Skip to main content
Log in

Effects of Replacement of Factor VIII Amino Acids Asp519 and Glu665 with Val on Plasma Survival and Efficacy In Vivo

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Proteolytic cleavage of factor VIII (FVIII) to activated FVIIIa is required for participation in the coagulation cascade. The A2 domain is no longer covalently bound in the resulting activated heterotrimer and is highly unstable. Aspartic acid (D) 519 and glutamic acid (E) 665 at the A1–A2 and A2–A3 domain interfaces were identified as acidic residues in local hydrophobic pockets. Replacement with hydrophobic valine (V; D519V/E665V) improved the stability and activity of the mutant FVIII over the wild-type (WT) protein in several in vitro assays. In the current study, we examined the impact of mutations on secondary and tertiary structure as well as in vivo stability, pharmacokinetics (PK), efficacy, and immunogenicity in a murine model of Hemophilia A (HA). Biophysical characterization was performed with far-UV circular dichroism (CD) and fluorescence emission studies. PK and efficacy of FVIII was studied following i.v. bolus doses of 4, 10 and 40 IU/kg with chromogenic and tail clip assays. Immunogenicity was measured with the Bethesda assay and ELISA after a series of i.v. injections. Native secondary and tertiary structure was unaltered between variants. PK profiles were similar at higher doses, but at 4 IU/kg plasma survival of D519V/E665V was improved. Hemostasis at low concentrations was improved for the mutant. Immune response was similar between variants. Overall, these results demonstrate that stabilizing mutations in the A2 domain of FVIII can improve HA therapy in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Lenting PJ, Schooten CJMV, Denis CV. Clearance mechanisms of von Willebrand factor and factor VIII. J Thromb Haemost. 2007;5(7):1353–60.

    Article  CAS  PubMed  Google Scholar 

  2. Fay PJ. Activation of factor VIII and mechanisms of cofactor action. Blood Rev. 2004;18(1):1–15.

    Article  PubMed  Google Scholar 

  3. Kaufman RJ, Wasley LC, Dorner AJ. Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells. J Biol Chem. 1988;263(13):6352–62.

    CAS  PubMed  Google Scholar 

  4. Eaton D, Rodriguez H, Vehar GA. Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry. 1986;25(2):505–12.

    Article  CAS  PubMed  Google Scholar 

  5. Fay PJ, Haidaris PJ, Smudzin TM. Human factor VIIIa subunit structure. Reconstruction of factor VIIIa from the isolated A1/A3-C1-C2 dimer and A2 subunit. J Biol Chem. 1991;266(14):8957–62.

    CAS  PubMed  Google Scholar 

  6. Bevers EM, Tilly RHJ, Senden JMG, Comfurius P, Zwaal RFA. Exposure of endogenous phosphatidylserine at the outer surface of stimulated platelets is reversed by restoration of aminophospholipid translocase activity. Biochemistry. 1989;28(6):2382–7.

    Article  CAS  PubMed  Google Scholar 

  7. Ahmad SS, Scandura JM, Walsh PN. Structural and functional characterization of platelet receptor-mediated factor VIII binding. J Biol Chem. 2000;275(17):13071–81.

    Article  CAS  PubMed  Google Scholar 

  8. Wakabayashi H, Varfaj F, Deangelis J, Fay PJ. Generation of enhanced stability factor VIII variants by replacement of charged residues at the A2 domain interface. Blood. 2008;112(7):2761–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Pemberton S, Lindley P, Zaitsev V, Card G, Tuddenham EG, Kemball-Cook G. A molecular model for the triplicated A domains of human factor VIII based on the crystal structure of human ceruloplasmin. Blood. 1997;89(7):2413–21.

    CAS  PubMed  Google Scholar 

  10. Wakabayashi H, Fay PJ. Identification of residues contributing to A2 domain-dependent structural stability in factor VIII and factor VIIIa. J Biol Chem. 2008;283(17):11645–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wakabayashi H, Griffiths AE, Fay PJ. Combining mutations of charged residues at the A2 domain interface enhances factor VIII stability over single point mutations. J Thromb Haemost: JTH. 2009;7(3):438–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Shen BW, Spiegel PC, Chang CH, Huh JW, Lee JS, Kim J, et al. The tertiary structure and domain organization of coagulation factor VIII. Blood. 2008;111(3):1240–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Morfini M. Pharmacokinetics of factor VIII and factor IX. Haemophilia: Off J World Fed Hemophilia. 2003;9 Suppl 1:94–9. discussion 100.

    Article  CAS  Google Scholar 

  14. Manco-Johnson MJ, Abshire TC, Shapiro AD, Riske B, Hacker MR, Kilcoyne R, et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med. 2007;357(6):535–44.

