1 Introduction

Fixed point theory, one of the active research areas in mathematics, focuses on maps and abstract spaces, see [19], and the references therein. The notion of coupled fixed points was introduced by Guo and Lakshmikantham [10]. In 2006, Bhaskar and Lakshmikantham [4] introduced the concept of a mixed monotonicity property for the first time and investigated some coupled fixed point theorems for such mappings. As a result, many authors obtained many coupled fixed point and coupled coincidence point theorems, see [1123] and the references therein. In 2014, Ma et al. [24] initially introduced the concept of \(\mathscr{C}^{\star}\)-algebra-valued metric spaces, and proved some fixed point theorems for self-maps with contractive or expansive conditions on such spaces. In 2019, Chandok et al. [25] proved some fixed point theorems on \(C^{*}\)-algebra-valued partial metric spaces. In 2021, Mlaiki et al. [26] proved some fixed point theorems on \(C^{*}\)-algebra-valued partial b-metric spaces. In this paper, we prove some coupled fixed point theorems on \(C^{*}\)-algebra-valued partial b-metric spaces.

2 Preliminaries

First of all, we recall some basic definitions, notations, and results of \(\mathscr{C}^{\star}\)-algebra that can be found in [27]. Let \(\mathscr{H}\) be a unital algebra. An involution on \(\mathscr{H}\) is a conjugate-linear map \(r \rightarrow r^{\star}\) on \(\mathscr{H}\) such that \(r^{\star \star} = r \) and \((rs)^{\star}= s^{\star}r^{\star}\) for any \(r, s \in \mathscr{H} \). The pair \((\mathscr{H},\star )\) is called a ⋆-algebra. A ⋆-algebra \(\mathscr{H}\) together with a complete submultiplicative norm such that \(\Vert r^{\star}\Vert = \Vert r \Vert \), is said to be a Banach ⋆-algebra. Furthermore, a \(\mathscr{C}^{\star}\)-algebra is a Banach ⋆-algebra with \(\Vert r^{\star} r\Vert =\Vert r \Vert ^{2}\), for all \(r \in \mathscr{H}\). An element r in \(\mathscr{H}\) is self-adjoint, or hermitian, if \(r = r^{*}\). Let \(\mathscr{H}_{sa}\) be the set of all self-adjoint elements in \(\mathscr{H}\), and define the spectrum of \(r\in \mathscr{H}\) to be the set \(\sigma (r) = \{\lambda \in C: \lambda I - r\ {\mathit{is\ not\ invertible}}\}\). An element r of a \(\mathscr{C}^{\star}\)-algebra \(\mathscr{H}^{\star}\) is positive if r is hermitian and \(\sigma (r) \subseteq [0,+\infty )\), where \(\sigma (r) \) is the spectrum of r. We write \(0_{\mathscr{H}} \preceq r \) to show that an element r is positive, and denote by \(\mathscr{H}_{+}\)\(and \)\(\mathscr{H}_{\eth} \) the set of positive elements and the hermitian elements of \(\mathscr{H} \), respectively, where \(0_{\mathscr{H}} \) is the zero element in \(\mathscr{H}\). There is a natural partial ordering on \(\mathscr{H}_{\eth}\) which is given by \(r \preceq s\) if and only if \(0_{\mathscr{H}} \preceq s-r \). It is clear that if \(r, s \in \mathscr{H}_{sa}\) and \(c\in \mathscr{H}\), then \(r\preceq s\Rightarrow c^{*}r c\preceq c^{*}s c\), and that if \(r, s\in \mathscr{H}_{+}\) are invertible, then \(r\preceq s\Longrightarrow \theta \preceq s^{-1}\preceq r^{-1}\). From now on, \(\mathscr{H}'\) will denote the set \(\{r \in \mathscr{H}: rs = sr, \forall s \in \mathscr{H}\} \).

Definition 2.1

([7, 24])

Let ϒ be a nonempty set. Suppose that the mapping \(\rho: \Upsilon \times \Upsilon \to \mathscr{H} \) is defined, with the following properties:

  1. 1.

    \(0_{\mathscr{H}} \preceq \rho (\aleph,\varpi ) \) for all \(\aleph,\varpi \in \Upsilon \) and \(\rho (\aleph,\varpi )= 0_{\mathscr{H}} \) if and only if \(\aleph = \varpi \);

  2. 2.

    \(\rho (\aleph,\varpi )= \rho (\varpi,\aleph )\) for all \(\aleph,\varpi \in \Upsilon \);

  3. 3.

    \(\rho (\aleph,\varpi ) \preceq \rho (\aleph,\gamma )+\rho (\gamma, \varpi ) \) for all \(\aleph,\varpi,\gamma \in \Upsilon \).

Then ρ is said to be a \(\mathscr{C}^{\star}\)-algebra-valued metric on ϒ, and \((\Upsilon,\mathscr{H}, \rho ) \) is said to be a \(\mathscr{C}^{\star}\)-algebra-valued metric space.

The following definition was introduced by Ma and Jiang [28].

Definition 2.2

Let ϒ be a nonempty set and \(s\in \mathscr{H}\) such that \(s\succeq I\). Suppose that the mapping \(\rho: \Upsilon \times \Upsilon \to \mathscr{H} \) is defined, with the following properties:

  1. 1.

    \(0_{\mathscr{H}} \preceq \rho (\aleph,\varpi ) \) for all \(\aleph,\varpi \in \Upsilon \);

  2. 2.

    \(\rho (\aleph,\varpi )= 0_{\mathscr{H}} \) if and only if \(\aleph = \varpi \);

  3. 3.

    \(\rho (\aleph,\varpi )= \rho (\varpi,\aleph )\) for all \(\aleph,\varpi \in \Upsilon \);

  4. 4.

    \(\rho (\aleph,\varpi ) \preceq s(\rho (\aleph,\gamma )+\rho ( \gamma,\varpi )) \) for all \(\aleph,\varpi,\gamma \in \Upsilon \).

Then ρ is said to be a \(\mathscr{C}^{\star}\)-algebra-valued b-metric on ϒ, and \((\Upsilon,\mathscr{H}, \rho ) \) is said to be a \(\mathscr{C}^{\star}\)-algebra-valued b-metric space.

Now, we recall the definition of a \(C^{*}\)-algebra-valued partial b-metric space introduced by Mlaiki et al [26].

Definition 2.3

Let ϒ be a nonempty set and \(s\in \mathscr{H}\) such that \(s\succeq I\). Suppose that the mapping \(\rho: \Upsilon \times \Upsilon \to \mathscr{H} \) is defined, with the following properties:

  1. (A1)

    \(0_{\mathscr{H}} \preceq \rho (\aleph,\varpi ) \) for all \(\aleph,\varpi \in \Upsilon \) and \(\rho (\aleph,\aleph )=\rho (\varpi,\varpi )= \rho (\aleph,\varpi )\) if and only if \(\aleph = \varpi \);

  2. (A2)

    \(\rho (\aleph,\aleph )\preceq \rho (\aleph,\varpi )\);

  3. (A3)

    \(\rho (\aleph,\varpi )= \rho (\varpi,\aleph )\) for all \(\aleph,\varpi \in \Upsilon \);

  4. (A4)

    \(\rho (\aleph,\varpi ) \preceq s(\rho (\aleph,\gamma )+\rho ( \gamma,\varpi ))-\rho (\gamma,\gamma )\) for all \(\aleph,\varpi,\gamma \in \Upsilon \).

Then ρ is said to be a \(\mathscr{C}^{\star}\)-algebra-valued partial b-metric on ϒ, and \((\Upsilon,\mathscr{H}, \rho ) \) is said to be a \(\mathscr{C}^{\star}\)-algebra-valued partial b-metric space.

