Skip to main content

Advertisement

Log in

Therapeutic potential of ginger bio-active compounds in gastrointestinal cancer therapy: the molecular mechanism

  • Review
  • Published:
Nutrire Aims and scope Submit manuscript

A Correction to this article was published on 12 August 2022

This article has been updated

Abstract

The scientific literature indicates that ginger is known for its medicinal properties from ancient times. Ginger is an excellent source of bio-active compounds. It can stimulate the immune system to protect against various types of cancers. In the review, the bio-active compounds of ginger like gingerols, shogaols, paradols, terpenes, camphene, zingerone, and zingiberene and their role in ameliorating liver, pancreatic, colorectal, and gastric cancer types by inhibiting multiple pathways of carcinogenesis are discussed. Additionally, ginger compound-based nanoparticles have been discussed in terms of cancer therapeutics. Various ginger-derived nanoparticles synthesized employing technology have focused on delivering chemotherapeutic medications into specific cancer cells. Future studies should be an integrative method that uses nature-derived nanoparticles from edible plants to load and release cancer therapy into various malignant tissues, allowing for a faster recovery in people with multiple primary tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable.

Change history

References

  1. https://www.cancer.gov/about-cancer/understanding/statistics. Accessed dated 20/06/2022.

  2. Wang C, Zhang J, Yin J, Gan Y, Xu S, Gu Y, Huang W. Alternative approaches to target Myc for cancer treatment. Signal Transduct Target Ther. 2021;6(1):1–4.

    Google Scholar 

  3. Huang M, Lu JJ, Ding J. Natural products in cancer therapy: past, present and future. Nat Prod Bioprospect. 2021;11:5–13.

    Article  Google Scholar 

  4. Khan Z, Bisen PS. Oncoapoptotic signaling and deregulated target genes in cancers: special reference to oral cancer. Biochim Biophys Acta. 2013;1836(1):123–45.

    CAS  Google Scholar 

  5. Bundela S, Sharma A, Bisen PS. Potential therapeutic targets for oral cancer: ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF, CD70. PLoS ONE. 2014;9(7):e102610.

    Article  Google Scholar 

  6. Bisen PS. Experimental and computational approaches in leveraging natural compounds for network based anti-cancer medicine. J Can Sci Res. 2016;2:e103. https://www.longdom.org/open-access/experimental-and-computational-approaches-in-leveraging-natural-compoundsfor-network-based-anticancer-medicine-cmacd-1000e103.pdf. Accessed dated 02/06/2022.

  7. Bisen PS. Therapeutic and preventive potential of functional food and cancer. Cancer Med Anticancer Drug. 2016;1:e101. https://doi.org/10.4172/cmacd.1000e101.

    Article  Google Scholar 

  8. Nirmal Babu K, Samsudeen K, Divakaran M, Pillai GS, Sumathi V, Praveen K, Ravindran PN, Peter KV. Protocols for in vitro propagation, conservation, synthetic seed production, embryo rescue, microrhizome production, molecular profiling, and genetic transformation in ginger (Zingiber officinale Roscoe.). In: Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, Second Edition. New York: Humana Press; 2016. pp. 403–426. https://doi.org/10.1007/978-1-4939-3332-7_28.

  9. Rauf A, Akram M, Anwar H, Daniyal M, Munir N, Bawazeer S, Bawazeer S, Rebezov M, Bouyahya A, Shariati MA, Thiruvengadam M. Therapeutic potential of herbal medicine for the management of hyperlipidemia: latest updates. Environ Sci Pollut Res. 2022;29:40281–301. https://doi.org/10.1007/s11356-022-19733-7.

    Article  CAS  Google Scholar 

  10. Bode AM, Dong Z. The amazing and mighty ginger. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. edited by Benzie IFF, Wachtel-Galor S, Chapter 7. Boca Raton: CRC Press/ Taylor & Francis; 2011.

  11. Nikkhah Bodagh M, Maleki I, Hekmatdoost A. Ginger in gastrointestinal disorders: a systematic review of clinical trials. Food Sci Nutr. 2019;7(1):96–108. https://doi.org/10.1002/fsn3.807.

    Article  Google Scholar 

  12. Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol. 2008;46(2):409–20. https://doi.org/10.1016/j.fct.2007.09.085.

    Article  CAS  Google Scholar 

  13. Grzanna R, Lindmark L, Frondoza CG. Ginger—an herbal medicinal product with broad anti-inflammatory actions. J Med Food. 2005;8(2):125–32. https://doi.org/10.1089/jmf.2005.8.125.

    Article  CAS  Google Scholar 

  14. Liu Y, Liu J, Zhang Y. Research progress on chemical constituents of Zingiber officinale Roscoe. BioMed Res Int. 2019. https://doi.org/10.1155/2019/5370823.

    Article  Google Scholar 

  15. Tianthong W, Phupong V. A randomized, double-blind, placebo-controlled trial on the efficacy of ginger in the prevention of abdominal distention in post cesarean section patients. Sci Rep. 2018;8(1):1–5. https://doi.org/10.1038/s41598-018-25200-6.

