Skip to main content
Log in

Mucoadhesive Chitosan-Pectinate Nanoparticles for the Delivery of Curcumin to the Colon

  • Research Article
  • Theme: Recent Trends in the Development of Chitosan-Based Drug Delivery Systems
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In the present study, we report the properties of a mucoadhesive chitosan-pectinate nanoparticulate formulation able to retain its integrity in the milieu of the upper gastrointestinal tract and subsequently, mucoadhere and release curcumin in colon conditions. Using this system, we aimed to deliver curcumin to the colon for the possible management of colorectal cancer. The delivery system comprised of a chitosan-pectinate composite nanopolymeric with a z-average of 206.0 nm (±6.6 nm) and zeta potential of +32.8 mV (±0.5 mV) and encapsulation efficiency of 64%. The nanoparticles mucoadhesiveness was higher at alkaline pH compared to acidic pH. Furthermore, more than 80% release of curcumin was achieved in pectinase-enriched medium (pH 6.4) as opposed to negligible release in acidic and enzyme-restricted media at pH 6.8. SEM images of the nanoparticles after exposure to the various media indicate a retained matrix in acid media as opposed to a distorted/fragmented matrix in pectinase-enriched medium. The data strongly indicates that the system has the potential to be applied as a colon-targeted mucoadhesive curcumin delivery system for the possible treatment of colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bornstein BA, Recht A, Connolly JL, Schnitt SJ, Cady B, Koufman C, et al. Results of treating ductal carcinoma in situ of the breast with conservative surgery and radiation therapy. Cancer. 1991;67:7–13. doi:10.1002/1097-0142%2819910101%2967%3A1%3C7%3A%3AAID-CNCR2820670103%3E3.0.CO%3B2-B.

    Article  CAS  PubMed  Google Scholar 

  2. Cohen L, Hack TF, Moor C De, Katz J, Goss PE. The effects of type of surgery and time on psychological adjustment in women after breast cancer treatment. Ann Surg Oncol. 2000;7:427–34.

  3. Takahashi H, Okabayashi K, Tsuruta M, Hasegawa H, Yahagi M, Kitagawa Y. Self-expanding metallic stents versus surgical intervention as palliative therapy for obstructive colorectal cancer: a meta-analysis. World J Surg. 2015;39:2037–44.

    Article  PubMed  Google Scholar 

  4. Schiphorst AH, Verweij NM, Pronk A, Borel Rinkes IH, Hamaker ME. Non-surgical complications after laparoscopic and open surgery for colorectal cancer—a systematic review of randomised controlled trials. Eur J Surg Oncol. 2015;41:1–10.

    Article  Google Scholar 

  5. Haanstra JF, de Vos Tot Nederveen Cappel WH, Gopie JP, Vecht J, Vanhoutvin SA, Cats A et al. Quality of life after surgery for colon cancer in patients with Lynch syndrome: partial versus subtotal colectomy. Dis Colon Rectum. 2012;55:653–9.

    Article  PubMed  Google Scholar 

  6. Bourgier C, Levy A, Vozenin MC, Deutsch E. Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics? Cancer Metastasis Rev. 2012;3:699–712.

    Article  Google Scholar 

  7. Sia J, Joon DL, Viotto A, Mantle C, Quong G, Rolfo A, et al. Toxicity and long-term outcomes of dose-escalated intensity modulated radiation therapy to 74 Gy for localised prostate cancer in a single Australian centre. Cancers. 2011;3:3419–31.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Van Gijn W, Marijnen CAM, Nagtegaal ID, Kranenbarg EMK, Putter H, Wiggers T, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 2011;12:575–82. doi:10.1016/S1470-2045(11)70097-3.

    Article  PubMed  Google Scholar 

  9. Bruheim K, Guren MG, Skovlund E, Hjermstad MJ, Dahl O, Frykholm G, et al. Late side effects and quality of life after radiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2010;76:1005–11.