Example 2.1

Let \(\Upsilon =[0,1]\) and \(\mathscr{H}=\mathcal{M}_{2}(\mathbb{C})\), the class of bounded and linear operators on a Hilbert space \(\mathbb{C}^{2}\). Define \(\rho: \Upsilon \times \Upsilon \to \mathscr{H}\) by

where and for all \(\aleph,\varpi \in \Upsilon \). Then, \((\Upsilon,\mathscr{H},\rho )\) is a \(\mathscr{C}^{\star}\)-algebra-valued partial b-metric space. However, it is easy to see that \((\Upsilon,\mathscr{H},\rho )\) is not a \(\mathscr{C}^{*}\)-algebra-valued b-metric space. To substantiate the claim, for any nonzero element \(\aleph \in \Upsilon \), we have

Therefore, \((\Upsilon,\mathscr{H},\rho )\) is not a \(\mathscr{C}^{*}\)-algebra-valued b-metric space.

Definition 2.4

A sequence \(\{\aleph _{\alpha}\}\) in \((\Upsilon, \mathscr{H},\rho )\) is called convergent (with respect to \(\mathscr{H}\)) to a point \(\aleph \in \Upsilon \) if, for given \(\epsilon >0\), there exists \(\mathfrak{k}\in \mathbb{N}\) such that \(\Vert \rho (\aleph _{\alpha},\aleph )-\rho (\aleph,\aleph \Vert <\epsilon \), for all \(\alpha >\mathfrak{k}\). We denote it by

$$\begin{aligned} \lim_{\alpha \to \infty}\rho (\aleph _{\alpha},\aleph )=\rho ( \aleph, \aleph ). \end{aligned}$$

Definition 2.5

A sequence \(\{\aleph _{\alpha}\}\) in \((\Upsilon,\mathscr{H},\rho )\) is called Cauchy (with respect to \(\mathscr{H}\)) if \(\lim\limits_{\alpha \to \infty}\rho (\aleph _{\alpha},\aleph _{\mathfrak{m}})\) exists and it is finite.

Definition 2.6

The triplet \((\Upsilon,\mathscr{H},\rho )\) is called a complete \(C^{*}\)-algebra-valued partial b-metric space if every Cauchy sequence in ϒ is convergent to some point ℵ in ϒ such that

$$\begin{aligned} \lim_{\alpha \to \infty}\rho (\aleph _{\alpha},\aleph _{ \mathfrak{m}})= \lim_{\alpha \to \infty}\rho (\aleph _{\alpha}, \aleph )=\rho (\aleph, \aleph ). \end{aligned}$$

Definition 2.7

([22])

Let ϒ be a nonempty set. An element \((\aleph,\varpi ) \in \Upsilon \times \Upsilon \) is said to be

(1) a coupled fixed point of the mapping \(\mathcal{T}:\Upsilon \times \Upsilon \to \Upsilon \) if \(\mathcal{T}(\aleph,\varpi ) = \aleph \) and \(\mathcal{T}(\varpi,\aleph ) = \varpi \).

(2) a coupled coincidence point of the mapping \(\mathcal{T}:\Upsilon \times \Upsilon \to \Upsilon \) and \(g: \Upsilon \to \Upsilon \) if \(\mathcal{T}(\aleph,\varpi ) = g\aleph \) and \(\mathcal{T}(\varpi,\aleph ) = g\varpi \). In this case \((g\aleph,g\varpi ) \) is said to be a coupled point of coincidence.

(3) a common coupled fixed point of the mapping \(\mathcal{T}:\Upsilon \times \Upsilon \to \Upsilon \) and \(g: \Upsilon \to \Upsilon \) if \(\mathcal{T}(\aleph,\varpi ) = g\aleph = \aleph \) and \(\mathcal{T}(\varpi,\aleph ) = g\varpi = \varpi \).

Note that Definition 2.7(3) reduces to Definition 2.7(1) if the mapping g is the identity mapping.

Definition 2.8

([22])

The mappings \(\mathcal{T}:\Upsilon \times \Upsilon \to \Upsilon \) and \(g: \Upsilon \to \Upsilon \) is said to be ω-compatible if \(g(\mathcal{T}(\aleph,\varpi )) = \mathcal{T}(g\aleph,g\varpi ) \) whenever \(g\aleph = \mathcal{T}(\aleph,\varpi ) \) and \(g\varpi = \mathcal{T}(\varpi,\aleph ) \).

In this paper, we prove coupled fixed point theorems on \(C^{*}\)-algebra-valued partial b-metric space.

3 Main results

In this section we shall prove some common coupled fixed point theorems for different contractive mappings in the setting of \(\mathscr{C}^{\star}\)-algebra-valued partial b-metric spaces. Now we give our main results.

Theorem 3.1

Let \((\Upsilon,\mathscr{H}, \rho ) \) be a complete \(\mathscr{C}^{\star}\)-algebra-valued partial b-metric space with coefficient s. Suppose that the mappings \(\mathcal{T}:\Upsilon \times \Upsilon \to \Upsilon \) and \(g: \Upsilon \to \Upsilon \) satisfy the following condition:

$$\begin{aligned} \rho \bigl(\mathcal{T}(\aleph,\varpi ),\mathcal{T}(\imath,v)\bigr) \preceq r^{ \star}\rho (g\aleph,g\imath )r + r^{\star}\rho (g\varpi,gv)r\quad \textit{for any } \aleph,\varpi,\imath,v \in \Upsilon, \end{aligned}$$
(1)

where \(r \in \mathscr{H}\) with \(\Vert r \Vert < \frac{1}{\surd{2}} \) and \(\Vert s\Vert \Vert \sqrt{2}r\Vert ^{2}<1\). If \(\mathcal{T} (\Upsilon \times \Upsilon ) \subseteq g(\Upsilon ) \) and \(g(\Upsilon ) \) is complete in ϒ, then \(\mathcal{T} \) and g have a coupled coincidence point and \(\rho (g\aleph, g\aleph )=0_{\mathscr{H}}\) and \(\rho (g\varpi, g\varpi )=0_{\mathscr{H}}\). Moreover, if \(\mathcal{T} \) and g are ω-compatible, then they have a unique common coupled fixed point in ϒ.

Proof

Take \(\aleph _{0},\varpi _{0} \in \Upsilon \), and let \(g(\aleph _{1}) = \mathcal{T}(\aleph _{0},\varpi _{0}) \) and \(g(\varpi _{1}) = \mathcal{T}(\varpi _{0},\aleph _{0}) \). One can obtain two sequences \(\{\aleph _{\alpha}\}\) and \(\{\varpi _{\alpha}\}\) by continuing this process such that \(g(\aleph _{\alpha +1}) = \mathcal{T}(\aleph _{\alpha},\varpi _{ \alpha}) \) and \(g(\varpi _{\alpha +1}) = \mathcal{T}(\varpi _{\alpha},\aleph _{ \alpha}) \). From (1), we get

$$\begin{aligned} \rho (g\aleph _{\alpha}, g\aleph _{\alpha +1}) &= \rho \bigl( \mathcal{T}( \aleph _{\alpha -1},\varpi _{\alpha -1}),\mathcal{T}(\aleph _{\alpha}, \varpi _{\alpha})\bigr) \\ &\preceq r^{\star}\bigl(\rho (g\aleph _{\alpha -1},g\aleph _{\alpha})\bigr)r +r^{ \star}\bigl(\rho (g\varpi _{\alpha -1},g \varpi _{\alpha})\bigr)r \\ &\preceq r^{\star}\bigl(\rho (g\aleph _{\alpha -1},g\aleph _{\alpha})\bigr) +\bigl( \rho (g\varpi _{\alpha -1},g\varpi _{\alpha})\bigr)r . \end{aligned}$$
(2)