    Article  CAS  Google Scholar 

  16. Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. 2019;8(6):185. https://doi.org/10.3390/foods8060185.

    Article  CAS  Google Scholar 

  17. Semwal RB, Semwal DK, Combrinck S, Viljoen AM. Gingerols and shogaols: important nutraceutical principles from ginger. Phytochemistry. 2015;117:554–68. https://doi.org/10.1016/j.phytochem.2015.07.012.

    Article  CAS  Google Scholar 

  18. Khan MA, Ansair M, Maheshwari RK. Phytochemistry and pharmacological properties of ginger (Zingiber officinale). Delhi: Lenin Media Pvt Ltd. [Google Scholar]; 2018.

    Google Scholar 

  19. Ho SC, Su MS. Optimized heat treatment enhances the anti-inflammatory capacity of ginger. Int J Food Prop. 2016;19(8):1884–98. https://doi.org/10.1080/10942912.2015.1084633.

    Article  CAS  Google Scholar 

  20. Dalsasso RR, Valencia GA, Monteiro AR. Impact of drying and extractions processes on the recovery of gingerols and shogaols, the main bioactive compounds of ginger. Food Res Int. 2022:111043. https://doi.org/10.1016/j.foodres.2022.111043.

  21. Mahady GB, Pendland SL, Yun GS, Lu ZZ, Stoia A. Ginger (Zingiber officinale Roscoe) and the gingerols inhibit the growth of Cag A+ strains of Helicobacter pylori. Anticancer Res. 2003;23:3699. https://pubmed.ncbi.nlm.nih.gov/14666666/.

    CAS  Google Scholar 

  22. Zick SM, Djuric Z, Ruffin MT, Litzinger AJ, Normolle DP, Alrawi S, Feng MR, Brenner DE. Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomark Prev. 2008;17(8):1930–6. https://doi.org/10.1158/1055-9965.EPI-07-2934.

    Article  CAS  Google Scholar 

  23. del Carmen R-A, Timmermann BN, Gang DR. Biosynthesis of curcuminoids and gingerols in turmeric (Curcuma longa) and ginger (Zingiber officinale): identification of curcuminoid synthase and hydroxycinnamoyl-CoA thioesterases. Phytochemistry. 2006;67(18):2017–29. https://doi.org/10.1016/j.phytochem.2006.06.028.

    Article  CAS  Google Scholar 

  24. Tang JM, Liao QH, Hu T, Qi LW, Li ZX. Expression of CCoAOMT from Zingiber officinale roscoe under NaCl stress and its regulatory role in 6-gingerol biosynthesis. Russ J Plant Physiol. 2021;68(2):286–92. https://doi.org/10.1134/S1021443721020199.

    Article  CAS  Google Scholar 

  25. Kim CE, Shin JS, Lee J, Lee YJ, Kim MR, Choi A, Park KB, Lee HJ, Ha IH. Quality of medical service, patient satisfaction and loyalty with a focus on interpersonal-based medical service encounters and treatment effectiveness: a cross-sectional multicenter study of complementary and alternative medicine (CAM) hospitals. BMC Complement Altern Med. 2017;17(1):1–2. https://doi.org/10.1186/s12906-017-1837-6.

    Article  CAS  Google Scholar 

  26. Roli OI, Adetunji CO, Mishra RR, Adetunji JB, Mishra P, Fatoki TH. Rediscovering medicinal activity and food significance of shogaol (4, 6, 8, 10, and 12): comprehensive review. Innov Food Technol. 2020:125–45. https://doi.org/10.1007/978-981-15-6121-4_9.

  27. Mase N, Kitagawa N, Takabe K. Protection-, salt-, and metal-free syntheses of [n]-shogaols by use of dimethylammonium dimethylcarbamate (DIMCARB) without protecting groups. Synlett. 2010;2010(01):93–6. https://doi.org/10.1055/s-0029-1218389.

    Article  CAS  Google Scholar 

  28. Luettig J, Rosenthal R, Lee IF, Krug SM, Schulzke JD. The ginger component 6-shogaol prevents TNF-α-induced barrier loss via inhibition of PI3K/Akt and NF-κB signaling. Mol Nutr Food Res. 2016;60(12):2576–86. https://doi.org/10.1002/mnfr.201600274.

    Article  CAS  Google Scholar 

  29. Moon M, Kim HG, Choi JG, Oh H, Lee PK, Ha SK, Kim SY, Park Y, Huh Y, Oh MS. 6-Shogaol, an active constituent of ginger, attenuates neuroinflammation and cognitive deficits in animal models of dementia. Biochem Biophys Res Commun. 2014;449(1):8–13. https://doi.org/10.1016/j.bbrc.2014.04.121.

