10.1016/j.neuropharm.2006.07.038.

    Article  CAS  PubMed  Google Scholar 

  74. Maines LW, Antonetti DA, Wolpert EB, Smith CD. Evaluation of the role of P-glycoprotein in the uptake of paroxetine, clozapine, phenytoin and carbamazapine by bovine retinal endothelial cells. Neuropharmacology. 2005;49(5):610–7. doi:10.1016/j.neuropharm.2005.04.028.

    Article  CAS  PubMed  Google Scholar 

  75. Rameis H. On the interaction between phenytoin and digoxin. Eur J Clin Pharmacol. 1985;29(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  76. Schenck-Gustafsson K, Dahlqvist R. Pharmacokinetics of digoxin in patients subjected to the quinidine-digoxin interaction. Br J Clin Pharmacol. 1981;11(2):181–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pedersen KE, Christiansen BD, Klitgaard NA, Nielsen-Kudsk F. Effect of quinidine on digoxin bioavailability. Eur J Clin Pharmacol. 1983;24(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  78. Munafo A, Buclin T, Tuto D, Biollaz J. The effect of a low dose of quinidine on the disposition of flecainide in healthy volunteers. Eur J Clin Pharmacol. 1992;43(4):441–3.

    Article  CAS  PubMed  Google Scholar 

  79. Kharasch ED, Hoffer C, Altuntas TG, Whittington D. Quinidine as a probe for the role of P-glycoprotein in the intestinal absorption and clinical effects of fentanyl. J Clin Pharmacol. 2004;44(3):224–33. doi:10.1177/0091270003262075.

    Article  CAS  PubMed  Google Scholar 

  80. Kharasch ED, Hoffer C, Whittington D. The effect of quinidine, used as a probe for the involvement of P-glycoprotein, on the intestinal absorption and pharmacodynamics of methadone. Br J Clin Pharmacol. 2004;57(5):600–10. doi:10.1111/j.1365-2125.2003.02053.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pedersen KE, Dorph-Pedersen A, Hvidt S, Klitgaard NA, Nielsen-Kudsk F. Digoxin-verapamil interaction. Clin Pharmacol Ther. 1981;30(3):311–6.

    Article  CAS  PubMed  Google Scholar 

  82. Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J. Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem. 2003;46(9):1716–25. doi:10.1021/jm021012t.

    Article  CAS  PubMed  Google Scholar 

  83. Edwards DJ, Lavoie R, Beckman H, Blevins R, Rubenfire M. The effect of coadministration of verapamil on the pharmacokinetics and metabolism of quinidine. Clin Pharmacol Ther. 1987;41(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  84. Hartter S, Sennewald R, Nehmiz G, Reilly P. Oral bioavailability of dabigatran etexilate (Pradaxa((R))) after co-medication with verapamil in healthy subjects. Br J Clin Pharmacol. 2013;75(4):1053–62. doi:10.1111/j.1365-2125.2012.04453.x.

    Article  PubMed  CAS  Google Scholar 

  85. Ledwitch KV, Barnes RW, Roberts AG. Unraveling the complex drug-drug Interactions of the cardiovascular drugs, verapamil and digoxin, with P-glycoprotein. Biosci Rep. 2016. doi:10.1042/BSR20150317.

    PubMed  PubMed Central  Google Scholar 

  86. Rautio J, Humphreys JE, Webster LO, Balakrishnan A, Keogh JP, Kunta JR, et al. In vitro p-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: a recommendation for probe substrates. Drug Metab Dispos. 2006;34(5):786–92. doi:10.1124/dmd.105.008615.

    Article  CAS  PubMed  Google Scholar 

  87. Feng Q, Wilke RA, Baye TM. Individualized risk for statin-induced myopathy: current knowledge, emerging challenges and potential solutions. Pharmacogenomics. 2012;13(5):579–94. doi:10.2217/pgs.12.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Moss AJ, Davis HT, Conard DL, DeCamilla JJ, Odoroff CL. Digitalis-associated cardiac mortality after myocardial infarction. Circulation. 1981;64(6):1150–6.

    Article  CAS  PubMed  Google Scholar 

  89. Ranger S, Sheldon R, Fermini B, Nattel S. Modulation of flecainide’s cardiac sodium channel blocking actions by extracellular sodium: a possible cellular mechanism for the action of sodium salts in flecainide cardiotoxicity. J Pharmacol Exp Ther. 1993;264(3):1160–7.