Similarly,

$$\begin{aligned} \rho (g\varpi _{\alpha}, g\varpi _{\alpha +1}) &= \rho \bigl( \mathcal{T}( \varpi _{\alpha -1},\aleph _{\alpha -1}),\mathcal{T}(\varpi _{\alpha}, \aleph _{\alpha})\bigr) \\ &\preceq r^{\star}\bigl(\rho (g\varpi _{\alpha -1},g\varpi _{\alpha})\bigr)r +r^{ \star}\bigl(\rho (g\aleph _{\alpha -1},g \aleph _{\alpha})\bigr)r \\ &\preceq r^{\star}\bigl(\rho (g\varpi _{\alpha -1},g\varpi _{\alpha})\bigr) +\bigl( \rho (g\aleph _{\alpha -1},g\aleph _{\alpha})\bigr)r . \end{aligned}$$
(3)

Let

$$\begin{aligned} \Im _{\alpha} = \rho (g\aleph _{\alpha},g\aleph _{\alpha +1}) + \rho (g \varpi _{\alpha},g\varpi _{\alpha +1}), \end{aligned}$$

and now from (2) and (3), we have

$$\begin{aligned} \Im _{\alpha} &= \rho (g\aleph _{\alpha},g\aleph _{\alpha +1}) + \rho (g\varpi _{\alpha},g\varpi _{\alpha +1}) \\ &\preceq r^{\star}\bigl(\rho (g\aleph _{\alpha -1},g\aleph _{\alpha}) + \rho (g\varpi _{\alpha -1},g\varpi _{\alpha})\bigr)r + r^{\star}\bigl(\rho (g \varpi _{\alpha -1},g\varpi _{\alpha}) +\rho (g\aleph _{\alpha -1},g \aleph _{\alpha})\bigr)r \\ &\preceq (\sqrt{2}r)^{\star}\bigl(\rho (g\aleph _{\alpha -1},g\aleph _{ \alpha}) +\rho (g\varpi _{\alpha -1},g\varpi _{\alpha})\bigr) ( \sqrt{2}r) \\ & \preceq (\sqrt{2}r)^{\star} \Im _{\alpha -1}(\sqrt{2}r), \end{aligned}$$

which, together with the property: if \(s, \mathfrak{t} \in \mathscr{H}_{\eth} \), then \(s \preceq \mathfrak{t}\) implies \(r^{\star}sr \preceq r^{\star}\mathfrak{t}r \) (Theorem 2.2.5 in [27]), yields that for each \(\alpha \in \mathbb{N} \),

$$\begin{aligned} 0_{\mathscr{H}} \preceq \Im _{\alpha} \preceq (\sqrt{2}r)^{\star}\Im _{ \alpha -1}(\sqrt{2}r) \preceq \dots \preceq \bigl[(\sqrt{2}r)^{\star} \bigr]^{ \alpha}\Im _{0}(\sqrt{2}r)^{\alpha}. \end{aligned}$$

If \(\Im _{0} = 0_{\mathscr{H}} \), then we know that \(\mathcal{T} \) and g have a coupled coincidence point \((\aleph _{0}, \varpi _{0}) \). Now, letting \(0_{\mathscr{H}} \prec \Im _{0}\), we can obtain for \(\wp >\alpha \), \(\alpha, \wp \in \mathbb{N} \),

$$\begin{aligned} \rho (g\aleph _{\alpha},g\aleph _{\wp}) \preceq{}& s\bigl(\rho (g \aleph _{ \alpha},g\aleph _{\alpha +1}) + \rho (g\aleph _{\alpha +1},g \aleph _{ \wp})\bigr)-\rho (g\aleph _{\alpha +1},g\aleph _{\alpha +1}) \\ \preceq{}& s\rho (g\aleph _{\alpha},g\aleph _{\alpha +1})+ s^{2} \bigl(\rho (g \aleph _{\alpha +1},g\aleph _{\alpha +2})+\rho (g\aleph _{\alpha +2},g \aleph _{\wp})\bigr) \\ &{} -\rho (g\aleph _{\alpha +1},g\aleph _{\alpha +1})-\rho (g \aleph _{\alpha +2},g\aleph _{\alpha +2}) \\ \preceq{}& s\rho (g\aleph _{\alpha},g\aleph _{\alpha +1})+ s^{2} \rho (g \aleph _{\alpha +1},g\aleph _{\alpha +2}) \\ &{} +\cdots +s^{\wp -\alpha -1}\bigl(\rho (g\aleph _{\wp -2},g\aleph _{ \wp -1})+\rho (g\aleph _{\wp -1},g\aleph _{\wp})\bigr) \\ &{} -\rho (g\aleph _{\alpha +1},g\aleph _{\alpha +1})-\cdots - \rho (g\aleph _{\wp -1},g\aleph _{\wp -1}) \\ \preceq{}& s\rho (g\aleph _{\alpha},g\aleph _{\alpha +1})+ s^{2} \rho (g \aleph _{\alpha +1},g\aleph _{\alpha +2}) \\ &{} +\cdots +s^{\wp -\alpha -1}\rho (g\aleph _{\wp -2},g\aleph _{ \wp -1})+s^{\wp -\alpha -1}\rho (g\aleph _{\wp -1},g\aleph _{\wp}), \\ \rho (g\varpi _{\alpha},g\varpi _{\wp}) \preceq{}& s\bigl(\rho (g \varpi _{ \alpha},g\varpi _{\alpha +1}) + \rho (g\varpi _{\alpha +1},g \varpi _{ \wp})\bigr)-\rho (g\varpi _{\alpha +1},g\varpi _{\alpha +1}) \\ \preceq{}& s\rho (g\varpi _{\alpha},g\varpi _{\alpha +1})+ s^{2} \bigl(\rho (g \varpi _{\alpha +1},g\varpi _{\alpha +2})+\rho (g\varpi _{\alpha +2},g \varpi _{\wp})\bigr) \\ &{} -\rho (g\varpi _{\alpha +1},g\varpi _{\alpha +1})-\rho (g \varpi _{\alpha +2},g\varpi _{\alpha +2}) \\ &\preceq s\rho (g\varpi _{\alpha},g\varpi _{\alpha +1})+ s^{2} \rho (g \varpi _{\alpha +1},g\varpi _{\alpha +2}) \\ &{} +\cdots +s^{\wp -\alpha -1}\bigl(\rho (g\varpi _{\wp -2},g\varpi _{ \wp -1})+\rho (g\varpi _{\wp -1},g\varpi _{\wp})\bigr) \\ &{} -\rho (g\varpi _{\alpha +1},g\varpi _{\alpha +1})-\cdots - \rho (g\varpi _{\wp -1},g\varpi _{\wp -1}) \\ &\preceq s\rho (g\varpi _{\alpha},g\varpi _{\alpha +1})+ s^{2} \rho (g \varpi _{\alpha +1},g\varpi _{\alpha +2}) \\ &{} +\cdots +s^{\wp -\alpha -1}\rho (g\varpi _{\wp -2},g\varpi _{ \wp -1})+s^{\wp -\alpha -1}\rho (g\varpi _{\wp -1},g\varpi _{\wp}). \end{aligned}$$

Consequently,

(4)

which follows from the observation that the sum in the first term is a geometric series and \(\Vert s\Vert \Vert (\sqrt{2}r)^{2}\Vert <1\) implies that \((\Vert s\Vert \Vert (\sqrt{2}r)^{2}\Vert )^{\wp -1}\to 0\) and \((\Vert s\Vert \Vert (\sqrt{2}r)^{2}\Vert )^{\alpha}\to 0\). This proves that \(\{g\aleph _{\alpha}\} \) and \(\{g\varpi _{\alpha}\} \) are Cauchy sequences in \(g(\Upsilon ) \). Since \(\{g\varpi _{\alpha}\} \) is complete, there exist \(\aleph,\varpi \in \Upsilon \) such that

$$\begin{aligned} &\rho (g\aleph, g\aleph )=\lim_{n \to \infty}\rho (g\aleph _{\alpha},g \aleph )=\lim_{n \to \infty}\rho (g\aleph _{\alpha},g\aleph _{m}), \\ &\rho (g\varpi, g\varpi )=\lim_{n \to \infty}\rho (g\varpi _{\alpha},g \varpi )=\lim_{n \to \infty}\rho (g\varpi _{\alpha},g\varpi _{m}). \end{aligned}$$