    Article  CAS  Google Scholar 

  30. Gaire BP, Kwon OW, Park SH, Chun KH, Kim SY, Shin DY, Choi JW. Neuroprotective effect of 6-paradol in focal cerebral ischemia involves the attenuation of neuroinflammatory responses in activated microglia. PLoS ONE. 2015;10(3):e0120203. https://doi.org/10.1371/journal.pone.0120203.

    Article  CAS  Google Scholar 

  31. Chen H, Lv L, Soroka D, Warin RF, Parks TA, Hu Y, Zhu Y, Chen X, Sang S. Metabolism of [6]-shogaol in mice and in cancer cells. Drug Metab Dispos. 2012;40(4):742–53. https://doi.org/10.1124/dmd.111.043331.

    Article  CAS  Google Scholar 

  32. Shahrajabian MH, Sun W, Cheng Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric Scand B Soil Plant Sci. 2019;69(6):546–56. https://doi.org/10.1080/09064710.2019.1606930.

    Article  CAS  Google Scholar 

  33. Ahmad B, Rehman MU, Amin I, Arif A, Rasool S, Bhat SA, Afzal I, Hussain I, Bilal S. A review on pharmacological properties of zingerone (4-(4-Hydroxy-3-methoxyphenyl)-2-butanone). Sci World J. 2015:816364. https://doi.org/10.1155/2015/816364.

  34. Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int J Mol Sci. 2022;23(3):1532. https://doi.org/10.3390/ijms23031532.

    Article  CAS  Google Scholar 

  35. Marrelli M, Menichini F, Conforti F. A comparative study of Zingiber officinale Roscoe pulp and peel: phytochemical composition and evaluation of antitumour activity. Nat Prod Res. 2015;29(21):2045–9. https://doi.org/10.1080/14786419.2015.1020491.

    Article  CAS  Google Scholar 

  36. Asokan BR, Jaikumar S, Sengottuvelu S. Zingiberene protects from isoproterenol-induced cardiotoxicity via attenuation of hyperlipidemia and oxidative stress in rats. Rev Bras. 2022;32(1):74–80. https://doi.org/10.1007/s43450-021-00212-y.

    Article  CAS  Google Scholar 

  37. Zadorozhna M, Mangieri D. Mechanisms of chemopreventive and therapeutic properties of ginger extracts in cancer. Int J Mol Sci. 2021;22(12):6599. https://doi.org/10.3390/ijms22126599.

    Article  CAS  Google Scholar 

  38. Baptista BG, Ribeiro M, Cardozo LF, Leal VD, Regis B, Mafra D. Nutritional benefits of ginger for patients with non-communicable diseases. Clin Nutr ESPEN. 2022;49:1–16. https://doi.org/10.1016/j.clnesp.2022.04.017.

    Article  Google Scholar 

  39. de Lima RM, Dos Reis AC, de Menezes AA, Santos JV, Filho JW, Ferreira JR, de Alencar MV, da Mata AM, Khan IN, Islam A, Uddin SJ. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: a comprehensive review. Phytother Res. 2018;32(10):1885–907. https://doi.org/10.1002/ptr.6134.

    Article  CAS  Google Scholar 

  40. Vemuri SK, Banala RR, Subbaiah GP, Srivastava SK, Reddy AG, Malarvili T. Anti-cancer potential of a mix of natural extracts of turmeric, ginger and garlic: a cell-based study. Egypt J Basic Appl Sci. 2017;4(4):332–44. https://doi.org/10.1016/j.ejbas.2017.07.005.

    Article  Google Scholar 

  41. Anisimov VN. The relationship between aging and carcinogenesis: a critical appraisal. Crit Rev Oncol Hematol. 2003;45(3):277–304. https://doi.org/10.1016/S1040-8428(02)00121-X.

    Article  Google Scholar 

  42. Lechner JF, Stoner GD. Gingers and their purified components as cancer chemopreventative agents. Molecules. 2019;24(16):2859. https://doi.org/10.3390/molecules24162859.

    Article  CAS  Google Scholar 

  43. Citronberg J, Bostick R, Ahearn T, Turgeon DK, Ruffin MT, Djuric Z, Sen A, Brenner DE, Zick SM. Effects of ginger supplementation on cell-cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: results from a pilot, randomized, and controlled trial. Cancer Prev Res. 2013;6(4):271–81. https://doi.org/10.1158/1940-6207.CAPR-12-0327.

    Article  Google Scholar 

  44. Jiang Y, Turgeon DK, Wright BD, Sidahmed E, Ruffin MT, Brenner DE, Sen A, Zick SM. Effect of ginger root on cyclooxygenase-1 and 15-hydroxyprostaglandin dehydrogenase expression in colonic mucosa of humans at normal and increased risk of colorectal cancer. Eur J Cancer Prev. 2013;22(5):455. https://doi.org/10.1097/CEJ.0b013e32835c829b.

    Article  CAS  Google Scholar 

  45. Rhode J, Fogoros S, Zick S, Wahl H, Griffith KA, Huang J, Liu JR. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Complement Altern Med. 2007;7(1):1–9. https://doi.org/10.1186/1472-6882-7-44.