    Article  CAS  PubMed  Google Scholar 

  15. Pipe SW, Kaufman RJ. Characterization of a genetically engineered inactivation-resistant coagulation factor VIIIa. Proc Natl Acad Sci U S A. 1997;94(22):11851–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Radtke KP, Griffin JH, Riceberg J, Gale AJ. Disulfide bond-stabilized factor VIII has prolonged factor VIIIa activity and improved potency in whole blood clotting assays. J Thromb Haemost. 2007;5(1):102–8.

    Article  CAS  PubMed  Google Scholar 

  17. Jenkins PV, Dill JL, Zhou Q, Fay PJ. Clustered basic residues within segment 484-510 of the factor VIIIa A2 subunit contribute to the catalytic efficiency for factor Xa generation. J Thromb Haemost: JTH. 2004;2(3):452–8.

    Article  CAS  PubMed  Google Scholar 

  18. Peng A, Straubinger RM, Balu-Iyer SV. Phosphatidylinositol containing lipidic particles reduces immunogenicity and catabolism of factor VIII in hemophilia a mice. AAPS J. 2010;12(3):473–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Nedelman JR, Jia X. An extension of satterth waite’s approximation applied to pharmacokinetics. J Biopharm Stat. 1998;8(2):317–28.

    Article  CAS  PubMed  Google Scholar 

  20. Holder DJ. Comments on Nedelman and Jia’s extension of Satterthwaite’s approximation applied to pharmacokinetics. J Biopharm Stat. 2001;11(1-2):75–9.

    Article  CAS  PubMed  Google Scholar 

  21. Shetty KA, Kosloski MP, Mager DE, Balu-Iyer SV. Soy phosphatidylinositol containing nanoparticle prolongs hemostatic activity of B-domain deleted factor VIII in hemophilia A Mice. J Pharma Sci. 2014.

  22. Purohit VS, Ramani K, Sarkar R, Kazazian Jr HH, Balasubramanian SV. Lower inhibitor development in hemophilia A mice following administration of recombinant factor VIII-O-phospho-L-serine complex. J Biol Chem. 2005;280(18):17593–600.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Grillo AO, Edwards KL, Kashi RS, Shipley KM, Hu L, Besman MJ, et al. Conformational origin of the aggregation of recombinant human factor VIII. Biochemistry. 2001;40(2):586–95.

    Article  CAS  PubMed  Google Scholar 

  24. Kosloski MP, Pisal DS, Mager DE, Balu-Iyer SV. Nonlinear pharmacokinetics of factor VIII and its phosphatidylinositol lipidic complex in hemophilia A mice. Biopharm Drug Dispos. 2014;35(3):154–63.

    Article  CAS  PubMed  Google Scholar 

  25. Dumont JA, Liu T, Low SC, Zhang X, Kamphaus G, Sakorafas P, et al. Prolonged activity of a recombinant factor VIII-Fc fusion protein in hemophilia A mice and dogs. Blood. 2012;119(13):3024–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Pan J, Liu T, Kim JY, Zhu D, Patel C, Cui ZH, et al. Enhanced efficacy of recombinant FVIII in noncovalent complex with PEGylated liposome in hemophilia A mice. Blood. 2009;114(13):2802–11.

    Article  CAS  PubMed  Google Scholar 

  27. Kosloski MP, Miclea RD, Balu-Iyer SV. Role of glycosylation in conformational stability, activity, macromolecular interaction and immunogenicity of recombinant human factor VIII. AAPS J. 2009;11(3):424–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Pisal DS, Kosloski MP, Middaugh CR, Bankert RB, Balu-Iyer SV. Native-like aggregates of factor VIII are immunogenic in von Willebrand factor deficient and hemophilia a mice. J Pharm Sci. 2012;101(6):2055–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Reipert BM, Ahmad RU, Turecek PL, Schwarz HP. Characterization of antibodies induced by human factor VIII in a murine knockout model of hemophilia A. Thromb Haemost. 2000;84(5):826–32.

    CAS  PubMed  Google Scholar 

  30. Lenting PJ, Vans CJ, Denis CV. Clearance mechanisms of von Willebrand factor and factor VIII. J Thromb Haemost: JTH. 2007;5(7):1353–60.