By (4), we have

$$\begin{aligned} \lim_{n \to \infty}\rho (g\aleph _{\alpha},g\aleph )+\lim _{n \to \infty}\rho (g\varpi _{\alpha},g\varpi )=\rho (g\aleph, g \aleph )+ \rho (g\varpi, g\varpi )=0_{\mathscr{H}}. \end{aligned}$$

Now, we prove that \(\mathcal{T}(\aleph,\varpi ) = g\aleph \) and \(\mathcal{T}(\varpi,\aleph ) =g\varpi \). For that we have

$$\begin{aligned} \rho \bigl(\mathcal{T}(\aleph,\varpi ), g\aleph \bigr)&\preceq s\bigl(\rho \bigl( \mathcal{T}(\aleph,\varpi ), g\aleph _{\alpha +1}\bigr) + \rho ( g \aleph _{\alpha +1}, g\aleph )\bigr)-\rho (g\aleph _{\alpha +1}, g\aleph _{ \alpha +1}) \\ &\preceq s\rho \bigl(\mathcal{T}(\aleph,\varpi ), \mathcal{T}(\aleph _{ \alpha},\varpi _{\alpha})\bigr)+s\rho ( g\aleph _{\alpha +1}, g \aleph ) \\ &\preceq sr^{\star} \rho (g\aleph _{\alpha}, g\aleph )r+sr^{\star} \rho (g\varpi _{\alpha}, g\varpi )r+s\rho ( g\aleph _{\alpha +1}, g \aleph ). \end{aligned}$$

Taking the limit as \(\alpha \rightarrow \infty \) in the above relation, we get \(\rho (\mathcal{T}(\aleph,\varpi ), g\aleph ) = 0_{\mathscr{H}} \) and hence \(\mathcal{T}(\aleph,\varpi ) = g\aleph \). Similarly, \(\mathcal{T}(\varpi,\aleph ) = g\varpi \). Therefore, \(\mathcal{T} \) and g have a coupled coincidence point \((\aleph,\varpi ) \).

Now if \(\mathcal{T} \) and g have a coupled coincidence point \((\aleph ',\varpi ') \), then

$$\begin{aligned} &\rho \bigl(g\aleph,g\aleph '\bigr) = \rho \bigl(\mathcal{T}(\aleph, \varpi ), \mathcal{T}\bigl(\aleph ',\varpi '\bigr)\bigr) \preceq r^{\star}\rho \bigl(g\aleph,g \aleph '\bigr)r + r^{\star}\rho \bigl(g\varpi,g\varpi '\bigr)r, \\ &\rho \bigl(g\varpi,g\varpi '\bigr) = \rho \bigl(\mathcal{T}(\varpi, \aleph ), \mathcal{T}\bigl(\varpi ',\aleph '\bigr)\bigr) \preceq r^{\star}\rho \bigl(g\varpi,g \varpi '\bigr)r + r^{\star}\rho \bigl(g\aleph,g\aleph '\bigr)r, \end{aligned}$$

and hence

$$\begin{aligned} \rho \bigl(g\aleph,g\aleph '\bigr) + \rho \bigl(g\varpi,g\varpi '\bigr) \preceq (\sqrt{2}r)^{ \star}\bigl(\rho \bigl(g\aleph,g \aleph '\bigr) + \rho \bigl(g\varpi,g\varpi '\bigr) \bigr) (\sqrt{2}r), \end{aligned}$$

which further induces that

$$\begin{aligned} \bigl\Vert \rho \bigl(g\aleph,g\aleph '\bigr) + \rho \bigl(g \varpi,g\varpi '\bigr) \bigr\Vert \preceq \bigl\Vert (\sqrt{2}r) \bigr\Vert ^{2} \bigl\Vert \rho \bigl(g\aleph,g\aleph ' \bigr) + \rho \bigl(g\varpi,g\varpi '\bigr) \bigr\Vert . \end{aligned}$$

Since \(\Vert (\sqrt{2}r)\Vert \lessdot 1 \), then \(\Vert \rho (g\aleph,g\aleph ') + \rho (g\varpi,g\varpi ')\Vert = 0 \). Hence, we get \(g\aleph = g\aleph ' \) and \(g\varpi = g\varpi ' \). Similarly, we can prove that \(g\aleph = g\varpi ' \) and \(g\varpi = g\aleph ' \). Then \(\mathcal{T} \) and g have a unique coupled point of coincidence \((g\aleph,g\aleph )\). Moreover, if \(v = g\aleph \), then \(v= g\aleph = \mathcal{T}(\aleph, \aleph ) \). Since \(\mathcal{T} \) and g are ω-compatible,

$$\begin{aligned} gv= g(g\aleph ) = g\bigl(\mathcal{T}(\aleph, \aleph )\bigr) = \mathcal{T}(g \aleph, g\aleph )= \mathcal{T}(v, v), \end{aligned}$$

which means that \(\mathcal{T} \) and g have a coupled point of coincidence \((gv, gv) \). By the uniqueness, we know \(gv=g\aleph \), which yields that \(v=gv=\mathcal{T}(v, v) \). Therefore, F and g have a unique common coupled fixed point \((v, v) \). □

Example 3.2

Let \(\Upsilon = \mathcal{R} \) and \(\mathscr{H} = \mathcal{M}_{2}(\mathbb{C}) \) and the map \(\rho: \Upsilon \times \Upsilon \rightarrowtail \mathscr{H} \) is defined by

where is a constant. Then \((\Upsilon,\mathscr{H}, \rho ) \) is a complete \(\mathscr{C}^{\star} \)-algebra-valued partial b-metric space. Consider the mappings \(\mathcal{T}: \Upsilon \times \Upsilon \to \Upsilon \) with \(\mathcal{T}(\aleph,\varpi ) = \frac{\aleph + \varpi}{2}\) and \(g:\Upsilon \to \Upsilon \) with \(g(\aleph )=2\aleph \). Set \(\lambda \in \mathbb{C} \) with \(\vert \lambda \vert <\frac{1}{\surd 2} \), and r= [ λ 0 0 λ ] , then \(r \in \mathscr{H} \) and \(\Vert r \Vert _{\infty} = \vert \lambda \vert \). Clearly, \(\mathcal{T} \) and g are ω-compatible. Moreover, one can verify that \(\mathcal{T} \) satisfies the contractivity condition

$$\begin{aligned} \rho \bigl(\mathcal{T}(\aleph,\varpi ),\mathcal{T}(u,v)\bigr) \preceq r^{\star} \mathcal{T}(\aleph,u)r + r^{\star}\mathcal{T}(\varpi,v)r \quad\text{for any } \aleph,\varpi,u,v \in \Upsilon. \end{aligned}$$

In this case, \((0, 0)\) is a coupled coincidence point of \(\mathcal{T} \) and g. Moreover, \((0, 0)\) is a unique common coupled fixed point of \(\mathcal{T} \) and g.

Corollary 3.3

Let \((\Upsilon,\mathscr{H}, \rho ) \) be a complete \(\mathscr{C}^{\star} \)-algebra-valued partial b-metric space with coefficient s. Suppose that the mapping \(\mathcal{T}: \Upsilon \times \Upsilon \to \Upsilon \) satisfies the following condition:

$$\begin{aligned} \rho \bigl(\mathcal{T}(\aleph,\varpi ),\mathcal{T}(u,v)\bigr) \preceq r^{\star} \rho (\aleph,u)r + r^{\star}\rho (\varpi,v)r \quad\textit{for any } \aleph,\varpi,u,v \in \Upsilon, \end{aligned}$$
(5)

where \(r \in \mathscr{H} \) with \(\Vert r \Vert <\frac{1}{\surd 2}\) and \(\Vert s\Vert \Vert \sqrt{2}r\Vert ^{2}<1\). Then \(\mathcal{T}\) has a unique coupled fixed point.