    Article  CAS  Google Scholar 

  46. Almatroudi A, Alsahli MA, Alrumaihi F, Allemailem KS, Rahmani AH. Ginger: a novel strategy to battle cancer through modulating cell signalling pathways: a review. Curr Pharm Biotechnol. 2019;20(1):5–16. https://doi.org/10.2174/1389201020666190119142331.

    Article  CAS  Google Scholar 

  47. Kim EC, Min JK, Kim TY, Lee SJ, Yang HO, Han S, Kim YM, Kwon YG. [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochem Biophys Res Commun. 2005;335(2):300–8. https://doi.org/10.1016/j.bbrc.2005.07.076.

    Article  CAS  Google Scholar 

  48. Kim SO, Kundu JK, Shin YK, Park JH, Cho MH, Kim TY, Surh YJ. [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-κB in phorbol ester-stimulated mouse skin. Oncogene. 2005;24(15):2558–67. https://doi.org/10.1038/sj.onc.1208446.

    Article  CAS  Google Scholar 

  49. Wang S, Zhang C, Yang G, Yang Y. Biological properties of 6-gingerol: a brief review. Nat Prod Commun. 2014;9(7):1934578X1400900736. https://pubmed.ncbi.nlm.nih.gov/25230520/.

    Google Scholar 

  50. Ekowati HE, Achmad A, Prasasti EK, Wasito H, Sri K, Hidayati Z, Ekasari T. Zingiber officinale, Piper retrofractum and combination induced apoptosis and p53 expression in myeloma and WiDr cell lines. HAYATI J Biosci. 2012;19(3):137–40. https://doi.org/10.4308/hjb.19.3.137.

    Article  Google Scholar 

  51. Philip M, Rowley DA, Schreiber H. Inflammation as a tumor promoter in cancer induction. In: Seminars in cancer biology. Academic Press; 2004. 14(6), pp. 433–439. https://doi.org/10.1016/j.semcancer.2004.06.006.

  52. Park M, Bae J, Lee DS. Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytother Res. 2008;22(11):1446–9. https://doi.org/10.1002/ptr.2473.

    Article  CAS  Google Scholar 

  53. Nigam N, George J, Srivastava S, Roy P, Bhui K, Singh M, Shukla Y. Induction of apoptosis by [6]-gingerol associated with the modulation of p53 and involvement of mitochondrial signaling pathway in B [a] P-induced mouse skin tumorigenesis. Cancer Chemother Pharmacol. 2010;65(4):687–96. https://doi.org/10.1007/s00280-009-1074-x.

    Article  CAS  Google Scholar 

  54. Jeong CH, Bode AM, Pugliese A, Cho YY, Kim HG, Shim JH, Jeon YJ, Li H, Jiang H, Dong Z. [6]-Gingerol suppresses colon cancer growth by targeting leukotriene A4 hydrolase. Cancer Res. 2009;69(13):5584–91. https://doi.org/10.1158/0008-5472.CAN-09-0491.

    Article  CAS  Google Scholar 

  55. Sowley EN, Kankam F. Harnessing the therapeutic properties of ginger (Zingiber officinale Roscoe) for the management of plant diseases. In ginger cultivation and its antimicrobial and pharmacological potentials. IntechOpen. 2019.

  56. Pal Kaur I, Kaur Deol P, Kiran Kondepudi K, Bishnoi M. Anticancer potential of ginger: mechanistic and pharmaceutical aspects. Curr Pharm Des. 2016;22(27):4160–72. https://doi.org/10.2174/1381612822666160608115350.

    Article  CAS  Google Scholar 

  57. Hung JY, Hsu YL, Li CT, Ko YC, Ni WC, Huang MS, Kuo PL. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells. J Agric Food Chem. 2009;57(20):9809–16. https://doi.org/10.1021/jf902315e.

    Article  CAS  Google Scholar 

  58. Brahmbhatt M, Gundala SR, Asif G, Shamsi SA, Aneja R. Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation. Nutr Cancer. 2013;65(2):263–72. https://doi.org/10.1080/01635581.2013.749925.

    Article  CAS  Google Scholar 

  59. Liu Y, Whelan RJ, Pattnaik BR, Ludwig K, Subudhi E, Rowland H, Claussen N, Zucker N, Uppal S, Kushner DM, Felder M. Terpenoids from Zingiber officinale (Ginger) induce apoptosis in endometrial cancer cells through the activation of p53. PLoS ONE. 2012;7(12):e53178. https://doi.org/10.1371/journal.pone.0053178.

    Article  CAS  Google Scholar 

  60. Keum YS, Kim J, Lee KH, Park KK, Surh YJ, Lee JM, Lee SS, Yoon JH, Joo SY, Cha IH, Yook JI. Induction of apoptosis and caspase-3 activation by chemopreventive [6]-paradol and structurally related compounds in KB cells. Cancer Lett. 2002;177(1):41–7. https://doi.org/10.1016/s0304-3835(01)00781-9.

