Skip to main content

Advertisement

Log in

Predicting when Biliary Excretion of Parent Drug is a Major Route of Elimination in Humans

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Biliary excretion is an important route of elimination for many drugs, yet measuring the extent of biliary elimination is difficult, invasive, and variable. Biliary elimination has been quantified for few drugs with a limited number of subjects, who are often diseased patients. An accurate prediction of which drugs or new molecular entities are significantly eliminated in the bile may predict potential drug-drug interactions, pharmacokinetics, and toxicities. The Biopharmaceutics Drug Disposition Classification System (BDDCS) characterizes significant routes of drug elimination, identifies potential transporter effects, and is useful in understanding drug-drug interactions. Class 1 and 2 drugs are primarily eliminated in humans via metabolism and will not exhibit significant biliary excretion of parent compound. In contrast, class 3 and 4 drugs are primarily excreted unchanged in the urine or bile. Here, we characterize the significant elimination route of 105 orally administered class 3 and 4 drugs. We introduce and validate a novel model, predicting significant biliary elimination using a simple classification scheme. The model is accurate for 83% of 30 drugs collected after model development. The model corroborates the observation that biliarily eliminated drugs have high molecular weights, while demonstrating the necessity of considering route of administration and extent of metabolism when predicting biliary excretion. Interestingly, a predictor of potential metabolism significantly improves predictions of major elimination routes of poorly metabolized drugs. This model successfully predicts the major elimination route for poorly permeable/poorly metabolized drugs and may be applied prior to human dosing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grime K, Paine SW. Species differences in biliary clearance and possible relevance of hepatic uptake and efflux transporters involvement. Drug Metab Dispos. 2013;41:372–8. doi:10.1124/dmd.112.049312.

    Article  CAS  PubMed  Google Scholar 

  2. Simonson SG, Raza A, Martin PD, Mitchell PD, Jarcho JA, Brown CD, et al. Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin Pharmacol Ther. 2004;76:167–77. doi:10.1016/j.clpt.2004.03.010.

    Article  CAS  PubMed  Google Scholar 

  3. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36. doi:10.1038/nrd3028.

    Article  CAS  PubMed  Google Scholar 

  4. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22:11–23. doi:10.1007/s11095-004-9004-4.

    Article  CAS  PubMed  Google Scholar 

  5. Varma MVS, Chang G, Lai Y, Feng B, El-Kattan AF, Litchfield J, et al. Physicochemical property space of hepatobiliary transport and computational models for predicting rat biliary excretion. Drug Metab Dispos. 2012;40:1527–37. doi:10.1124/dmd.112.044628.

    Article  CAS  PubMed  Google Scholar 

  6. Broccatelli F. QSAR models for P-glycoprotein transport based on a highly consistent data set. J Chem Inf Model. 2012;52:2462–70. doi:10.1021/ci3002809.

    Article  CAS  PubMed  Google Scholar 

  7. Roberts MS, Magnusson BM, Burczynski FJ, Weiss M. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet. 2002;41:751–90.

    Article  CAS  PubMed  Google Scholar 

  8. Watanabe T, Kusuhara H, Maeda K, Kanamaru H, Saito Y, Hu Z, et al. Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans. Drug Metab Dispos. 2010;38:215–22. doi:10.1124/dmd.109.030254.

    Article  CAS  PubMed  Google Scholar 

  9. Iwatsubo T, Hirota N, Ooie T, Suzuki H, Shimada N, Chiba K, et al. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther. 1997;73:147–71. doi:10.1016/S0163-7258(96)00184-2.

    Article  CAS  PubMed  Google Scholar 

  10. Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27:1350–9.

    CAS  PubMed  Google Scholar 

  11. Naritomi Y, Terashita S, Kimura S, Suzuki A, Kagayama A, Sugiyama Y. Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab Dispos. 2001;29:1316–24.

    CAS  PubMed  Google Scholar 

  12. Stringer R, Nicklin PL, Houston JB. Reliability of human cryopreserved hepatocytes and liver microsomes as in vitro systems to predict metabolic clearance. Xenobiotica. 2008;38:1313–29. doi:10.1080/00498250802446286.

    Article  CAS  PubMed  Google Scholar 

  13. Kilford PJ, Stringer R, Sohal B, Houston JB, Galetin A. Prediction of drug clearance by glucuronidation from in vitro data: use of combined cytochrome P450 and UDP-glucuronosyltransferase cofactors in alamethicin-activated human liver microsomes. Drug Metab Dispos. 2009;37:82–9. doi:10.1124/dmd.108.023853.