Before going to another theorem, we recall the following lemma of [27].

Lemma 3.4

Suppose that \(\mathscr{H} \) is a unital \(\mathscr{C}^{\star} \)-algebra with a unit \(1_{\mathscr{H}} \).

  1. 1.

    If \(r \in \mathscr{H}_{+} \) with \(\Vert r \Vert < \frac{1}{2} \), then \(1_{\mathscr{H}} - r \) is invertible.

  2. 2.

    If \(r,\mathfrak{b} \in \mathscr{H}_{+} \) and \(r\mathfrak{b} = \mathfrak{b}r\), then \(0_{\mathscr{H}} \preceq r\mathfrak{b} \).

  3. 3.

    If \(r,\mathfrak{b} \in \mathscr{H}_{\eth} \) and \(\mathfrak{t} \in \mathscr{H}_{+}^{\prime } \) then \(r \preceq \mathfrak{b}\) deduces \(\mathfrak{t}r \preceq \mathfrak{t}\mathfrak{b}\), where \(\mathscr{H}_{+}^{\prime } = \mathscr{H}_{+} \cap \mathscr{H}^{\prime }\).

Theorem 3.5

Let \((\Upsilon,\mathscr{H}, \rho ) \) be a complete \(\mathscr{C}^{\star}\)-algebra-valued partial b-metric space with coefficient s. Suppose that the mappings \(\mathcal{T}: \Upsilon \times \Upsilon \to \Upsilon \) and \(g: \Upsilon \to \Upsilon \) satisfies the following condition:

$$\begin{aligned} \rho \bigl(\mathcal{T}(\aleph,\varpi ),\mathcal{T}(u,v)\bigr) \preceq r\rho \bigl( \mathcal{T}(\aleph,\varpi ),g\aleph \bigr) + \mathfrak{b}\rho \bigl( \mathcal{T}(u,v),gu\bigr), \end{aligned}$$
(6)

for any \(\aleph,\varpi,u,v \in \Upsilon \), where \(r,\mathfrak{b}\in \mathscr{H}_{+}^{\prime }\) with \(\Vert r \Vert + \Vert \mathfrak{b} \Vert <1 \). If \(\mathcal{T}(\Upsilon \times \Upsilon ) \subseteq g(\Upsilon ) \) and \(g(\Upsilon ) \) is complete in ϒ, then \(\mathcal{T} \) and g have a coupled coincidence point and \(\rho (g\aleph, g\aleph )=0_{\mathscr{H}}\) and \(\rho (g\varpi, g\varpi )=0_{\mathscr{H}}\). Moreover, if \(\mathcal{T} \) and g are ω-compatible, then they have unique common coupled fixed point in ϒ.

Proof

As in the proof of Theorem 3.1, construct two sequences \(\{\aleph _{\alpha}\} \) and \(\{\varpi _{\alpha}\} \) in ϒ such that \(g\aleph _{\alpha +1} = \mathcal{T}(\aleph _{\alpha}, \varpi _{\alpha})\) and \(g\varpi _{\alpha +1} = \mathcal{T}(\varpi _{\alpha}, \aleph _{\alpha})\). Then by applying (6), we have

$$\begin{aligned} &(1_{\mathscr{H}} - \mathfrak{b})\rho (g\aleph _{\alpha},g\aleph _{ \alpha +1}) \preceq r\rho (g\aleph _{\alpha},g\aleph _{\alpha -1}), \\ &(1_{\mathscr{H}} - \mathfrak{b})\rho (g\varpi _{\alpha},g\varpi _{ \alpha +1}) \preceq r\rho (g\varpi _{\alpha},g\varpi _{\alpha -1}). \end{aligned}$$

Since \(r,\mathfrak{b} \in \mathscr{H}_{+}^{\prime } \) with \(\Vert r \Vert + \Vert \mathfrak{b} \Vert < 1 \), we have \(1_{\mathscr{H}} - \mathfrak{b} \) is invertible and \((1_{\mathscr{H}} - \mathfrak{b})^{-1}r \in \mathscr{H}_{+}^{\prime }\). Therefore

$$\begin{aligned} &\rho (g\aleph _{\alpha},g\aleph _{\alpha +1}) \preceq (1_{ \mathscr{H}} - \mathfrak{b})^{-1} r\rho (g\aleph _{\alpha},g\aleph _{ \alpha -1}), \\ &\rho (g\varpi _{\alpha},g\varpi _{\alpha +1}) \preceq (1_{ \mathscr{H}} - \mathfrak{b})^{-1} r\rho (g\varpi _{\alpha},g\varpi _{ \alpha -1}). \end{aligned}$$

Then

$$\begin{aligned} &\bigl\Vert \rho (g\aleph _{\alpha},g\aleph _{\alpha +1}) \bigr\Vert \preceq \bigl\Vert (1_{\mathscr{H}} - \mathfrak{b})^{-1} r \bigr\Vert \bigl\Vert \rho (g \aleph _{\alpha},g\aleph _{\alpha -1}) \bigr\Vert , \\ &\bigl\Vert \rho (g\varpi _{\alpha},g\varpi _{\alpha +1}) \bigr\Vert \preceq \bigl\Vert (1_{\mathscr{H}} - \mathfrak{b})^{-1} r \bigr\Vert \bigl\Vert \rho (g \varpi _{\alpha},g\varpi _{\alpha -1}) \bigr\Vert . \end{aligned}$$

It follows from the fact

that \(\{g\aleph _{\alpha}\} \) and \(\{g\varpi _{\alpha}\} \) are Cauchy sequences in \(g(\Upsilon ) \) and therefore, by the completeness of \(g(\Upsilon )\), there are \(\aleph,\varpi \in \Upsilon \) such that \(\lim\limits_{\alpha \rightarrowtail \infty}g\aleph _{\alpha}=g\aleph \) and

$$\begin{aligned} \rho (g\aleph, g\aleph )=\lim_{n \to \infty}\rho (g\aleph _{\alpha},g \aleph )=\lim_{n \to \infty}\rho (g\aleph _{\alpha},g\aleph _{\alpha})=0_{ \mathscr{H}}, \end{aligned}$$

\(\lim_{\alpha \rightarrowtail \infty}g\varpi _{\alpha} =g\varpi \) and

$$\begin{aligned} \rho (g\varpi, g\varpi )=\lim_{n \to \infty}\rho (g\varpi _{\alpha},g \varpi )=\lim_{n \to \infty}\rho (g\varpi _{\alpha},g\varpi _{\alpha})=0_{ \mathscr{H}}. \end{aligned}$$