    Article  CAS  Google Scholar 

  61. Chung WY, Jung YJ, Surh YJ, Lee SS, Park KK. Antioxidative and antitumor promoting effects of [6]-paradol and its homologs. Mutat Res Genet Toxicol Environ Mutagen. 2001;496(1–2):199–206. https://doi.org/10.1016/S1383-5718(01)00221-2.

    Article  CAS  Google Scholar 

  62. Banji D, Banji OJ, Pavani B, Kumar CK, Annamalai AR. Zingerone regulates intestinal transit, attenuates behavioral and oxidative perturbations in irritable bowel disorder in rats. Phytomedicine. 2014;21(4):423–9. https://doi.org/10.1016/j.phymed.2013.10.007.

    Article  CAS  Google Scholar 

  63. Lee Y. Cytotoxicity evaluation of essential oil and its component from Zingiber officinale Roscoe. Toxicol Res. 2016;32(3):225–30. https://doi.org/10.5487/TR.2016.32.3.225.

    Article  CAS  Google Scholar 

  64. Murakami A, Tanaka T, Lee JY, Surh YJ, Kim HW, Kawabata K, Nakamura Y, Jiwajinda S, Ohigashi H. Zerumbone, a sesquiterpene in subtropical ginger, suppresses skin tumor initiation and promotion stages in ICR mice. Int J Cancer Res. 2004;110(4):481–90. https://doi.org/10.1002/ijc.20175.

    Article  CAS  Google Scholar 

  65. Kim M, Miyamoto S, Yasui Y, Oyama T, Murakami A, Tanaka T. Zerumbone, a tropical ginger sesquiterpene, inhibits colon and lung carcinogenesis in mice. Int J Cancer Res. 2009;124(2):264–71. https://doi.org/10.1002/ijc.23923.

    Article  CAS  Google Scholar 

  66. Cui C, Lan P, Fu L. The role of myeloid-derived suppressor cells in gastrointestinal cancer. Cancer Commun. 2021;41(6):442–71. https://doi.org/10.1002/cac2.12156.

    Article  Google Scholar 

  67. Akimoto M, Iizuka M, Kanematsu R, Yoshida M, Takenaga K. Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. PLoS ONE. 2015;10(5):e0126605. https://doi.org/10.1371/journal.pone.0126605.

    Article  CAS  Google Scholar 

  68. Hamza AA, Heeba GH, Hamza S, Abdalla A, Amin A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/inflammation pathway. Biomed Pharmacother. 2021;134:111102. https://doi.org/10.1016/j.biopha.2020.111102.

    Article  CAS  Google Scholar 

  69. Sharma SS, Gupta YK. Reversal of cisplatin-induced delay in gastric emptying in rats by ginger (Zingiber officinale). J Ethnopharmacol. 1998;62(1):49–55. https://doi.org/10.1016/s0378-8741(98)00053-1.

    Article  CAS  Google Scholar 

  70. Manju V, Viswanathan P, Nalini N. Hypolipidemic effect of ginger in 1, 2-dimethyl hydrazine-induced experimental colon carcinogenesis. Toxicol Mech Methods. 2006;16(8):461–72. https://doi.org/10.1080/15376520600728811.

    Article  CAS  Google Scholar 

  71. Vinothkumar R, Vinothkumar R, Sudha M, Nalini N. Chemopreventive effect of zingerone against colon carcinogenesis induced by 1, 2-dimethylhydrazine in rats. Eur J Cancer Prev. 2014;23(5):361–71. https://doi.org/10.1097/CEJ.0b013e32836473ac.

    Article  CAS  Google Scholar 

  72. Sung B, Jhurani S, Ahn KS, Mastuo Y, Yi T, Guha S, Liu M, Aggarwal BB. Zerumbone down-regulates chemokine receptor CXCR4 expression leading to inhibition of CXCL12-induced invasion of breast and pancreatic tumor cells. Cancer Res. 2008;68(21):8938–44. https://doi.org/10.1158/0008-5472.CAN-08-2155.

    Article  CAS  Google Scholar 

  73. El Fagie RM, Yusoff NA, Lim V, Kamal NN, Samad NA. Anti-cancer and anti-angiogenesis activities of zerumbone isolated from Zingiber zerumbet–a systematic review. Curr Res Nutr Food Sci. 2021;9(2):353–74. https://doi.org/10.12944/CRNFSJ.9.2.01.

    Article  Google Scholar 

  74. Rebellato P, Islam MS. [6]-shogaol induces Ca2+ signals by activating the TRPV1 channels in the rat insulinoma INS-1E cells. J Pancreas. 2014;15(1):33–7. https://doi.org/10.6092/1590-8577/1979.