    Article  PubMed  Google Scholar 

  10. Farrell C, Brearley SG, Pilling M, Molassiotis A. The impact of chemotherapy-related nausea on patients’ nutritional status, psychological distress and quality of life. Support Care Cancer. 2013;21:59–66.

    Article  PubMed  Google Scholar 

  11. Henry DH, Langer CJ, McKenzie RS, Piech CT, Senbetta M, Schulman KL, et al. Hematologic outcomes and blood utilization in cancer patients with chemotherapy-induced anemia (CIA) pre- and post-national coverage determination (NCD): results from a multicenter chart review. Support Care Cancer. 2012;20:2089–96.

    Article  PubMed  Google Scholar 

  12. Grothey A, Nikcevich DA, Sloan JA, Kugler JW, Silberstein PT, Dentchev T, et al. Intravenous calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in adjuvant colon cancer: NCCTG N04C7. J Clin Oncol. 2011;29:421–7.

    Article  CAS  PubMed  Google Scholar 

  13. Sonis S, Treister N, Chawla S, Demetri G, Haluska F. Preliminary characterization of oral lesions associated with inhibitors of mammalian target of rapamycin in cancer patients. Cancer. 2010;116:210–5.

    CAS  PubMed  Google Scholar 

  14. Peterson DE, Bensadoun RJ, Roila F. Management of oral and gastrointestinal mucositis: ESMO clinical practice guidelines. Ann Oncol. 2011;22:78–84.

    Article  Google Scholar 

  15. Qi F, Li A, Inagaki Y, Gao J, Li J, Kokudo N, et al. Chinese herbal medicines as adjuvant treatment during chemo- or radio-therapy for cancer. Biosci Trends. 2010;4:297–307.

    PubMed  Google Scholar 

  16. Faried A, Kurnia D, Faried LS, Usman N, Miyazaki T, Kato H, et al. Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int J Oncol. 2007;30:605–13.

    CAS  PubMed  Google Scholar 

  17. Nirmala MJ, Samundeeswari A, Sankar PD. Natural plant resources in anti-cancer therapy—a review. Res Plant Biol. 2011;1:1–14.

    Google Scholar 

  18. Pezzuto JM. Plant-derived anticancer agents. Biochem Pharmacol. 1997;53:121–33.

    Article  CAS  PubMed  Google Scholar 

  19. Adams BK, Ferstl EM, Davis MC, Herold M, Kurtkaya S, Camalier RF, et al. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem. 2004;12:3871–83.

    Article  CAS  PubMed  Google Scholar 

  20. Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, et al. Chemopreventive and therapeutic effects of curcumin. Cancer Lett. 2005;223:181–90.

    Article  CAS  PubMed  Google Scholar 

  21. Sa G, Das T. Anti cancer effects of curcumin: cycle of life and death. Cell Div. 2008;3:14.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kanai M, Imaizumi A, Otsuka Y, Sasaki H, Hashiguchi M, Tsujiko K, et al. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol. 2012;69:65–70.

    Article  CAS  PubMed  Google Scholar 

  23. Li M, Zhang Z, Hill DL, Wang H, Zhang R. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res. 2007;67:1988–96.

    Article  CAS  PubMed  Google Scholar 

  24. Lee J-W, Park S, Kim SY, Um SH, Moon E-Y. Curcumin hampers the antitumor effect of vinblastine via the inhibition of microtubule dynamics and mitochondrial membrane potential in HeLa cervical cancer cells. Phytomedicine [Internet]. Elsevier GmbH. 2016;23:705–13.

    CAS  Google Scholar 

  25. Tang H, Murphy CJ, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, et al. Curcumin polymers as anticancer conjugates. Biomaterials. 2010;31:7139–49. doi:10.1016/j.biomaterials.2010.06.007.

    Article  CAS  PubMed  Google Scholar 

  26. Howells LM, Sale S, Sriramareddy SN, Irving GRB, Jones DJL, Ottley CJ, et al. Curcumin ameliorates oxaliplatin-induced chemoresistance in HCT116 colorectal cancer cells in vitro and in vivo. Int J Cancer. 2011;129:476–86.