Since

$$\begin{aligned} \rho \bigl(\mathcal{T}(\aleph,\varpi ),g\aleph \bigr) &\preceq s\bigl[\rho \bigl(g \aleph _{\alpha +1},\mathcal{T}(\aleph,\varpi )\bigr) + \rho (g\aleph _{ \alpha +1},g\aleph )\bigr]-\rho (g\aleph _{\alpha +1},g\aleph _{\alpha +1}) \\ &\preceq s\bigl[\rho \bigl(g\aleph _{\alpha +1},\mathcal{T}(\aleph,\varpi ) \bigr) + \rho (g\aleph _{\alpha +1},g\aleph )\bigr] \\ &=s\bigl(\rho \bigl(\mathcal{T}(\aleph _{\alpha},\varpi _{\alpha}), \mathcal{T}( \aleph,\varpi )\bigr) + \rho (g\aleph _{\alpha +1},g\aleph )\bigr) \\ &\preceq sr\rho \bigl(\mathcal{T}(\aleph _{\alpha},\varpi _{\alpha}),g \aleph _{\alpha}\bigr)+s\mathfrak{b}\rho \bigl(\mathcal{T}(\aleph,\varpi ),g \aleph \bigr) + s\rho (g\aleph _{\alpha +1},g\aleph ) \\ &\preceq sr \rho (g\aleph _{\alpha +1},g\aleph _{\alpha}) + s \mathfrak{b}\rho \bigl(\mathcal{T}(\aleph,\varpi ),g\aleph \bigr) + s\rho (g \aleph _{\alpha +1},g\aleph ), \end{aligned}$$

hence

$$\begin{aligned} \rho \bigl(\mathcal{T}(\aleph,\varpi ),g\aleph \bigr) \preceq (1 - s \mathfrak{b})^{-1} sr \rho (g\aleph _{\alpha +1},g\aleph _{\alpha}) + (1 - s\mathfrak{b})^{-1}s\rho (g\aleph _{\alpha +1},g\aleph _{\alpha}). \end{aligned}$$

Then \(\rho (\mathcal{T}(\aleph,\varpi ),g\aleph )=0_{\mathscr{H}}\), or equivalently, \(\mathcal{T}(\aleph,\varpi )=g\aleph \). Similarly, one can obtain \(\mathcal{T}(\varpi,\aleph ) = g\varpi \).

Now, if \((\aleph ',\varpi ') \) is another coupled coincidence point of \(\mathcal{T} \) and g, then according to (6), we obtain

$$\begin{aligned} \rho \bigl(g\aleph ',g\aleph \bigr) &\preceq \rho \bigl(\mathcal{T} \bigl(\aleph ',\varpi '\bigr), \mathcal{T}(\aleph,\varpi )\bigr) \\ &\preceq r\rho \bigl(\mathcal{T}\bigl(\aleph ',\varpi '\bigr),g\aleph '\bigr) + \mathfrak{b}\rho \bigl( \mathcal{T}(\aleph,\varpi ),g\aleph \bigr) \\ &=r\rho \bigl(g\aleph ',g\aleph '\bigr)+\mathfrak{b} \rho (g\aleph,g\aleph )= 0_{ \mathscr{H}} \end{aligned}$$

and

$$\begin{aligned} \rho \bigl(g\varpi ',g\varpi \bigr) &\preceq \rho \bigl(\mathcal{T} \bigl(\varpi ',\aleph '\bigr), \mathcal{T}(\varpi,\aleph )\bigr) \\ &\preceq r\rho \bigl(\mathcal{T}\bigl(\varpi ',\aleph '\bigr),g\varpi '\bigr)+ \mathfrak{b}\rho \bigl( \mathcal{T}(\varpi,\aleph ),g\varpi \bigr) \\ &=r\rho \bigl(g\varpi ',g\varpi '\bigr)+\mathfrak{b} \rho (g\varpi,g\varpi ) = 0_{ \mathscr{H}}, \end{aligned}$$

which implies that \(g\aleph '=g\aleph \) and \(g\varpi '=g\varpi \). Similarly, we have \(g\aleph '=g\varpi \) and \(g\varpi '=g\aleph \). Hence \(\mathcal{T}\) and g have a unique coupled point of coincidence \((g\aleph, g\aleph ) \). Moreover, we can show that \(\mathcal{T} \) and g have a unique common coupled fixed point. □

Theorem 3.6

Let \((\Upsilon,\mathscr{H}, \rho ) \) be a complete \(\mathscr{C}^{\star} \)-algebra-valued partial b-metric space with coefficient s. Suppose that the mappings \(\mathcal{T}: \Upsilon \times \Upsilon \to \Upsilon \) and \(g: \Upsilon \to \Upsilon \) satisfies the following condition:

$$\begin{aligned} \rho \bigl(\mathcal{T}(\aleph,\varpi ),\mathcal{T}(u,v)\bigr) \preceq r\rho \bigl( \mathcal{T}(\aleph,\varpi ),gu\bigr) + \mathfrak{b}\rho \bigl( \mathcal{T}(u,v),g \aleph \bigr) \end{aligned}$$
(7)

for any \(\aleph,\varpi,u,v \in \Upsilon \), where \(r,\mathfrak{b}\in \mathscr{H}_{+}'\) with \(\Vert r \Vert + \Vert \mathfrak{b} \Vert <1\) and \(\Vert sr\Vert +\Vert s\mathfrak{b}\Vert <1\). If \(\mathcal{T}(\Upsilon \times \Upsilon ) \subseteq g(\Upsilon ) \) and \(g(\Upsilon ) \) is complete in ϒ, then \(\mathcal{T} \) and g have a coupled coincidence point and \(\rho (g\aleph, g\aleph )=0_{\mathscr{H}}\) and \(\rho (g\varpi, g\varpi )=0_{\mathscr{H}}\). Moreover, if \(\mathcal{T} \) and g are ω-compatible, then they have unique common coupled fixed point in ϒ.

Proof

Following a similar argument given in the proof of Theorem 3.1, we construct two sequences \(\{\aleph _{\alpha}\}\) and \(\{\varpi _{\alpha}\}\) in ϒ such that \(g(\aleph _{\alpha +1}) = \mathcal{T}(\aleph _{\alpha},\varpi _{ \alpha}) \) and \(g(\varpi _{\alpha +1}) = \mathcal{T}(\varpi _{\alpha},\aleph _{ \alpha}) \). Now, from (7), we have

$$\begin{aligned} \rho (g\aleph _{\alpha}, g\aleph _{\alpha +1}) ={}& \rho \bigl( \mathcal{T}( \aleph _{\alpha -1},\varpi _{\alpha -1}),\mathcal{T}(\aleph _{\alpha}, \varpi _{\alpha})\bigr) \\ \preceq{}& r\rho \bigl(\mathcal{T}(\aleph _{\alpha -1},\varpi _{\alpha -1}),g \aleph _{\alpha}\bigr) + \mathfrak{b}\rho \bigl( \mathcal{T}(\aleph _{\alpha}, \varpi _{\alpha}),g\aleph _{\alpha -1} \bigr) \\ \preceq{}& r\rho (g\aleph _{\alpha},g\aleph _{\alpha})+ \mathfrak{b} \rho (g\aleph _{\alpha +1},g\aleph _{\alpha -1}) \\ \preceq{}& r\rho (g\aleph _{\alpha +1},g\aleph _{\alpha})+ s \mathfrak{b} \rho (g\aleph _{\alpha +1},g\aleph _{\alpha}) + s \mathfrak{b}\rho (g \aleph _{\alpha},g\aleph _{\alpha -1}) \\ &{}-\mathfrak{b}\rho (\rho (g\aleph _{\alpha},g\aleph _{\alpha}) \\ \preceq{}& r\rho (g\aleph _{\alpha +1},g\aleph _{\alpha})+ s \mathfrak{b} \rho (g\aleph _{\alpha +1},g\aleph _{\alpha}) + s \mathfrak{b}\rho (g \aleph _{\alpha},g\aleph _{\alpha -1}), \end{aligned}$$

from which it follows that

$$\begin{aligned} \bigl(1_{\mathscr{H}}-(r+s\mathfrak{b})\bigr)\rho (g\aleph _{\alpha}, g \aleph _{ \alpha +1})\preceq s\mathfrak{b}\rho (g\aleph _{\alpha},g\aleph _{ \alpha -1}). \end{aligned}$$
(8)