    Article  Google Scholar 

  75. Zhou L, Qi L, Jiang L, Zhou P, Ma J, Xu X, Li P. Antitumor activity of gemcitabine can be potentiated in pancreatic cancer through modulation of TLR4/NF-κB signaling by 6-shogaol. AAPS J. 2014;16(2):246–57. https://doi.org/10.1208/s12248-013-9558-3.

    Article  CAS  Google Scholar 

  76. Taha MM, Abdul AB, Abdullah R, Ibrahim TA, Abdelwahab SI, Mohan S. Potential chemoprevention of diethylnitrosamine-initiated and 2-acetylaminofluorene-promoted hepatocarcinogenesis by zerumbone from the rhizomes of the subtropical ginger (Zingiber zerumbet). Chem Biol Interact. 2010;186(3):295–305. https://doi.org/10.1016/j.cbi.2010.04.029.

    Article  CAS  Google Scholar 

  77. Chen CY, Liu TZ, Liu YW, Tseng WC, Liu RH, Lu FJ, Lin YS, Kuo SH, Chen CH. 6-shogaol (alkanone from ginger) induces apoptotic cell death of human hepatoma p53 mutant Mahlavu subline via an oxidative stress-mediated caspase-dependent mechanism. J Agric Food Chem. 2007;55(3):948–54. https://doi.org/10.1021/jf0624594.

    Article  CAS  Google Scholar 

  78. Ishiguro K, Ando T, Maeda O, Ohmiya N, Niwa Y, Kadomatsu K, Goto H. Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms. Biochem Biophys Res Commun. 2007;362(1):218–23. https://doi.org/10.1016/j.bbrc.2007.08.012.

    Article  CAS  Google Scholar 

  79. Yusof M, Anum Y. Gingerol and its role in chronic diseases. Drug discovery from mother nature. 2016. pp. 177–207. https://doi.org/10.1007/978-3-319-41342-6_8.

  80. Tsuboi K, Matsuo Y, Shamoto T, Shibata T, Koide S, Morimoto M, Guha S, Sung B, Aggarwal BB, Takahashi H, Takeyama H. Zerumbone inhibits tumor angiogenesis via NF-κB in gastric cancer. Oncol Rep. 2014;31(1):57–64. https://doi.org/10.3892/or.2013.2842.

    Article  CAS  Google Scholar 

  81. Jeong CH, Bode AM, Pugliese A, Cho YY, Kim HG, Shim JH, Jeon YJ, Li H, Jiang H, Dong Z. [6]-Gingerol suppresses colon cancer growth by targeting leukotriene A4 hydrolase. Cancer Res. 2009;69(13):5584–91. https://doi.org/10.1158/0008-5472.CAN-09-0491.

    Article  CAS  Google Scholar 

  82. Akhtar MF, Saleem A, Rasul A, Baig MM, Bin-Jumah M, Daim MM. Anticancer natural medicines: an overview of cell signaling and other targets of anticancer phytochemicals. Eur J Pharmacol. 2020;888:173488. https://doi.org/10.1016/j.ejphar.2020.173488.

    Article  CAS  Google Scholar 

  83. Nakamura Y, Yoshida C, Murakami A, Ohigashi H, Osawa T, Uchida K. Zerumbone, a tropical ginger sesquiterpene, activates phase II drug metabolizing enzymes. FEBS Lett. 2004;572(1–3):245–50. https://doi.org/10.1016/j.febslet.2004.07.042.

    Article  CAS  Google Scholar 

  84. Jeena K, Liju VB, Kuttan R. Antioxidant, anti-inflammatory and antinociceptive activities of essential oil from ginger. Indian J Physiol Pharmacol. 2013;57(1):51–62. https://pubmed.ncbi.nlm.nih.gov/24020099/.

    Google Scholar 

  85. Nazim UM, Park SY. Attenuation of autophagy flux by 6-shogaol sensitizes human liver cancer cells to TRAIL-induced apoptosis via p53 and ROS. Int J Mol Med. 2019;43(2):701–8. https://doi.org/10.3892/ijmm.2018.3994.

    Article  CAS  Google Scholar 

  86. Ko JK, Leung CC. Ginger extract and polaprezinc exert gastroprotective actions by anti-oxidant and growth factor modulating effects in rats. J Gastroenterol Hepatol. 2010;25(12):1861–9. https://doi.org/10.1111/j.1440-1746.2010.06347.x.

    Article  Google Scholar 

  87. Pereira MM, Haniadka R, Chacko PP, Palatty PL, Baliga MS. Zingiber officinale Roscoe (ginger) as an adjuvant in cancer treatment: a review. J BUON. 2011;16(3):414–24. https://pubmed.ncbi.nlm.nih.gov/22006742/.

    CAS  Google Scholar 

  88. Liu YQ, Wang XL, He DH, Cheng YX. Protection against chemotherapy-and radiotherapy-induced side effects: a review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine. 2021;80:153402. https://doi.org/10.1016/j.phymed.2020.153402.