    Article  CAS  PubMed  Google Scholar 

  14. Ghibellini G, Leslie EM, Brouwer KLR. Methods to evaluate biliary excretion of drugs in humans: an updated review. Mol Pharm. 2006;3:198–211. doi:10.1021/mp060011k.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. LeCluyse EL, Audus KL, Hochman JH. Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am J Physiol Cell Physiol. 1994;266:C1764–6.

    CAS  Google Scholar 

  16. Liu X, Brouwer KLR, Gan LSL, Brouwer KR, Stieger B, Meier P, et al. Partial maintenance of taurocholate uptake by adult rat hepatocytes cultured in a collagen sandwich configuration. Pharm Res. 1998;15:1533–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kotani N, Maeda K, Watanabe T, Hiramatsu M, Gong LK, Bi YA, et al. Culture period-dependent changes in the uptake of transporter substrates in sandwich-cultured rat and human hepatocytes. Drug Metab Dispos. 2011;39:1503–10. doi:10.1124/dmd.111.038968.

    Article  CAS  PubMed  Google Scholar 

  18. Kusuhara H, Sugiyama Y. Pharmacokinetic modeling of the hepatobiliary transport mediated by cooperation of uptake and efflux transporters. Drug Metab Rev. 2010;42:539–50. doi:10.3109/03602530903491824.

    Article  CAS  PubMed  Google Scholar 

  19. Abe K, Bridges AS, Yue W, Brouwer KL. In vitro biliary clearance of angiotensin II receptor blockers and 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors in sandwich-cultured rat hepatocytes: comparison with in vivo biliary clearance. J Pharmacol Exp Ther. 2008;326:983–90. doi:10.1124/jpet.108.138073.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Abe K, Bridges AS, Brouwer KL. Use of sandwich-cultured human hepatocytes to predict biliary clearance of angiotensin II receptor blockers and HMG-CoA reductase inhibitors. Drug Metab Dispos. 2009;37:447–52. doi:10.1124/dmd.108.023465.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fukuda H, Ohashi R, Tsuda-Tsukimoto M, Tamai I. Effect of plasma protein binding on in vitro-in vivo correlation of biliary excretion of drugs evaluated by sandwich-cultured rat hepatocytes. Drug Metab Dispos. 2008;36:1275–82. doi:10.1124/dmd.107.019026.

    Article  CAS  PubMed  Google Scholar 

  22. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10:1093–6.

    Article  CAS  PubMed  Google Scholar 

  23. Li M, Yuan H, Lin N, Song G, Zheng Y, Baratta M, et al. Identification of interspecies difference in efflux transporters of hepatocytes from dog, rat, monkey, and human. Eur J Pharm Sci. 2008;35:114–26. doi:10.1016/j.ejps.2008.06.008.

    Article  CAS  PubMed  Google Scholar 

  24. Li N, Zhang Y, Hua F, Lai Y. Absolute difference of hepatobiliary transporter multidrug resistance-associated protein (MRP2/Mrp2) in liver tissues and isolated hepatocytes from rat, dog, monkey, and human. Drug Metab Dispos. 2009;31:66–73. doi:10.1124/dmd.108.023234.

    Article  CAS  Google Scholar 

  25. Li N, Palandra J, Nemirovskiy O, Lai Y. LC-MS/MS mediated absolute quantification and comparison of bile salt export pump and breast cancer resistance protein in livers and hepatocytes across species. Anal Chem. 2009;81:2251–9. doi:10.1021/ac8024009.

    Article  CAS  PubMed  Google Scholar 

  26. Millburn P. Factors in the biliary excretion of organic compounds. In: Fishman WH, editor. Metabolic conjugation and metabolic hydrolysis. New York: Academic; 1970. p. 1–70.

    Chapter  Google Scholar 

  27. Yang X, Gandhi YA, Duignan DB, Morris ME. Prediction of biliary excretion in rats and humans using molecular weight and quantitative structure–pharmacokinetic relationships. AAPS J. 2009;11:511–25. doi:10.1208/s12248-009-9124-1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Sharifi M, Ghafourian T. Estimation of biliary excretion of foreign compounds using properties of molecular structure. AAPS J. 2014;16:65–77. doi:10.1208/s12248-013-9541-z.

    Article  CAS  PubMed  Google Scholar 

  29. Luo G, Johnson S, Hsueh MM, Zheng J, Cai H, Xin B, et al. In silico prediction of biliary excretion of drugs based on physicochemical properties. Drug Metab Dispos. 2010;38:422–30. doi:10.1124/dmd.108.026260.

