Skip to main content
Log in

Chemometric Methods to Quantify 1D and 2D NMR Spectral Differences Among Similar Protein Therapeutics

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

NMR spectroscopy is an emerging analytical tool for measuring complex drug product qualities, e.g., protein higher order structure (HOS) or heparin chemical composition. Most drug NMR spectra have been visually analyzed; however, NMR spectra are inherently quantitative and multivariate and thus suitable for chemometric analysis. Therefore, quantitative measurements derived from chemometric comparisons between spectra could be a key step in establishing acceptance criteria for a new generic drug or a new batch after manufacture change. To measure the capability of chemometric methods to differentiate comparator NMR spectra, we calculated inter-spectra difference metrics on 1D/2D spectra of two insulin drugs, Humulin R® and Novolin R®, from different manufacturers. Both insulin drugs have an identical drug substance but differ in formulation. Chemometric methods (i.e., principal component analysis (PCA), 3-way Tucker3 or graph invariant (GI)) were performed to calculate Mahalanobis distance (D M) between the two brands (inter-brand) and distance ratio (D R) among the different lots (intra-brand). The PCA on 1D inter-brand spectral comparison yielded a D M value of 213. In comparing 2D spectra, the Tucker3 analysis yielded the highest differentiability value (D M = 305) in the comparisons made followed by PCA (D M = 255) then the GI method (D M = 40). In conclusion, drug quality comparisons among different lots might benefit from PCA on 1D spectra for rapidly comparing many samples, while higher resolution but more time-consuming 2D-NMR-data-based comparisons using Tucker3 analysis or PCA provide a greater level of assurance for drug structural similarity evaluation between drug brands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zuperl S, Pristovsek P, Menart V, Gaberc-Porekar V, Novic M. Chemometric approach in quantification of structural identity/similarity of proteins in biopharmaceuticals. J Chem Inf Model. 2007;47(3):737–43.

    Article  CAS  PubMed  Google Scholar 

  2. Poppe L, Jordan JB, Rogers G, Schnier PD. On the analytical superiority of 1D NMR for fingerprinting the higher order structure of protein therapeutics compared to multidimensional NMR methods. Anal Chem. 2015;87:5539–45.

    Article  CAS  PubMed  Google Scholar 

  3. Poppe L, Jordan JB, Lawson K, Jerums M, Apostol I, Schnier PD. Profiling formulated monoclonal antibodies by H-1 NMR spectroscopy. Anal Chem. 2013;85(20):9623–9.

    Article  CAS  PubMed  Google Scholar 

  4. Guerrini M, Rudd TR, Mauri L, Macchi E, Fareed J, Yates EA, et al. Differentiation of generic Enoxaparins marketed in the United States by employing NMR and multivariate analysis. Anal Chem. 2015;87(16):8275–83.

    Article  CAS  PubMed  Google Scholar 

  5. Kozlowski S, Woodcock J, Midthun K, Sherman RB. Developing the nation's biosimilars program. New Engl J Med. 2011;365(5):385–8.

    Article  CAS  PubMed  Google Scholar 

  6. Ghasriani H, Hodgson DJ, Brinson RG, McEwen I, Buhse LF, Kozlowski S, et al. Precision and robustness of 2D-NMR for structure assessment of filgrastim biosimilars. Nat Biotechnol. 2016;34(2):139–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Keire DA, Buhse LF, Al-Hakim A. Characterization of currently marketed heparin products: composition analysis by 2D-NMR. Anal Methods-Uk. 2013;5(12):2984–94.

    Article  CAS  Google Scholar 

  8. Ye HP, Toby TK, Sommers CD, Ghasriani H, Trehy ML, Ye W, et al. Characterization of currently marketed heparin products: key tests for LMWH quality assurance. J Pharmaceut Biomed. 2013;85:99–107.

    Article  CAS  Google Scholar 

  9. Rogstad S, Pang E, Sommers C, Hu M, Jiang XH, Keire DA, et al. Modern analytics for synthetically derived complex drug substances: NMR, AFFF-MALS, and MS tests for glatiramer acetate. Anal Bioanal Chem. 2015;407(29):8647–59.