    Article  CAS  PubMed  Google Scholar 

  27. Babaei E, Sadeghizadeh M, Hassan ZM, Feizi MAH, Najafi F, Hashemi SM. Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Int Immunopharmacol. 2012;12:226–34.

    Article  CAS  PubMed  Google Scholar 

  28. Li L, Ahmed B, Mehta K, Kurzrock R. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol Cancer Ther. 2007;6:1276–82.

    Article  CAS  PubMed  Google Scholar 

  29. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB, Anand P, Kunnumakkara AB, et al. Bioavailability of curcumin : problems and promises. Mol Pharma. 2007;4:807–18.

  30. Bhutani MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav. 2009;92:39–43. doi:10.1016/j.pbb.2008.10.007.

    Article  CAS  PubMed  Google Scholar 

  31. Sehgal A, Kumar M, Jain M, Dhawan DK. Modulatory effects of curcumin in conjunction with piperine on benzo(a)pyrene-mediated DNA adducts and biotransformation enzymes. Nutr Cancer. 2013;65:885–90. doi:10.1080/01635581.2013.805421.

    Article  CAS  PubMed  Google Scholar 

  32. Aadinath W, Bhushani A, Anandharamakrishnan C. Synergistic radical scavenging potency of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes. Mater Sci Eng C Elsevier BV. 2016;64:293–302.

    Article  CAS  Google Scholar 

  33. Began G, Sudharshan E, Appu Rao AG. Inhibition of lipoxygenase 1 by phosphatidylcholine micelles-bound curcumin. Lipids. 1998;33:1223–8.

    Article  CAS  PubMed  Google Scholar 

  34. Belcaro G, Cesarone MR, Dugall M, Pellegrini L, Ledda A, Grossi MG, et al. Product-evaluation registry of Meriva®, a curcumin-phosphatidylcholine complex, for the complementary management of osteoarthritis. Panminerva Med. 2010;52:55–62.

    CAS  PubMed  Google Scholar 

  35. Sehgal A, Kumar M, Jain M, Dhawan D. Piperine as an adjuvant increases the efficacy of curcumin in mitigating benzo(a)pyrene toxicity. Hum Exp Toxicol. 2012;31:473–82.

    Article  CAS  PubMed  Google Scholar 

  36. Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6:319–27.

    Article  CAS  Google Scholar 

  37. Cho K, Wang X, Nie S, Chen Z, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14:1310–6.

    Article  CAS  PubMed  Google Scholar 

  38. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351:19–29. doi:10.1016/j.jcis.2010.05.022.

    Article  CAS  PubMed  Google Scholar 

  39. Kumar SSD, Mahesh A, Mahadevan S, Mandal AB. Synthesis and characterization of curcumin loaded polymer/lipid based nanoparticles and evaluation of their antitumor effects on MCF-7 cells. Biochim Biophys Acta Gen Subj. 1840;2014:1913–22. doi:10.1016/j.bbagen.2014.01.016.

    Google Scholar 

  40. Liu J, Xu L, Liu C, Zhang D, Wang S, Deng Z, et al. Preparation and characterization of cationic curcumin nanoparticles for improvement of cellular uptake. Carbohydr Polym. 2012;90:16–22.

    Article  CAS  PubMed  Google Scholar 

  41. Chuah LH, Billa N, Roberts CJ, Burley JC, Manickam S. Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharm Dev Technol. 2013;18:591–9. doi:10.3109/10837450.2011.640688.

    Article  CAS  PubMed  Google Scholar 

  42. Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res. 1998;15:1326–31.

  43. Stephen-Haynes J, Gibson E, Greenwood M. Chitosan: a natural solution for wound healing. J Community Nurs. 2014;28:48–53.

  44. Dyer AM, Hinchcliffe M, Watts P, Castile J, Nankervis R, Smith A, et al. Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res. 2002;19:998–1008.