    Article  CAS  PubMed  Google Scholar 

  30. Chen Y, Cameron K, Guzman-Perez A, Perry D, Li D, Gao H. Structure-pharmacokinetic relationship of in vivo rat biliary excretion. Biopharm Drug Dispos. 2010;31:82–90. doi:10.1002/bdd.692.

    PubMed  Google Scholar 

  31. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13:519–47. doi:10.1208/s12248-011-9290-9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Varma MV, Gardner I, Steyn SJ, Nkansah P, Rotter CJ, Whitney-Pickett C, et al. pH-dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery. Mol Pharm. 2012;9:1199–212. doi:10.1021/mp2004912.

    CAS  PubMed  Google Scholar 

  33. Benet LZ. The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J Pharm Sci. 2013;102:34–42. doi:10.1002/jps.23359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Larregieu CA, Benet LZ. Drug discovery and regulatiory considerations for improving in silico and in vitro predictions that use Caco-2 as a surrogate for human intestinal permeability measurements. AAPS J. 2013;15:483–97. doi:10.1208/s12248-013-9456-8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeablility in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25. doi:10.1016/S0169-409X(96)00423-1.

  36. VolSurf+ manual (http://www.moldiscovery.com)

  37. Cruciani G, Crivori P, Carrupt P-A, Testa B. Molecular fields in quantitative structure-permeation relationships: the VolSurf approach. J Mol Struct. 2000;503:17–30. doi:10.1016/S0166-1280(99)00360-7.

  38. Cruciani G, Crivori P, Carrupt P-A, Testa B. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J Med Chem. 2000;43:2204–16. doi:10.1021/jm990968+.

  39. Simulations Plus, Inc. ADMET Predictor (Version 6) {software} Retrieved from http://www.simulations-plus.com.

  40. R Core Team. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. 2013. Available from: http://www.R-project.org/.

  41. Mevik B-H, Wehrens R, Liland KH. pls: partial least squares and principal component regression. 2013. R package version 2.3-0. Available from: http://CRAN.R-project.org/package=pls.

  42. Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics. 2005;21:7881. Available from: http://rocr.bioinf.mpi-sb.mpg.de.

  43. Demšar J, Zupan B. Orange: from experimental machine learning to interactive data mining. In: Boulicaut JF, Esposito F, Giannotti F, Pedreschi D, editors. Knowledge discovery in databases: PKDD 2004. Berlin: Springer; 2004. p. 537–9.

    Google Scholar 

  44. Zhou L, Chen X, Gu Y, Liang J. Transport characteristics of candesartan in human intestinal Caco-2 cell line. Biopharm Drug Dispos. 2009;30:259–64. doi:10.1002/bdd.664.

    Article  CAS  PubMed  Google Scholar 

  45. Salix Pharmaceuticals, Inc. Xifaxan® (rifaximin) Tablets, 550 mg. NDA 22–554. 2010. Available from: http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/GastrointestinalDrugsAdvisoryCommittee/UCM201081.pdf.

  46. Yamashiro W, Maeda K, Hirouchi M, Adachi Y, Hu Z, Sugiyama Y. Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin II AT1-receptor, in humans. Drug Metab Dispos. 2006;34:1247–54. doi:10.1124/dmd.105.008938.

    Article  CAS  PubMed  Google Scholar 

  47. Kato Y, Miyazaki T, Kano T, Sugiura T, Kubo Y, Tsuji A. Involvement of influx and efflux transport systems in gastrointestinal absorption of celiprolol. J Pharm Sci. 2009;98:2529–39. doi:10.1002/jps.21618.

    Article  CAS  PubMed  Google Scholar 

  48. Brillault J, De Castro WV, Harnois T, Kitzis A, Olivier JC, Couet W. P-glycoprotein-mediated transport of moxifloxacin in a Calu-3 lung epithelial cell model. Antimicrob Agents Chemother. 2009;53:1457–62. doi:10.1128/AC.01253-08.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Haritova AM, Schrickx J, Lashev L, Fink-Gremmels J. ABC efflux transporters: P-gp, MRP2, and BCRP—the 3rd dimension in kinetics not only of fluoroquinolones. Br J Vet Med. 2006;9:223–42.

    Google Scholar 

  50. He XJ, Zhao LM, Qiu F, Sun YX, Li-Ling J. Influence of ABCB1 gene polymophisms on the pharmacokinetics of azithromycin among healthy Chinese Han ethnic subjects. Pharmacol Rep. 2009;61:843–50.

    Article  CAS  PubMed  Google Scholar 

  51. Deacon CF. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review. Diabetes Obes Metab. 2011;13:7–18. doi:10.1111/j.1463-1326.2010.01306.x.