    Article  CAS  Google Scholar 

  89. Park YJ, Wen J, Bang S, Park SW, Song SY. [6]-Gingerol induces cell cycle arrest and cell death of mutant p53-expressing pancreatic cancer cells. Yonsei Med J. 2006;47(5):688–97. https://doi.org/10.3349/ymj.2006.47.5.688.

    Article  CAS  Google Scholar 

  90. Radhakrishnan EK, Bava SV, Narayanan SS, Nath LR, Thulasidasan AK, Soniya EV, Anto RJ. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PLoS ONE. 2014;9(8):e104401. https://doi.org/10.1371/journal.pone.0104401.

    Article  CAS  Google Scholar 

  91. Sang S, Hong J, Wu H, Liu J, Yang CS, Pan MH, Badmaev V, Ho CT. Increased growth inhibitory effects on human cancer cells and anti-inflammatory potency of shogaols from Zingiber officinale relative to gingerols. J Agric Food Chem. 2009;57(22):10645–50. https://doi.org/10.1021/jf9027443.

    Article  CAS  Google Scholar 

  92. Fu J, Chen H, Soroka DN, Warin RF, Sang S. Cysteine-conjugated metabolites of ginger components, shogaols, induce apoptosis through oxidative stress-mediated p53 pathway in human colon cancer cells. J Agric Food Chem. 2014;62(20):4632–42. https://doi.org/10.1021/jf501351r.

    Article  CAS  Google Scholar 

  93. Ryan JL, Heckler CE, Roscoe JA, Dakhil SR, Kirshner J, Flynn PJ, Hickok JT, Morrow GR. Ginger (Zingiber officinale) reduces acute chemotherapy-induced nausea: a URCC CCOP study of 576 patients. Support Care Cancer. 2012;20(7):1479–89. https://doi.org/10.1007/s00520-011-1236-3.

    Article  Google Scholar 

  94. Sheikhi MA, Ebadi A, Talaeizadeh A, Rahmani H. Alternative methods to treat nausea and vomiting from cancer chemotherapy. Chemother Res Pract. 2015;2015. https://doi.org/10.1155/2015/818759.

  95. Uthaipaisanwong A, Oranratanaphan S, Musigavong N. Effects of ginger adjunct to the standard prophylaxis on reducing carboplatin and paclitaxel-induced nausea vomiting: a randomized controlled study. Support Care Cancer. 2020;28(8):3831–8. https://doi.org/10.1007/s00520-019-05201-5.

    Article  Google Scholar 

  96. Rao KV, Faso A. Chemotherapy-induced nausea and vomiting: optimizing prevention and management. Am Health Drug Benefits. 2012;5(4):232. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046471/.

    Google Scholar 

  97. Sugino S, Janicki PK. Pharmacogenetics of chemotherapy-induced nausea and vomiting. Pharmacogenomics. 2015;16(2):149–60. https://doi.org/10.2217/pgs.14.168.

    Article  CAS  Google Scholar 

  98. Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol. 2021;18(8):571–87. https://doi.org/10.1038/s41575-021-00423-7.

    Article  Google Scholar 

  99. Al Kury LT, Mahgoub M, Howarth FC, Oz M. Natural negative allosteric modulators of 5-HT3 receptors. Molecules. 2018;23(12):3186. https://doi.org/10.3390/molecules23123186.

    Article  CAS  Google Scholar 

  100. Marx W, Ried K, McCarthy AL, Vitetta L, Sali A, McKavanagh D, Isenring L. Ginger—mechanism of action in chemotherapy-induced nausea and vomiting. Crit Rev Food Sci Nutr. 2017;57(1):141–6. https://doi.org/10.1080/10408398.2013.865590.

    Article  CAS  Google Scholar 

  101. Moghaddasi MS, Kashani HH. Ginger (Zingiber officinale): a review. J Med Plant Res. 2012;6(26):4255–8. https://doi.org/10.5897/JMPR11.787.

    Article  Google Scholar 

  102. Zick SM, Ruffin MT, Lee J, Normolle DP, Siden R, Alrawi S, Brenner DE. Phase II trial of encapsulated ginger as a treatment for chemotherapy-induced nausea and vomiting. Support Care Cancer. 2009;17(5):563–72. https://doi.org/10.1007/s00520-008-0528-8.

    Article  Google Scholar 

  103. Navari RM, Nagy CK, Gray SE. The use of olanzapine versus metoclopramide for the treatment of breakthrough chemotherapy-induced nausea and vomiting in patients receiving highly emetogenic chemotherapy. Support Care Cancer. 2013;21(6):1655–63. https://doi.org/10.1007/s00520-012-1710-6.

    Article  Google Scholar 

  104. Wazqar DY, Thabet HA, Safwat AM. A quasi-experimental study of the effect of ginger tea on preventing nausea and vomiting in patients with gynecological cancers receiving cisplatin-based regimens. Cancer Nurs. 2021;44(6):E513–9. https://doi.org/10.1097/NCC.0000000000000939.