    Article  CAS  PubMed  Google Scholar 

  31. Wang W, Wang YJ, Kelner DN. Coagulation factor VIII: structure and stability. Int J Pharm. 2003;259(1–2):1–15.

    CAS  PubMed  Google Scholar 

  32. Pratt KP. Inhibitory antibodies in hemophilia A. Curr Opin Hematol. 2012;19(5):399–405.

    Article  CAS  PubMed  Google Scholar 

  33. Gale AJ, Pellequer JL. An engineered interdomain disulfide bond stabilizes human blood coagulation factor VIIIa. J Thromb Haemost. 2003;1(9):1966–71.

    Article  CAS  PubMed  Google Scholar 

  34. Bovenschen N, Boertjes RC, van Stempvoort G, Voorberg J, Lenting PJ, Meijer AB, et al. Low density lipoprotein receptor-related protein and factor IXa share structural requirements for binding to the A3 domain of coagulation factor VIII. J Biol Chem. 2003;278(11):9370–7.

    Article  CAS  PubMed  Google Scholar 

  35. Bovenschen N, van Stempvoort G, Voorberg J, Mertens K, Meijer AB. Proteolytic cleavage of factor VIII heavy chain is required to expose the binding-site for low-density lipoprotein receptor-related protein within the A2 domain. J Thromb Haemost. 2006;4(7):1487–93.

    Article  CAS  PubMed  Google Scholar 

  36. Lenting PJ, Christophe OD, Gueguen P. The disappearing act of factor VIII. Haemophilia. 2010;16(102):6–15.

    Article  CAS  PubMed  Google Scholar 

  37. Leyte A, Verbeet MP, Brodniewicz-Proba T, Van Mourik JA, Mertens K. The interaction between human blood-coagulation factor VIII and von Willebrand factor. Characterization of a high-affinity binding site on factor VIII. Biochem J. 1989;257(3):679–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Pisal DS, Balu-Iyer SV. Phospholipid binding improves plasma survival of factor VIII. Thromb Haemost. 2010;104(5):1073–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Saenko EL, Ananyeva NM, Kouiavskaia DV, Khrenov AV, Anderson JA, Shima M, et al. Haemophilia A: effects of inhibitory antibodies on factor VIII functional interactions and approaches to prevent their action. Haemophilia. 2002;8(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  40. Fijnvandraat K, Celie PHN, Turenhout EAM, ten Cate JW, van Mourik JA, Mertens K, et al. A human alloantibody interferes with binding of factor IXa to the factor VIII light chain. Blood. 1998;91(7):2347–52.

    CAS  PubMed  Google Scholar 

  41. Pratt KP, Qian J, Ellaban E, Okita DK, Diethelm-Okita BM, Conti-Fine B, et al. Immunodominant T-cell epitopes in the factor VIII C2 domain are located within an inhibitory antibody binding site. Thromb Haemost. 2004;92(3):522–8.

    CAS  PubMed  Google Scholar 

  42. Zhong D, Saenko EL, Shima M, Felch M, Scandella D. Some human inhibitor antibodies interfere with factor VIII binding to factor IX. Blood. 1998;92(1):136–42.

    CAS  PubMed  Google Scholar 

  43. Griffiths AE, Wang W, Hagen FK, Fay PJ. Use of affinity-directed liquid chromatography-mass spectrometry to map the epitopes of a factor VIII inhibitor antibody fraction. J Thromb Haemost. 2011;9(8):1534–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Wakabayashi H, Griffiths AE, Fay PJ. Enhancing factor VIII and VIIIa stability by combining mutations at the A2 domain interface and A1-C2 domain interface. J Thromb Haemost. 2012;10(3):492–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Gaitonde P, Peng A, Straubinger RM, Bankert RB, Balu-Iyer SV. Phosphatidylserine reduces immune response against human recombinant Factor VIII in hemophilia A mice by regulation of dendritic cell function. Clin Immunol. 2011;138(2):135–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Gaitonde P, Peng A, Straubinger RM, Bankert RB, Balu-Iyer SV. Downregulation of CD40 signal and induction of TGF-beta by phosphatidylinositol mediates reduction in immunogenicity against recombinant human Factor VIII. J Pharm Sci. 2012;101(1):48–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by grants from the National Institutes of Health (R01 HL-70227 to SVB and RO1-HL38199 to PJF). MPK received pre-doctoral fellowships from Pfizer Inc. and the American Foundation for Pharmaceutical Education. Portions of the D519V/E665V protein used were supplied by Dr. John E. Murphy of Bayer Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathy V. Balu-Iyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosloski, M.P., Shetty, K.A., Wakabayashi, H. et al. Effects of Replacement of Factor VIII Amino Acids Asp519 and Glu665 with Val on Plasma Survival and Efficacy In Vivo . AAPS J 16, 1038–1045 (2014). https://doi.org/10.1208/s12248-014-9627-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9627-2

KEY WORDS

Navigation