    Article  CAS  PubMed  Google Scholar 

  52. Gladziwa U, Klotz U. Pharmacokinetics and pharmacodynamics of H2-receptor antagonists in patients with renal insufficiency. Clin Pharmacokinet. 1993;24:319–32. doi:10.2165/00003088-199324040-00005.

    Article  CAS  PubMed  Google Scholar 

  53. Hansch C, Steinmetz WE, Leo AJ, Mekapati SB, Kurup A, Hoekman D. On the role of polarizability in chemical-biological interactions. J Chem Inf Comput Sci. 2003;43:120–5. doi:10.1021/ci020378b.

    Article  CAS  PubMed  Google Scholar 

  54. Shen DD, Azarnoff DL. Clinical pharmacokinetics of methotrexate. Clin Pharmacokinet. 1978;3:1–13.

    Article  CAS  PubMed  Google Scholar 

  55. Calvert AH, Bondy PK, Harrap KR. Some observations on the human pharmacology of methotrexate. Cancer Treat Rep. 1977;61:1647–56.

    CAS  PubMed  Google Scholar 

  56. Suda Y, Akazawa S. Biliary and pancreatic excretion of methotrexate (MTX) and 5-FU on the MTX/5-FU sequential therapy. Gan To Kagaku Ryoho. 1990;17:1357–63.

    CAS  PubMed  Google Scholar 

  57. Nuernberg B, Koehnke R, Solsky M, Hoffman J, Furst DE. Biliary elimination of low-dose methotrexate in humans. Arthritis Rheum. 1990;33:898–902. doi:10.1002/art.1780330620.

    Article  CAS  PubMed  Google Scholar 

  58. Crivori P, Zamora I, Speed B, Orrenius C, Poggesi I. Model based on GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug candidates. J Comput Aided Mol Des. 2004;18:155–66. doi:10.1023/B:JCAM.0000035184.11906.c2.

    Article  CAS  PubMed  Google Scholar 

  59. Masimirembwa CM, Bredberg U, Andersson TB. Metabolic stability for drug discovery and development: pharmacokinetic and biochemical challenges. Clin Pharmacokinet. 2003;42:515–28. doi:10.2165/00003088-200342060-00002.

    Article  CAS  PubMed  Google Scholar 

  60. Clarke SE, Jeffrey P. Utility of metabolic stability screening: comparison of in vitro and in vivo clearance. Xenobiotica. 2001;31:591–8. doi:10.1080/00498250110057350.

    Article  CAS  PubMed  Google Scholar 

  61. Gustafson JH, Benet LZ. Biliary excretion kinetics of phenolphthalein glucuronide after intravenous and retrograde biliary administration. J Pharm Pharmacol. 1974;26:937–44. doi:10.1111/j.2042-7158.1974.tb09212.x.

    Article  CAS  PubMed  Google Scholar 

  62. Wacher VJ, Wu C-Y, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog. 1995;13:129–34. doi:10.1002/mc.2940130302.

    Article  CAS  PubMed  Google Scholar 

  63. Hansch C, Kurup A. QSAR of chemical polarizability and nerve toxicity. 2. J Chem Inf Comput Sci. 2003;43:1647–51.

    Article  CAS  PubMed  Google Scholar 

  64. Quillin ML, Breyer WA, Griswold IJ, Matthews BW. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme. J Mol Biol. 2000;302:955–77. doi:10.1006/jmbi.2000.4063.

    Article  CAS  PubMed  Google Scholar 

  65. Chacra AR. Saxagliptin for type 2 diabetes. Diabetes Metab Syndr Obes. 2010;3:325–35. doi:10.2147/DMSOTT.S12241.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Renkin EM, Robinson RR. Glomerular filtration. N Engl J Med. 1974;290:785–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Julian Blagg at the Institute of Cancer Research for critical review of the manuscript, Dr. Gabriele Cruciani and Molecular Discovery Ltd. for generously supplying the VolSurf+ license, and Dr. Michael Bolger and Simulations Plus for generously supplying the ADMET Predictor™ license. Chelsea Hosey was supported in part by NIH Training Grant T32 GM007175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie Z. Benet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(TIFF 32.7 MB)

ESM 2

(TIFF 2.21 MB)

ESM 3

(TIFF 172 kb)

ESM 4

(PDF 66.3 kb)

ESM 5

(XLSX 61.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosey, C.M., Broccatelli, F. & Benet, L.Z. Predicting when Biliary Excretion of Parent Drug is a Major Route of Elimination in Humans. AAPS J 16, 1085–1096 (2014). https://doi.org/10.1208/s12248-014-9636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9636-1

KEY WORDS

Navigation