Skip to main content
Log in

Dietary calcium improves the reproductive functions against high-fat diet (HFD)–induced testicular toxicity in male obese rats

  • Research
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Introduction

Obesity-associated metabolic disorders are often associated with reproductive disorders affecting the spermatogenesis program and infertility. Recently, dietary calcium has shown a protective effect against obesity and its associated metabolic disorders. Calcium is a common nutrient in our daily diet with a diverse physiological role, but its role against reproductive function during obesity remains unknown.

Purpose

The present study aimed to investigate the dietary effect of calcium against male reproductive function in high-fat diet (HFD) rats.

Methods

Male rats were randomly divided into four groups: the control group, the HFD obese group, the low calcium (0.25% Ca) HFD group, and the high calcium (1.0%Ca) HFD group. The rats were fed with the low or high-calcium diet for 12 weeks after inducing obesity. At the end of the study, several reproductive markers including sperm count, testicular steroidogenic enzymatic activity, testosterone, antioxidant, inflammatory and apoptotic markers were studied.

Results

High calcium (1.0% Ca) group was found to improve the reproductive parameters like sperm count, sperm motility, testosterone level, and steroidogenic enzymes indicating improvement in spermatogenesis which is affected by diet-induced obesity. These improvements in reproductive parameters are improved by restoring the physiological balance between antioxidant and oxidative stress levels and reducing the inflammatory and apoptosis markers in the high calcium group.

Conclusion

High calcium diet during obese conditions seemed to improve the male reproductive parameters and spermatogenesis program thereby preventing the risk of obesity-associated male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Panth N, Gavarkovs A, Tamez M, Mattei J. The influence of diet on fertility and the implications for public health nutrition in the United States. Front Public Health. 2018;6:211. https://doi.org/10.3389/fpubh.2018.00211.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Martins AD, Majzoub A, Agawal A. Metabolic syndrome and male fertility. World J Mens Health. 2019;37:113–27. https://doi.org/10.5534/wjmh.180055.

    Article  PubMed  Google Scholar 

  3. Lotti F, Corona G, Degli Innocenti S, Filimberti E, Scognamiglio V, Vignozzi L, Forti G, Maggi M. Seminal, ultrasound and psychobiological parameters correlate with metabolic syndrome in male members of infertile couples. Andrology. 2013;1:229–39. https://doi.org/10.1111/j.2047-2927.2012.00031.x.

    Article  CAS  PubMed  Google Scholar 

  4. Leisegang K, Udodong A, Bouic PJ, Henkel RR. Effect of the metabolic syndrome on male reproductive function: a case controlled pilot study. Andrologia. 2014;46:167–76.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang F, Ye J, Zhu X, Wang L, Gao P, Shu G, Jiang Q, Wang S. Anti-obesity effects of dietary calcium: the evidence and possible mechanisms. Int J Mol Sci. 2019;20:3072. https://doi.org/10.3390/ijms20123072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alomaim H, Griffin P, Swist E, Plouffe LJ, Vandeloo M, Demonty I, Kumar A, Bertinato J. Dietary calcium affects body composition and lipid metabolism in rats. PLoS One. 2019;14:e0210760. https://doi.org/10.1371/journal.pone.0210760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Das S, Choudhuri D. Dietary calcium regulates the insulin sensitivity by altering the adipokine secretion in high fat diet induced obese rats. Life Sci. 2020;250:117560. https://doi.org/10.1016/j.lfs.2020.117560.

    Article  CAS  PubMed  Google Scholar 

  8. Das S, Choudhuri D. Calcium supplementation shows a hepatoprotective effect against high-fat diet by regulating oxidative-induced inflammatory response and lipogenesis activity in male rats. J Tradit Complement Med. 2019;10:511–9. https://doi.org/10.1016/j.jtcme.2019.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang F, Su H, Song M, Zheng J, Liu F, Yuan C, Fu Q, Chen S, Zhu X, Wang L, Gao P, Shu G, Jiang Q, Wang S. Calcium supplementation alleviates high-fat diet-induced estrous cycle irregularity and subfertility associated with concomitantly enhanced thermogenesis of brown adipose tissue and browning of white adipose tissue. J Agric Food Chem. 2019;67:7073–81. https://doi.org/10.1021/acs.jafc.9b02663.

    Article  CAS  PubMed  Google Scholar 

  10. Chandra A, Sengupta P, Goswami H, Sarkar M. Excessive dietary calcium in the disruption of structural and functional status of adult male reproductive system in rat with possible mechanism. Mol Cell Biochem. 2012;364:181–91. https://doi.org/10.1007/s11010-011-1217-3.