Because of the symmetry in (7), we have

$$\begin{aligned} \rho (g\aleph _{\alpha +1}, g\aleph _{\alpha}) ={}& \rho \bigl( \mathcal{T}( \aleph _{\alpha},\varpi _{\alpha}),\mathcal{T}(\aleph _{\alpha -1}, \varpi _{\alpha -1})\bigr) \\ \preceq{}& r\rho \bigl(\mathcal{T}(\aleph _{\alpha},\varpi _{\alpha}),g \aleph _{\alpha -1}\bigr) + \mathfrak{b}\rho \bigl(\mathcal{T}(\aleph _{\alpha -1}, \varpi _{\alpha -1}),g\aleph _{\alpha}\bigr) \\ \preceq{}& r\rho (g\aleph _{\alpha +1},g\aleph _{\alpha -1})+ \mathfrak{b} \rho (g\aleph _{\alpha},g\aleph _{\alpha}) \\ \preceq{}& sr\rho (g\aleph _{\alpha +1},g\aleph _{\alpha}) + sr\rho (g \aleph _{\alpha},g\aleph _{\alpha -1})-r\rho (g\aleph _{\alpha},g \aleph _{\alpha}) \\ &{} +\mathfrak{b}\rho (g\aleph _{\alpha +1},g\aleph _{\alpha}) \\ \preceq{}& sr\rho (g\aleph _{\alpha +1},g\aleph _{\alpha}) + sr\rho (g \aleph _{\alpha},g\aleph _{\alpha -1})+ \mathfrak{b}\rho (g\aleph _{ \alpha +1},g\aleph _{\alpha}), \end{aligned}$$

that is,

$$\begin{aligned} \bigl(1_{\mathscr{H}}-(sr+\mathfrak{b})\bigr)\rho (g\aleph _{\alpha}, g \aleph _{ \alpha +1})\preceq sr\rho (g\aleph _{\alpha},g\aleph _{\alpha -1}). \end{aligned}$$
(9)

Now, from (8) and (9) we obtain that

$$\begin{aligned} \biggl(1_{\mathscr{H}}-\frac{sr+s\mathfrak{b}+r+\mathfrak{b}}{2} \biggr) \rho (g\aleph _{\alpha}, g\aleph _{\alpha +1}) \preceq \frac{sr+s\mathfrak{b}}{2}\rho (g\aleph _{\alpha}, g\aleph _{\alpha -1}). \end{aligned}$$

If \(r,\mathfrak{b} \in \mathscr{H}_{+}' \) with \(\Vert r + \mathfrak{b} \Vert \preceq \Vert r \Vert + \Vert \mathfrak{b} \Vert <1\) and \(\Vert sr + s\mathfrak{b} \Vert \preceq \Vert sr \Vert + \Vert s \mathfrak{b} \Vert <1\), then \((1_{\mathscr{H}} - (\frac{sr+s\mathfrak{b}+r+\mathfrak{b}}{2}))^{-1} \in \mathscr{H}_{+}'\), which, together with Lemma 3.4 (part 3), yields that

$$\begin{aligned} \rho (g\aleph _{\alpha}, g\aleph _{\alpha +1})\preceq \biggl(1_{ \mathscr{H}} - \biggl(\frac{sr+s\mathfrak{b}+r+\mathfrak{b}}{2} \biggr) \biggr)^{-1} \frac{sr+s\mathfrak{b}}{2}\rho (g\aleph _{\alpha}, g \aleph _{\alpha -1}). \end{aligned}$$

Let \(\mathfrak{e}= (1_{\mathscr{H}} - ( \frac{sr+s\mathfrak{b}+r+\mathfrak{b}}{2} ) )^{-1} \frac{sr+s\mathfrak{b}}{2}\), then

$$\begin{aligned} \Vert \mathfrak{e} \Vert = \biggl\Vert \biggl(1_{\mathscr{H}} - \biggl( \frac{sr+s\mathfrak{b}+r+\mathfrak{b}}{2} \biggr) \biggr)^{-1} \frac{sr+s\mathfrak{b}}{2} \biggr\Vert < 1. \end{aligned}$$

The same argument as in the proof of Theorem 3.5 tells that \(\{g\aleph _{\alpha} \} \) is a Cauchy sequence in \(g(\Upsilon ) \). Similarly, we can show that \(\{g\varpi _{\alpha} \} \) is also a Cauchy sequence in \(g(\Upsilon )\). Therefore, by the completeness of \(g(\Upsilon ) \), there are \(\aleph,\varpi \in \Upsilon \) such that \(\lim\limits_{\alpha \rightarrowtail \infty}g\aleph _{\alpha}=g\aleph \) and

$$\begin{aligned} \rho (g\aleph, g\aleph )=\lim_{n \to \infty}\rho (g\aleph _{\alpha},g \aleph )=\lim_{n \to \infty}\rho (g\aleph _{\alpha},g\aleph _{\alpha})=0_{ \mathscr{H}}, \end{aligned}$$

\(\lim\limits_{\alpha \rightarrowtail \infty}g\varpi _{\alpha} =g\varpi \) and

$$\begin{aligned} \rho (g\varpi, g\varpi )=\lim_{n \to \infty}\rho (g\varpi _{\alpha},g \varpi )=\lim_{n \to \infty}\rho (g\varpi _{\alpha},g\varpi _{\alpha})=0_{ \mathscr{H}}. \end{aligned}$$

Now, we prove that \(\mathcal{T}(\aleph,\varpi ) = g\aleph \) and \(\mathcal{T}(\varpi,\aleph ) = g\varpi \). For that we have

$$\begin{aligned} \rho \bigl(\mathcal{T}(\aleph,\varpi ), g\aleph \bigr) &\preceq s\bigl[\rho \bigl(g \aleph _{\alpha +1},\mathcal{T}(\aleph,\varpi )\bigr) + \rho (g\aleph _{ \alpha +1},g\aleph )\bigr]-\rho (g\aleph _{\alpha +1},g\aleph _{\alpha +1}) \\ &\preceq s\rho \bigl(\mathcal{T}(\aleph _{\alpha},\varpi _{\alpha}), \mathcal{T}(\aleph,\varpi )\bigr) + s\rho (g\aleph _{\alpha +1},g\aleph ) \\ &\preceq sr\rho \bigl(\mathcal{T}(\aleph _{\alpha},\varpi _{\alpha}),g \aleph \bigr) + s\mathfrak{b}\rho \bigl(\mathcal{T}(\aleph,\varpi ),g\aleph _{ \alpha}\bigr) + s\rho (g\aleph _{\alpha +1},g\aleph ) \\ &\preceq sr\rho (g\aleph _{\alpha +1},g\aleph ) + s\mathfrak{b}\rho \bigl( \mathcal{T}(\aleph,\varpi ),g\aleph _{\alpha}\bigr) + s\rho (g\aleph _{ \alpha +1},g\aleph ), \end{aligned}$$

and hence

$$\begin{aligned} \bigl\Vert \rho \bigl(\mathcal{T}(\aleph,\varpi ), g\aleph \bigr) \bigr\Vert \preceq{}& \Vert sr \Vert \bigl\Vert \rho (g\aleph _{\alpha +1},g\aleph ) \bigr\Vert + \Vert s\mathfrak{b} \Vert \bigl\Vert \rho \bigl(\mathcal{T}( \aleph,\varpi ),g \aleph _{\alpha}\bigr) \bigr\Vert \\ & {}+ \Vert s \Vert \bigl\Vert \rho (g\aleph _{\alpha +1},g\aleph ) \bigr\Vert . \end{aligned}$$

By the continuity of the metric and norm, we know

$$\begin{aligned} \bigl\Vert \rho \bigl(\mathcal{T}(\aleph,\varpi ), g\aleph \bigr) \bigr\Vert \preceq \Vert s\mathfrak{b} \Vert \bigl\Vert \rho \bigl(\mathcal{T}(\aleph, \varpi ),g \aleph \bigr) \bigr\Vert . \end{aligned}$$