    Article  CAS  PubMed  Google Scholar 

  45. Malathi B, Mona S, Thiyagarajan D, Kaliraj P. Immunopotentiating nano-chitosan as potent vaccine carter for efficacious prophylaxis of filarial antigens. Int J Biol Macromol. 2015;73:131–7. doi:10.1016/j.ijbiomac.2014.11.014.

    Article  CAS  PubMed  Google Scholar 

  46. Berthold A, Cremer K, Kreuter J. Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs. J Control Release. 1996;39:17–25.

    Article  CAS  Google Scholar 

  47. Islam MA, Firdous J, Choi YJ, Yun CH, Cho CS. Design and application of chitosan microspheres as oral and nasal vaccine carriers: an updated review. Int J Nanomedicine. 2012;7:6077–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Maurstad G, Stokke BT, Vårum KM, Strand SP. PEGylated chitosan complexes DNA while improving polyplex colloidal stability and gene transfection efficiency. Carbohydr Polym. 2013;94:436–43. doi:10.1016/j.carbpol.2013.01.015.

    Article  CAS  PubMed  Google Scholar 

  49. Srivastava P, Malviya R. Sources of pectin, extraction and its applications in pharmaceutical industry—an overview. Indian J Nat Prod Resour. 2011;2:10–8.

    CAS  Google Scholar 

  50. Pérez Espitia PJ, Du WX, de Jesús Avena-Bustillos R, de Fátima Ferreira Soares N, McHugh T. Edible films from pectin: physical-mechanical and antimicrobial properties—a review. Food Hydrocoll. 2014;35:287–96. doi:10.1016/j.foodhyd.2013.06.005.

    Article  Google Scholar 

  51. Liu L, Fishman ML, Hicks KB. Pectin in controlled drug delivery—a review. Cellulose. 2006;14:15–24.

    Article  CAS  Google Scholar 

  52. He W, Du Q, Cao DY, Xiang B, Fan LF. Study on colon-specific pectin/ethylcellulose film-coated 5-fluorouracil pellets in rats. Int J Pharm. 2008;348:35–45.

    Article  CAS  PubMed  Google Scholar 

  53. Thirawong N, Nunthanid J, Puttipipatkhachorn S, Sriamornsak P. Mucoadhesive properties of various pectins on gastrointestinal mucosa: an in vitro evaluation using texture analyzer. Eur J Pharm Biopharm. 2007;67:132–40.

    Article  CAS  PubMed  Google Scholar 

  54. Syed Mohamad Al-Azi SO, Tan YTF, Wong TW. Transforming large molecular weight pectin and chitosan into oral protein drug nanoparticulate carrier. React Funct Polym. 2014;84:45–52. doi:10.1016/j.reactfunctpolym.2014.09.005.

    Article  CAS  Google Scholar 

  55. Wichitnithad W, Jongaroonngamsang N, Pummangura S, Rojsitthisak P. A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochem Anal. 2009;20:314–9.

    Article  CAS  PubMed  Google Scholar 

  56. Bhatta RS, Chandasana H, Chhonker YS, Rathi C, Kumar D, Mitra K, et al. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies. Int J Pharm. 2012;432:105–12. doi:10.1016/j.ijpharm.2012.04.060.

    Article  CAS  PubMed  Google Scholar 

  57. Takeuchi H, Thongborisute J, Matsui Y, Sugihara H, Yamamoto H, Kawashima Y. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv Drug Deliv Rev. 2005;57:1583–94.

    Article  CAS  PubMed  Google Scholar 

  58. Manolova Y, Deneva V, Antonov L, Drakalska E, Momekova D, Lambov N. The effect of the water on the curcumin tautomerism: a quantitative approach. Spectrochim Acta A Mol Biomol Spectrosc. 2014;132:815–20. doi:10.1016/j.saa.2014.05.096.