    Article  CAS  Google Scholar 

  11. Beigi Harchegani A, Irandoost A, Mirnamniha M, Rahmani H, Tahmasbpour E, Shahriary A. Possible mechanisms for the effects of calcium deficiency on male infertility. Int. J Fertil Steril. 2019;12(267-272) https://doi.org/10.22074/IJFS.2019.5420.

  12. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993;123:1939–51. https://doi.org/10.1093/jn/123.11.1939.

    Article  CAS  PubMed  Google Scholar 

  13. Noeman SA, Hamooda HE, Baalash AA. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr. 2011;3(1):17. https://doi.org/10.1186/1758-5996-3-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang EH, Yu ZL, Bu YJ, Xu PW, Xi JY, Liang HY. Grape seed proanthocyanidin extract alleviates high-fat diet induced testicular toxicity in rats. RSC Adv. 2019;9:11842–50. https://doi.org/10.1039/C9RA01017C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Terpsidis KI, Papazahariadou MG, Taitzoglou IA, Papaioannou NG, Georgiadis MP, Theodoridis IT. Toxoplasma gondii: reproductive parameters in experimentally infected male rats. Exp Parasitol. 2009;121:238–41. https://doi.org/10.1016/j.exppara.2008.11.006.

    Article  CAS  PubMed  Google Scholar 

  16. Rezaei-Agdam H, Moshari S, Nahari E, Minas A, Daliri Z, Hallaj M, Razi M. Zeta and hyaluronic acid assessments, novel sperm selection procedures, in animal model for male infertility. Andrologia. 2019;51(11):e13447. https://doi.org/10.1111/and.13447.

    Article  PubMed  Google Scholar 

  17. Talalay P. Hydroxysteroid dehydrogenases. Methods Enzymol. 1962;5:512–32.

    Article  CAS  Google Scholar 

  18. Arabak J, Adams JA, Williams-Ashman HG, Talalay P. Purification of 17 beta-hydroxysteroid dehydrogenase of human placenta and studies on its transhydrogenase function. J Biol Chem. 1962;237:345–57.

    Article  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.

    Article  CAS  PubMed  Google Scholar 

  20. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.

    Article  CAS  PubMed  Google Scholar 

  21. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–74.

    Article  CAS  PubMed  Google Scholar 

  22. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158–69.

    CAS  PubMed  Google Scholar 

  23. Erejuwa OO, Sulaiman SA, Wahab MS, Salam SK, Salleh MS, Gurtu S. Comparison of antioxidant effects of honey, glibenclamide, metformin, and their combinations in the kidneys of streptozotocin-induced diabetic rats. Int J Mol Sci. 2011;21(12):829–43. https://doi.org/10.3390/ijms12010829.

    Article  CAS  Google Scholar 

  24. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.

    Article  CAS  PubMed  Google Scholar 

  25. Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233(3):57–63.

    Google Scholar 

  26. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem. 1982;126:131–8.

    Article  CAS  PubMed  Google Scholar 

  27. Minas A, Talebi H, Taravat Ray M, Yari Eisalou M, Alves MG, Razi M. Insulin treatment to type 1 male diabetic rats protects fertility by avoiding testicular apoptosis and cell cycle arrest. Gene. 2021;799:145847. https://doi.org/10.1016/j.gene.2021.145847.

    Article  CAS  PubMed  Google Scholar 

  28. Maadi MA, Minas A, Sepehri Vafa R, Tabatabaei-Naeini A, Bertolla RP. Apoptotic balance during testicular detorsion after one hour induced torsion in rats. Andrologia. 2022;54:e14349. https://doi.org/10.1111/and.14349.

    Article  CAS  PubMed  Google Scholar 

  29. Cui X, Long C, Zhu J, Tian J. Protective effects of fluvastatin on reproductive function in obese male rats induced by high-fat diet through enhanced signaling of mTOR. Cell PhysiolBiochem. 2017;41:598–608. https://doi.org/10.1159/000457881.

    Article  CAS  Google Scholar 

  30. Han C, Liu C, Geng J, Tang Y, Li Y, Wang Y, Xie Z. Black and green tea supplements ameliorate male infertility in a murine model of obesity. J Med Food. 2020;23:1303–11. https://doi.org/10.1089/jmf.2020.4784.

    Article  CAS  PubMed  Google Scholar 

  31. Mu Y, Yan WJ, Yin TL, Zhang Y, Li J, Yang J. Diet-induced obesity impairs spermatogenesis: a potential role for autophagy. Sci Rep. 2017;9(7):43475. https://doi.org/10.1038/srep43475.

    Article  Google Scholar 

  32. Leisegang K, Sengupta P, Agarwal A, Henkel R. Obesity and male infertility: mechanisms and management. Andrologia. 2021;53:e13617. https://doi.org/10.1111/and.13617.