    CAS  PubMed  Google Scholar 

  90. Keefe DL. Anthracycline-induced cardiomyopathy. Semin Oncol. 2001;28(4 Suppl 12):2–7.

    Article  CAS  PubMed  Google Scholar 

  91. Piazza G, Nguyen TN, Cios D, Labreche M, Hohlfelder B, Fanikos J, et al. Anticoagulation-associated adverse drug events. Am J Med. 2011;124(12):1136–42. doi:10.1016/j.amjmed.2011.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lefkowitz JM, Shapiro M. Quinine-induced thrombocytopenia. Can Fam Physician. 1986;32:1949–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ruiz-Casado A, Calzas J, Garcia J, Soria A, Guerra J. Life-threatening adverse drug reaction to paclitaxel. Postmarketing surveillance. Clin Transl Oncol. 2006;8(1):60–1.

    Article  CAS  PubMed  Google Scholar 

  94. Hunt G, Bruera E. Respiratory depression in a patient receiving oral methadone for cancer pain. J Pain Symptom Manag. 1995;10(5):401–4.

    Article  CAS  Google Scholar 

  95. Smydo J. Delayed respiratory depression with fentanyl. Anesth Prog. 1979;26(2):47–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dixon AJ, Wall GC. Probable colchicine-induced neutropenia not related to intentional overdose. Ann Pharmacother. 2001;35(2):192–5.

    Article  CAS  PubMed  Google Scholar 

  97. Makinson A, Martelli N, Peyriere H, Turriere C, Le Moing V, Reynes J. Profound neutropenia resulting from interaction between antiretroviral therapy and vinblastine in a patient with HIV-associated Hodgkin’s disease. Eur J Haematol. 2007;78(4):358–60. doi:10.1111/j.1600-0609.2007.00827.x.

    Article  CAS  PubMed  Google Scholar 

  98. Thein T, Koene RA, Wijdeveld PG. Orthostatic hypotension due to prazosin. Lancet. 1977;1(8007):363.

    Article  CAS  PubMed  Google Scholar 

  99. Wegener FT, Ehrlich JR, Hohnloser SH. Dronedarone: an emerging agent with rhythm- and rate-controlling effects. J Cardiovasc Electrophysiol. 2006;17 Suppl 2:S17–20. doi:10.1111/j.1540-8167.2006.00583.x.

    Article  PubMed  Google Scholar 

  100. Elsherbiny ME, El-Kadi AO, Brocks DR. The metabolism of amiodarone by various CYP isoenzymes of human and rat, and the inhibitory influence of ketoconazole. J Pharm Pharm Sci. 2008;11(1):147–59.

    Article  CAS  PubMed  Google Scholar 

  101. Kimoto E, Seki S, Itagaki S, Matsuura M, Kobayashi M, Hirano T, et al. Efflux transport of N-monodesethylamiodarone by the human intestinal cell-line Caco-2 cells. Drug Metab Pharmacokinet. 2007;22(4):307–12.

    Article  CAS  PubMed  Google Scholar 

  102. Latini R, Tognoni G, Kates RE. Clinical pharmacokinetics of amiodarone. Clin Pharmacokinet. 1984;9(2):136–56. doi:10.2165/00003088-198409020-00002.

    Article  CAS  PubMed  Google Scholar 

  103. Patel C, Yan GX, Kowey PR. Dronedarone. Circulation. 2009;120(7):636–44. doi:10.1161/CIRCULATIONAHA.109.858027.

    Article  CAS  PubMed  Google Scholar 

  104. Lafuente-Lafuente C, Alvarez JC, Leenhardt A, Mouly S, Extramiana F, Caulin C, et al. Amiodarone concentrations in plasma and fat tissue during chronic treatment and related toxicity. Br J Clin Pharmacol. 2009;67(5):511–9. doi:10.1111/j.1365-2125.2009.03381.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liesenfeld KH, Lehr T, Dansirikul C, Reilly PA, Connolly SJ, Ezekowitz MD, et al. Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with non-valvular atrial fibrillation from the RE-LY trial. J Thromb Haemost. 2011;9(11):2168–75. doi:10.1111/j.1538-7836.2011.04498.x.

    Article  CAS  PubMed  Google Scholar 

  106. Hochman JH, Pudvah N, Qiu J, Yamazaki M, Tang C, Lin JH, et al. Interactions of human P-glycoprotein with simvastatin, simvastatin acid, and atorvastatin. Pharm Res. 2004;21(9):1686–91.

    Article  CAS  PubMed  Google Scholar 

  107. Schinkel AH, Mayer U, Wagenaar E, Mol CA, van Deemter L, Smit JJ, et al. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci U S A. 1997;94(8):4028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood-brain barrier: fact or fantasy? Pharmacol Ther. 2009;123(1):80–104. doi:10.1016/j.pharmthera.2009.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lowes S, Cavet ME, Simmons NL. Evidence for a non-MDR1 component in digoxin secretion by human intestinal Caco-2 epithelial layers. Eur J Pharmacol. 2003;458(1-2):49–56.