    Article  Google Scholar 

  105. Kadhim RA, Ali BM, Kadhim MA, Mohammed SJ. Effect of ginger tea on chemotherapy-induced nausea and vomiting among patients attending the Oncology Teaching Hospital, Baghdad 2020. Indian J Forensic Med Toxicol. 2021;15(3):1463–70.

    CAS  Google Scholar 

  106. Alexander AM, Williams S. Effectiveness of Indian ginger tea in management of chemotherapy induced nausea and vomiting-a nursing perspective among cancer patients. Int J Nurs Educ. 2016;8(1):172–7.

    Article  Google Scholar 

  107. Sengupta S, Sasisekharan R. Exploiting nanotechnology to target cancer. Br J Cancer. 2007;96(9):1315–9. https://doi.org/10.1038/sj.bjc.6603707.

    Article  CAS  Google Scholar 

  108. Sarvarian P, Samadi P, Gholipour E, Shams Asenjan K, Hojjat-Farsangi M, Motavalli R, Motavalli Khiavi F, Yousefi M. Application of emerging plant-derived nanoparticles as a novel approach for nano-drug delivery systems. Immunol Invest. 2021:1–21. https://doi.org/10.1080/08820139.2021.1891094.

  109. Khan Z, Khan AA, Yadav H, Prasad GB, Bisen PS. Survivin, a molecular target for therapeutic interventions in squamous cell carcinoma. Cell Mol Biol Lett. 2017;22(1):1–32. https://doi.org/10.1186/s11658-017-0038-0.

    Article  CAS  Google Scholar 

  110. Khan Z, Khan N, Tiwari RP, Patro IK, Prasad GB, Bisen PS. Down-regulation of survivin by oxaliplatin diminishes radioresistance of head and neck squamous carcinoma cells. Radiother Oncol. 2010;96(2):267–73.

    Article  CAS  Google Scholar 

  111. Bisen PS, Khan Z, Bundela S. Biology of oral cancer: key apoptotic regulators. CRC Press; 2013. pp. 203.

  112. Jain N, Jain P, Rajput D, Patil UK. Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Micro Nano Syst Lett. 2021;9:5.

    Article  Google Scholar 

  113. Jan F, Pareek S, Srivastava RP, Zahoor I, Sharma A, Shrivastava D. Anti-cancerous and anti-bacterial potential of silver nanoparticles synthesized using leaf extract of fern- Dryopteris barbigera. Dig J Nanomater Biostruct. 2022;17(1):285–99.

    Article  Google Scholar 

  114. Zahoor I, Jan F, Sharma U, Sahu KK, Sharma A, Pareek S, Shrivastava D, Bisen PS. Viburnum nervosum leaf extract mediated green synthesis of silver nanoparticles: a viable approach to increase the efficacy of anticancer drug. Anticancer Agents Med Chem. 2021;20(10):1266–74.

    Article  Google Scholar 

  115. Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan S, Merlin D. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–40. https://doi.org/10.1016/j.biomaterials.2016.06.018.

    Article  CAS  Google Scholar 

  116. Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, Xu C, Merlin D. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol Ther. 2016;24(10):1783–96. https://doi.org/10.1038/mt.2016.159.

    Article  CAS  Google Scholar 

  117. Li Z, Wang H, Yin H, Bennett C, Zhang HG, Guo P. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression. Sci Rep. 2018;8(1):1–1. https://doi.org/10.1038/s41598-018-32953-7.

    Article  CAS  Google Scholar 

  118. Zhang M, Yang C, Yan X, Sung J, Garg P, Merlin D. Highly biocompatible functionalized layer-by-layer ginger lipid nano vectors targeting P-selectin for delivery of doxorubicin to treat colon cancer. Adv Ther. 2019;2(12):1900129. https://doi.org/10.1002/adtp.201900129.

    Article  CAS  Google Scholar 

  119. Jiang SZ, Wang NS, Mi SQ. Plasma pharmacokinetics and tissue distribution of [6]-gingerol in rats. Biopharm Drug Dispos. 2008;29(9):529–37.

    Article  CAS  Google Scholar 

  120. Gundala SR, Mukkavilli R, Yang C, Yadav P, Tandon V, Vangala S, Prakash S, Aneja R. Enterohepatic recirculation of bioactive ginger phytochemicals is associated with enhanced tumor growth-inhibitory activity of ginger extract. Carcinogenesis. 2014;35(6):1320–9. https://doi.org/10.1093/carcin/bgu011.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors truly contributed to the development of this study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ravindra Verma.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

The original version of this article was revised: The name of author Sharmistha Mathur was spelled incorrectly in the author line of this article as originally published.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, S., Pareek, S., Verma, R. et al. Therapeutic potential of ginger bio-active compounds in gastrointestinal cancer therapy: the molecular mechanism. Nutrire 47, 15 (2022). https://doi.org/10.1186/s41110-022-00166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-022-00166-8

Keywords

Navigation