    Article  CAS  PubMed  Google Scholar 

  10. Levy MJ, Boyneii MT, Rogstad S, Skanchy DJ, Jiang XH, Geerlof-Vidavsky I. Marketplace analysis of conjugated estrogens: determining the consistently present steroidal content with LC-MS. AAPS J. 2015;17(6):1438–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Arzhantsev S, Vilker V, Kauffman J. Deep-ultraviolet (UV) resonance Raman spectroscopy as a tool for quality control of formulated therapeutic proteins. Appl Spectrosc. 2012;66(11):1262–8.

    Article  CAS  PubMed  Google Scholar 

  12. Hmiel LK, Brorson KA, Boyne MT. Post-translational structural modifications of immunoglobulin G and their effect on biological activity. Anal Bioanal Chem. 2015;407(1):79–94.

    Article  CAS  PubMed  Google Scholar 

  13. Korang-Yeboah M, Rahman Z, Shah D, Mohammad A, Wu SY, Siddiqui A, et al. Impact of formulation and process variables on solid-state stability of theophylline in controlled release formulations. Int J Pharm. 2016;499(1–2):20–8.

    Article  CAS  PubMed  Google Scholar 

  14. Panjwani N, Hodgson DJ, Sauve S, Aubin Y. Assessment of the effects of pH, formulation and deformulation on the conformation of interferon alpha-2 by NMR. J Pharm Sci-Us. 2010;99(8):3334–42.

    Article  CAS  Google Scholar 

  15. Jin X, Kang S, Kwon H, Park S, Heteronuclear NMR. As a 4-in-1 analytical platform for detecting modification-specific signatures of therapeutic insulin formulations. Anal Chem. 2014;86(4):2050–6.

    Article  CAS  PubMed  Google Scholar 

  16. Aubin Y, Jones C, Freedberg DI. Using NMR spectroscopy to obtain the higher order structure of biopharmaceutical products. Biopharm Int. 2010;Supplement:28–34.

  17. Aubin Y, Hodgson DJ, Thach WB, Gingras G, Sauve S. Monitoring effects of excipients, formulation parameters and mutations on the high order structure of filgrastim by NMR. Pharm Res. 2015;32:3365–75.

    Article  CAS  PubMed  Google Scholar 

  18. Aubin Y, Gingras G, Sauve S. Assessment of the three-dimensional structure of recombinant protein therapeutics by NMR fingerprinting: demonstration on recombinant human granulocyte macrophage-colony stimulation factor. Anal Chem. 2008;80(7):2623–7.

    Article  CAS  PubMed  Google Scholar 

  19. Arbogast LW, Brinson RG, Marino JP. Mapping monoclonal antibody structure by 2D (13)C NMR at natural abundance. Anal Chem. 2015;87(7):3556–61.

    Article  CAS  PubMed  Google Scholar 

  20. Amezcua CA, Szabo CM. Assessment of higher order structure comparability in therapeutic proteins using nuclear magnetic resonance spectroscopy. J Pharm Sci-Us. 2013;102(6):1724–33.

    Article  CAS  Google Scholar 

  21. Chen K, Long DS, Lute SC, Levy MJ, Brorson KA, Keire DA. Simple NMR methods for evaluating higher order structures of monoclonal antibody therapeutics with quinary structure. J Pharmaceut Biomed. 2016;128:398–407.

    Article  CAS  Google Scholar 

  22. Zang QD, Keire DA, Buhse LF, Wood RD, Mital DP, Haque S, et al. Identification of heparin samples that contain impurities or contaminants by chemometric pattern recognition analysis of proton NMR spectral data. Anal Bioanal Chem. 2011;401(3):939–55.

    Article  CAS  PubMed  Google Scholar 

  23. Kiers HAL. Towards a standardized notation and terminology in multiway analysis. J Chemom. 2000;14(3):105–22.

    Article  CAS  Google Scholar 

  24. Kroonenberg PM, Basford KE, Gemperline PJ. Grouping three-mode data with mixture methods: the case of the diseased blue crabs. J Chemom. 2004;18(11):508–18.