It follows from the fact \(\Vert s\mathfrak{b}\Vert <1\) that \(\Vert \rho (\mathcal{T}(\aleph,\varpi ),g\aleph ) \Vert = 0 \). Thus \(\mathcal{T}(\aleph,\varpi ) = g\aleph \). Similarly, \(\mathcal{T}(\varpi,\aleph ) = g\varpi \). Hence \((\aleph,\varpi ) \) is a coupled coincidence point of \(\mathcal{T} \) and g. The same reasoning as that in the proof of Theorem 3.5 tells us that \(\mathcal{T} \) and g have a unique common coupled fixed point in ϒ. □

4 Application

As an application of Corollary 3.3, we find an existence and uniqueness result for the following Fredholm integral equation:

$$\begin{aligned} \aleph (\mu )= \int _{\mathcal{E}}\mathcal{G}\bigl(\mu,p,\aleph (p), \varpi (p)\bigr) \,dp+\delta (\mu ),\quad \mu,p\in \mathcal{E}, \end{aligned}$$
(10)

where \(\mathcal{E}\) is a measurable set, \(\mathcal{G}: \mathcal{E}\times \mathcal{E}\times \mathbb{R}\times \mathbb{R}\to \mathbb{R}\mathbbm{,}\) and \(\delta \in \mathcal{L}^{\infty}(\mathcal{E})\). Let \(\Upsilon =\mathcal{L}^{\infty}(\mathcal{E})\) be the set of essentially bounded measurable functions on \(\mathcal{E}\). Consider the Hilbert space \(\mathcal{L}^{2}(\mathcal{E})\). Let the set of all bounded linear operators on \(\mathcal{L}^{2}(\mathcal{E})\) be denoted by \(B(\mathcal{L}^{2}(\mathcal{E}))\). Obviously, \(B(\mathcal{L}^{2}(\mathcal{E}))\) is a \(\mathscr{C}^{\star}\)-algebra with usual operator norm. Define \(\rho: \Upsilon \times \Upsilon \to B(\mathcal{L}^{2}(\mathcal{E}))\) by (for all \(\delta,\vartheta\in \Upsilon \))

$$\begin{aligned} \rho (\delta,\vartheta )=\pi _{|\delta -\vartheta |^{2}+I}, \end{aligned}$$

where \(\pi _{\mathfrak{q}}:\mathcal{L}^{2}(\mathcal{E})\to \mathcal{L}^{2}(\mathcal{E})\) is the multiplicative operator, which is defined by

$$\begin{aligned} \pi _{\mathfrak{q}}(\psi )=\mathfrak{q}\cdot \psi. \end{aligned}$$

Now, we state and prove our result, as follows:

Theorem 4.1

Suppose that (for all \(\aleph,\varpi, u, v \in \Upsilon \))

  1. 1.

    There exist a continuous function \(\kappa:\mathcal{E}\times \mathcal{E}\to \mathbb{R}\) and \(\theta \in (0,1)\) such that

    $$\begin{aligned} &\bigl\vert \mathcal{G}\bigl(\mu,p,\aleph (p), \varpi (p)\bigr)-\mathcal{G} \bigl(\mu,p,u(p), v(p)\bigr) \bigr\vert \\ &\quad \leq \theta \bigl\vert \kappa ( \mu,p) \bigr\vert \bigl( \bigl\vert \aleph (p)-u(p) \bigr\vert \\ &\qquad{}+ \bigl\vert \varpi (p)-v(p) \bigr\vert +I-\theta ^{-1}I\bigr), \end{aligned}$$

    for all \(\mu,p\in \mathcal{E}\); and

  2. 2.

    \(\sup_{\mu \in \mathcal{E}}\int _{\mathcal{E}}|\kappa (\mu,p)|\,dp \leq 1\).

Then, the integral equation (10) has a unique solution in ϒ.

Proof

Define \(\mathcal{T}:\Upsilon \times \Upsilon \to \Upsilon \) by

$$\begin{aligned} \mathcal{T}(\aleph,\varpi ) (\mu )= \int _{\mathcal{E}}\mathcal{G}\bigl( \mu,p,\aleph (p), \varpi (p)\bigr) \,dp+\delta (\mu ), \quad\forall \mu,p \in \mathcal{E}, \end{aligned}$$

Set \(\tau =\theta I\), then \(\tau \in \mathscr{H}\). For any \(z\in \mathcal{L}^{2}(\mathcal{E})\), we have

$$\begin{aligned} &\bigl\Vert \rho \bigl(\mathcal{T}(\aleph,\varpi ),\mathcal{T}(u,v)\bigr) \bigr\Vert \\ &\quad=\sup_{ \Vert z \Vert =1}( \pi _{ \vert \mathcal{T}(\aleph,\varpi )-\mathcal{T}(u,v) \vert ^{2}+I}z,z) \\ &\quad=\sup_{ \Vert z \Vert =1} \int _{\mathcal{E}}\bigl( \bigl\vert \mathcal{T}(\aleph,\varpi )- \mathcal{T}(u,v) \bigr\vert ^{2}+I\bigr)z(\mu )\overline{z(\mu )}\,d \mu \\ &\quad\leq \sup_{ \Vert z \Vert =1} \int _{\mathcal{E}} \biggl[ \int _{\mathcal{E}} \bigl\vert \mathcal{G}\bigl(\mu,p,\aleph (p), \varpi (p)\bigr) -\mathcal{G}\bigl(\mu,p,u (p), v (p)\bigr) \bigr\vert \,dp \biggr]^{2} \bigl\vert z( \mu ) \bigr\vert ^{2}\,d\mu \\ &\qquad {}+ \sup_{ \Vert z \Vert =1} \int _{\mathcal{E}} \bigl\vert z(\mu ) \bigr\vert ^{2}\,d \mu I \\ &\quad\leq \sup_{ \Vert z \Vert =1} \int _{\mathcal{E}} \biggl[ \int _{\mathcal{E}} \theta \bigl\vert \kappa (\mu,p) \bigr\vert \bigl( \bigl\vert \aleph (p)-u(p) \bigr\vert \bigl\vert \varpi (p)-v(p) \bigr\vert +I-\theta ^{-1}I\bigr) \,dp \biggr]^{2} \bigl\vert z(\mu ) \bigr\vert ^{2}\,d \mu +I \\ &\quad\leq \theta ^{2}\sup_{ \Vert z \Vert =1} \int _{\mathcal{E}} \biggl[ \int _{ \mathcal{E}} \bigl\vert \kappa (\mu,p) \bigr\vert \,dp \biggr]^{2} \bigl\vert z(\mu ) \bigr\vert ^{2}\,d\mu \bigl( \Vert \aleph -u \Vert ^{2}_{ \infty}+ \Vert \varpi -v \Vert ^{2}_{\infty}\bigr) \\ &\quad\leq \theta \sup_{\mu \in \mathcal{E}} \int _{\mathcal{E}} \bigl\vert \kappa ( \mu,p) \bigr\vert \,dp\sup _{ \Vert z \Vert =1} \int _{\mathcal{E}} \bigl\vert z(\mu ) \bigr\vert ^{2}\,d \mu \bigl( \Vert \aleph -u \Vert ^{2}_{\infty}+ \Vert \varpi -v \Vert ^{2}_{\infty}\bigr) \\ &\quad\leq \theta \bigl[ \Vert \aleph -u \Vert ^{2}_{\infty}+ \Vert \varpi -v \Vert ^{2}_{\infty}\bigr] \\ &\quad= \Vert \tau \Vert \bigl[ \bigl\Vert \rho (\aleph,u) \bigr\Vert + \bigl\Vert \rho (\varpi, v) \bigr\Vert \bigr]. \end{aligned}$$

Hence, all the hypotheses of Corollary 3.3 are verified and, consequently, the integral equation has a unique solution. □

5 Conclusion

In this paper, we proved some coupled fixed point theorems in a continuous \(C^{*}\)-algebra-valued partial b-metric space. Certainly, discontinuous \(C^{*}\)-algebra-valued partial b-metric spaces will be intersting for researchers.