    Article  PubMed  Google Scholar 

  33. Du Plessis SS, Cabler S, McAlister DA, Sabanegh E, Agarwal A. The effect of obesity on sperm disorders and male infertility. Nat Rev Urol. 2010;7(3):153–61. https://doi.org/10.1038/nrurol.2010.6.

    Article  PubMed  Google Scholar 

  34. Leisegang K, Henkel R, Agarwal A. Obesity and metabolic syndrome associated with systemic inflammation and the impact on the male reproductive system. Am J Reprod Immunol. 2019;82:e13178. https://doi.org/10.1111/aji.13178.

    Article  CAS  PubMed  Google Scholar 

  35. Mu Y, Dai HG, Luo LB, Yang J. Irisin alleviates obesity-related spermatogenesis dysfunction via the regulation of the AMPKα signalling pathway. Reprod Biol Endocrinol. 2021;8(19):135. https://doi.org/10.1186/s12958-021-00821-1.

    Article  CAS  Google Scholar 

  36. Bellastella G, Menafra D, Puliani G, Colao A, Savastano S. Obesity Programs of nutrition, Education, Research and Assessment (OPERA) Group. How much does obesity affect the male reproductive function? Int J Obes Suppl. 2019;9:50–64. https://doi.org/10.1038/s41367-019-0008-2.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Das S, Choudhuri D. Dietary calcium regulates the risk renal injury in high fat diet induced obese rats by regulating renal lipid metabolism, oxidative stress and inflammation. Arch Physiol Biochem. 2022;128:1039–49. https://doi.org/10.1080/13813455.2020.1746812.

    Article  CAS  PubMed  Google Scholar 

  38. Suleiman JB, Nna VU, Zakaria Z, Othman ZA, Bakar ABA, Mohamed M. Obesity-induced testicular oxidative stress, inflammation and apoptosis: protective and therapeutic effects of orlistat. Reprod Toxicol. 2020;95:113–22. https://doi.org/10.1016/j.reprotox.2020.05.009.

    Article  CAS  PubMed  Google Scholar 

  39. Lui WY, Lee WM, Cheng CY. TGF-betas: their role in testicular function and Sertoli cell tight junction dynamics. Int J Androl. 2003;26(3):147–60. https://doi.org/10.1046/j.1365-2605.2003.00410.x.

    Article  CAS  PubMed  Google Scholar 

  40. Al-Megrin WA, El-Khadragy MF, Hussein MH, Mahgoub S, Abdel-Mohsen DM, Taha H, Bakkar AAA, Abdel Moneim AE, Amin HK. Green Coffea arabica extract ameliorates testicular injury in high-fat diet/streptozotocin-induced diabetes in rats. J Diabetes Res. 2020;2020:6762709. https://doi.org/10.1021/acsomega.2c02796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jia YF, Feng Q, Ge ZY, Guo Y, Zhou F, Zhang KS, Wang XW, Lu WH, Liang XW, Gu YQ. Obesity impairs male fertility through long-term effects on spermatogenesis. BMC Urol. 2018;18(1):42. https://doi.org/10.1186/s12894-018-0360-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support for the project by the Indian Council of Medical Research (ICMR) Govt. of India, New Delhi is deeply acknowledged. The Infrastructural facility provided by The State Biotech Hub, Tripura University is acknowledged.

Funding

This study was funded by the Indian Council of Medical Research (ICMR), Govt. of India, grant number (5/7/1213/2014-RCH and 5/7/1617/2018 RBMH & CH).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Sandeep Das and Dipayan Choudhuri. Acquisition, analysis, or interpretation of data: Soma Choudhuri, Sandeep Das, Susmita Sarkar, Panisree Roy Chowdhury, and Dipayan Choudhuri. Drafting the manuscript: Soma Choudhuri and Sandeep Das. Supervision: Sandeep Das and Dipayan Choudhuri. All authors read and approved the manuscript.

Corresponding author

Correspondence to Sandeep Das.

Ethics declarations

Ethics approval

The entire study was in conducted healthy male Wistar albino rats purchased from a government-registered animal supplier (Reg. No. 1443/PO/b/11/CPCSEA) nominated by Control and Supervision of Experiments on Animals (CPCSEA), Ministry of Environment and Forests Govt of India. The entire study protocol was approved and followed by the guidelines of the Institutional Animal Ethical Committee, Tripura University (Ref.No: TU/IAEC/2014/VIII/2-6 dated 12.09.2014).

Consent for publication

All authors have consented to the publication of the manuscript.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhuri, S., Sarkar, S., Chowdhury, P.R. et al. Dietary calcium improves the reproductive functions against high-fat diet (HFD)–induced testicular toxicity in male obese rats. Nutrire 48, 55 (2023). https://doi.org/10.1186/s41110-023-00243-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-023-00243-6

Keywords

Navigation