    Article  CAS  Google Scholar 

  25. Tucker LR. Some mathematical notes on 3-mode factor analysis. Psychometrika. 1966;31(3):279.

    Article  CAS  PubMed  Google Scholar 

  26. Randic M, Novic M, Vracko M. Novel characterization of proteomics maps by sequential neighborhoods of protein spots. J Chem Inf Model. 2005;45(5):1205–13.

    Article  CAS  PubMed  Google Scholar 

  27. Bro R. Review on multiway analysis in chemistry—2000-2005. Crit Rev Anal Chem. 2006;36(3–4):279–93.

    Article  CAS  Google Scholar 

  28. Rencher AC. Methods of multivariate analysis. 2nd ed. Hoboken: Wiley-Interscience; 2003.

    Google Scholar 

  29. Brereton RG. The Mahalanobis distance and its relationship to principal component scores. J Chemom. 2015;29(3):143–5.

    Article  CAS  Google Scholar 

  30. Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, et al. H-1, C-13 and N-15 chemical-shift referencing in biomolecular NMR. J Biomol NMR. 1995;6(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  31. Chen K, Freedberg DI, Keire DA. NMR profiling of biomolecules at natural abundance using 2D H-1-N-15 and H-1-C-13 multiplicity-separated (MS) HSQC spectra. J Magn Reson. 2015;251:65–70.

    Article  CAS  PubMed  Google Scholar 

  32. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. Nmrpipe—a multidimensional spectral processing system based on Unix pipes. J Biomol NMR. 1995;6(3):277–93.

    Article  CAS  PubMed  Google Scholar 

  33. Kiers HAL, Kroonenberg PM, Tenberge JMF. An efficient algorithm for Tuckals3 on data with large numbers of observation units. Psychometrika. 1992;57(3):415–22.

    Article  Google Scholar 

  34. Patil, S.M., Keire, D.A. & Chen, K. AAPS J. 2017. https://doi.org/10.1208/s12248-017-0127-z.

  35. Keller D, Clausen R, Josefsen K, Led JJ. Flexibility and bioactivity of insulin: an NMR investigation of the solution structure and folding of an unusually flexible human insulin mutant with increased biological activity. Biochemistry. 2001;40(35):10732–40.

    Article  CAS  PubMed  Google Scholar 

  36. Chang XQ, Jorgensen AMM, Bardrum P, Led JJ. Solution structures of the R-6 human insulin hexamer. Biochemistry. 1997;36(31):9409–22.

    Article  CAS  PubMed  Google Scholar 

  37. Dyrby M, Baunsgaard D, Bro R, Engelsen SB. Multiway chemometric analysis of the metabolic response to toxins monitored by NMR. Chemometr Intell Lab. 2005;76(1):79–89.

    Article  CAS  Google Scholar 

  38. Pedersen HT, Bro R, Engelsen SB. Towards rapid and unique curve resolution of low-field NMR relaxation data: trilinear SLICING versus two-dimensional curve fitting. J Magn Reson. 2002;157(1):141–55.

    Article  CAS  PubMed  Google Scholar 

  39. Randic M. A graph theoretical characterization of proteomics maps. Int J Quantum Chem. 2002;90(2):848–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the reviewer for pointing us to the Tucker3 method. We thank Prof. P.M. Kroonenberg for helpful discussion on Tucker3 application.

Funding

Support for this work from the US FDA CDER Critical Path Award is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Chen.

Ethics declarations

Disclaimer

This article reflects the views of the author and should not be construed to represent U.S. FDA’s views or policies.

Electronic Supplementary Material

ESM 1

NMR data processing scripts, MATLAB scripts, R scripts and principle component scores can be found in supplementary materials. (DOCX 523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Park, J., Li, F. et al. Chemometric Methods to Quantify 1D and 2D NMR Spectral Differences Among Similar Protein Therapeutics. AAPS PharmSciTech 19, 1011–1019 (2018). https://doi.org/10.1208/s12249-017-0911-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0911-1

KEY WORDS

Navigation