    Article  CAS  PubMed  Google Scholar 

  59. Li Z-Z, Wen L-X, Shao L, Chen J-F. Fabrication of porous hollow silica nanoparticles and their applications in drug release control. J Control Release. 2004;98:245–54.

    Article  CAS  PubMed  Google Scholar 

  60. Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B: Biointerfaces. 2012;90:21–7. doi:10.1016/j.colsurfb.2011.09.042.

    Article  CAS  PubMed  Google Scholar 

  61. Kolev TM, Velcheva EA, Stamboliyska BA, Spiteller M. DFT and experimental studies of the structure and vibrational spectra of curcumin. Int J Quantum Chem. 2005;102:1069–79.

    Article  CAS  Google Scholar 

  62. Paulino AT, Simionato JI, Garcia JC, Nozaki J. Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr Polym. 2006;64:98–103.

    Article  CAS  Google Scholar 

  63. Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomed Nanotechnol Biol Med. 2010;6:153–60. doi:10.1016/j.nano.2009.05.009.

    Article  CAS  Google Scholar 

  64. Shi L, Gunasekaran S. Preparation of pectin-ZnO nanocomposite. Nanoscale Res Lett. 2008;3:491–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gopi D, Kanimozhi K, Bhuvaneshwari N, Indira J, Kavitha L. Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization. Spectrochim Acta A Mol Biomol Spectrosc. 2014;118:589–97. doi:10.1016/j.saa.2013.09.034.

    Article  CAS  PubMed  Google Scholar 

  66. Mi F-L, Sung H-W, Shyu S-S, Su C-C, Peng C-K. Synthesis and characterization of biodegradable TPP/genipin co-crosslinked chitosan gel beads. Polymer (Guildf). 2003;44:6521–30.

    Article  CAS  Google Scholar 

  67. Martins AF, de Oliveira DM, Pereira AGB, Rubira AF, Muniz EC. Chitosan/TPP microparticles obtained by microemulsion method applied in controlled release of heparin. Int J Biol Macromol. 2012;51:1127–33. doi:10.1016/j.ijbiomac.2012.08.032.

    Article  CAS  PubMed  Google Scholar 

  68. Sarmento B, Ferreira D, Veiga F, Ribeiro A. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polym. 2006;66:1–7.

    Article  CAS  Google Scholar 

  69. Bansil R, Turner BS. Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci. 2006;11:164–70.

    Article  CAS  Google Scholar 

  70. Kashyap D. Applications of pectinases in teh commercial sector: a review. Bioresour Technol Amsterdam. 2001;77:215–27.

    Article  CAS  Google Scholar 

  71. Yu CY, Cao H, Zhang XC, Zhou FZ, Cheng SX, Zhang XZ, et al. Hybrid nanospheres and vesicles based on pectin as drug carriers. Langmuir. 2009;25:11720–6.

    Article  CAS  PubMed  Google Scholar 

  72. Munjeri O, Collett JH, Fell JT. Hydrogel beads based on amidated pectins for colon-specific drug delivery: the role of chitosan in modifying drug release. J Control Release. 1997;46:273–8.

    Article  CAS  Google Scholar 

  73. Das S, Chaudhury A, Ng KY. Preparation and evaluation of zinc-pectin-chitosan composite particles for drug delivery to the colon: role of chitosan in modifying in vitro and in vivo drug release. Int J Pharm. 2011;406:11–20. doi:10.1016/j.ijpharm.2010.12.015.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashiru Billa.

Ethics declarations

Conflict of Interest

The authors report no conflicts of interest.

Additional information

Guest Editors: Claudio Salomon, Francisco Goycoolea, and Bruno Moerschbacher

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhader, E., Billa, N. & Roberts, C.J. Mucoadhesive Chitosan-Pectinate Nanoparticles for the Delivery of Curcumin to the Colon. AAPS PharmSciTech 18, 1009–1018 (2017). https://doi.org/10.1208/s12249-016-0623-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0623-y

KEY WORDS

Navigation