    Article  CAS  PubMed  Google Scholar 

  110. Pedersen KE, Dorph-Pedersen A, Hvidt S, Klitgaard NA, Pedersen KK. The long-term effect of verapamil on plasma digoxin concentration and renal digoxin clearance in healthy subjects. Eur J Clin Pharmacol. 1982;22(2):123–7.

    Article  CAS  PubMed  Google Scholar 

  111. Ramos E, O’Leary ME. State-dependent trapping of flecainide in the cardiac sodium channel. J Physiol. 2004;560(Pt 1):37–49. doi:10.1113/jphysiol.2004.065003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Leuranguer V, Mangoni ME, Nargeot J, Richard S. Inhibition of T-type and L-type calcium channels by mibefradil: physiologic and pharmacologic bases of cardiovascular effects. J Cardiovasc Pharmacol. 2001;37(6):649–61.

    Article  CAS  PubMed  Google Scholar 

  113. Jacobson TA. Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol. 2004;94(9):1140–6. doi:10.1016/j.amjcard.2004.07.080.

    Article  CAS  PubMed  Google Scholar 

  114. Eijkelkamp N, Linley JE, Baker MD, Minett MS, Cregg R, Werdehausen R, et al. Neurological perspectives on voltage-gated sodium channels. Brain. 2012;135(Pt 9):2585–612. doi:10.1093/brain/aws225.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Potschka H, Loscher W. In vivo evidence for P-glycoprotein-mediated transport of phenytoin at the blood-brain barrier of rats. Epilepsia. 2001;42(10):1231–40.

    Article  CAS  PubMed  Google Scholar 

  116. Baker AF, Dorr RT. Drug interactions with the taxanes: clinical implications. Cancer Treat Rev. 2001;27(4):221–33. doi:10.1053/ctrv.2001.0228.

    Article  CAS  PubMed  Google Scholar 

  117. Johannessen SI, Landmark CJ. Antiepileptic drug interactions—principles and clinical implications. Curr Neuropharmacol. 2010;8(3):254–67. doi:10.2174/157015910792246254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM. Inhibition of P-glycoprotein-mediated drug transport: a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation. 1999;99(4):552–7.

    Article  CAS  PubMed  Google Scholar 

  119. Holcberg G, Sapir O, Tsadkin M, Huleihel M, Lazer S, Katz M, et al. Lack of interaction of digoxin and P-glycoprotein inhibitors, quinidine and verapamil in human placenta in vitro. Eur J Obstet Gynecol Reprod Biol. 2003;109(2):133–7.

  120. Becquemont L, Funck-Brentano C, Jaillon P. Mibefradil, a potent CYP3A inhibitor, does not alter pravastatin pharmacokinetics. Fundam Clin Pharmacol. 1999;13(2):232–6.

    Article  CAS  PubMed  Google Scholar 

  121. Shargel L, Yu ABC, Wu-Pong S. Applied biopharmaceutics & pharmacokinetics. 6th ed. New York: McGraw-Hill; 2012.

    Google Scholar 

  122. Pang KS, Rodrigues AD, Peter RM. Enzyme- and transporter-based drug-drug interactions: progress and future challenges. New York: Springer; 2010.

    Book  Google Scholar 

  123. Vahakangas K, Myllynen P. Drug transporters in the human blood-placental barrier. Br J Pharmacol. 2009;158(3):665–78. doi:10.1111/j.1476-5381.2009.00336.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Segawa M, Ogura J, Seki S, Itagaki S, Takahashi N, Kobayashi M, et al. Rapid stimulating effect of the antiarrhythmic agent amiodarone on absorption of organic anion compounds. Drug Metab Pharmacokinet. 2013;28(3):178–86.

    Article  CAS  PubMed  Google Scholar 

  125. Pan AZ, Dong XA, Zhang SJ, Xiang T, Chen ZX, Lin YW. Study on mRNA and protein expressions of organic anion transporting polypeptide (oatp2b1) in rats with high fat diet and overstrain induced Pi deficiency syndrome. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2013;33(7):953–7.

    CAS  PubMed  Google Scholar 

  126. Prueksaritanont T, Chu X, Gibson C, Cui D, Yee KL, Ballard J, et al. Drug-drug interaction studies: regulatory guidance and an industry perspective. AAPS J. 2013;15(3):629–45. doi:10.1208/s12248-013-9470-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the American Heart Association (14GRNT20450044) and the National Institute of Health (1R15GM107913-01A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur G. Roberts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledwitch, K.V., Roberts, A.G. Cardiovascular Ion Channel Inhibitor Drug-Drug Interactions with P-glycoprotein. AAPS J 19, 409–420 (2017). https://doi.org/10.1208/s12248-016-0023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-0023-y

KEY WORDS

Navigation