1 Introduction and preliminaries

More generalized contractive type conditions are considered in the study of the existence and uniqueness of the fixed point. Alber and Guerre-Delabriere in [2] introduced a class of weakly contractive maps on closed convex sets of Hilbert spaces. In [9], Rhoades extended a part of this study to an arbitrary Banach space. The notion of weak contraction has been studied by other authors in the setting of metric spaces (see [8, 12] and the references therein). In [13], Zhang gave some new generalized contractive type conditions for a pair of mappings in a metric space and proved some common fixed point results for these mappings. Let \(F:\mathopen[0,+\infty \mathclose[\longrightarrow \mathbb{R}\) be a function satisfying the three conditions:

  1. (i)

    \(F(0)=0\) and \(F(t)> 0\) for all \(t> 0\);

  2. (ii)

    F is nondecreasing on \(\mathopen[0,+\infty\mathclose[\);

  3. (iii)

    F is continuous on \(\mathopen[0,+\infty\mathclose[\).

Consider the function \(\phi : \mathopen[0,+\infty\mathclose[\longrightarrow \mathopen[0,+\infty\mathclose[ \) such that

  1. (i)

    \(\phi (t)< t\) for all \(t> 0\);

  2. (ii)

    ϕ is nondecreasing and right upper semicontinuous on \(\mathopen[0,+\infty\mathclose[\);

  3. (iii)

    \(\lim_{n\rightarrow +\infty }\phi ^{n}(t)=0\) for all \(t> 0\).

In this paper, motivated by some works as [10], we extend the following theorem to the setting of the modular metric space endowed with a reflexive digraph.

Theorem

([13])

Let X be a complete metric space, and let \(T,S: X \longrightarrow X\) be two self-mappings satisfying

$$\begin{aligned}& F\bigl(d(T x, Sy)\bigr)\leq \phi (F\bigl(M(x, y)\bigr)\quad \textit{for each }x,y \in X, \end{aligned}$$

where

$$ M(x, y) = \max \biggl\{ d(x, y), d(T x, x), d(Sy, y), \frac{d(T x, y) + d(Sy, x)}{2}\biggr\} . $$

Then T and S have a unique common fixed point in X. Moreover, for each \(x_{0} \in X\), the iterative sequence \(\{x_{n}\}\) with \(x_{2n+1}=Tx_{2n}\) and \(x_{2n+2}=Sx_{2n+1}\) converges to the common fixed point of T and S.

In the sequel, we recall some basic notions: Let X be a nonempty set. For a function \(\mathopen]0,+\infty\mathclose[\times X\times X\rightarrow [0,+\infty ]\), we will use the notation

$$\begin{aligned}& \_{\lambda }(x,y)=(\lambda ,x,y)\quad \text{for all }\lambda >0 \text{ and } x,y\in X. \end{aligned}$$

Definition 1.1

([7])

A function \(\omega :\mathopen]0,+\infty\mathclose[\times X\times X\rightarrow [0,+\infty ]\) is said to be modular metric on X if it satisfies the following conditions:

  1. (i)

    Given \(x,y\in X\), \(x=y\) if and only if \(\omega _{\lambda }(x,y)=0\) for all \(\lambda >0\);

  2. (ii)

    For all \(x,y\in X\), for all \(\lambda >0\), \(\omega _{ \lambda }(x,y)=\omega _{\lambda }(y,x)\);

  3. (iii)

    For all \(x,y,z\in X\) and for all \(\lambda ,\mu >0\), \(\omega _{\lambda +\mu }(x,y)\leq \omega _{\lambda }(x,z)+\omega _{\mu }(z,y)\).

In this case, \((X,\omega )\) is called modular metric space.

The modular ω is said to be regular if condition (i) holds for some \(\lambda >0\).

The modular ω is said to be convex if, for all \(\lambda ,\mu >0\) and \(x,y,z\in X\), we have

$$ \omega _{\lambda +\mu }(x,y)\leq \frac{\lambda }{\lambda +\mu } \omega _{ \lambda }(x,z)+ \frac{\mu }{\lambda +\mu }\omega _{\mu }(z,y). $$

Let \((X,\omega )\) be a modular metric space. Fix \(x_{0}\in X\). Set

$$ X_{\omega }=X_{\omega }(x_{0})=\bigl\{ x\in X: \omega _{\lambda }(x,x_{0}) \longrightarrow 0 \text{ as } \lambda \longrightarrow \infty \bigr\} $$

and

$$ X_{\omega }^{*}=X_{\omega }^{*}(x_{0})= \bigl\{ x\in X:\exists \lambda >0 , \omega _{\lambda }(x,x_{0})< \infty \bigr\} . $$

The two linear spaces \(X_{\omega }\) and \(X_{\omega }^{*}\) are said to be modular spaces (around \(x_{0}\)). It is clear that \(X_{\omega }\subseteq X_{\omega }^{*}\).

Definition 1.2

([7])

We say that ω satisfies the \(\Delta _{2}\)-type condition if, for every \(\alpha >0\), there exists a constant \(K_{\alpha }>0\) such that

$$ \omega _{\frac{\lambda }{\alpha }}(x,y)\leq K_{\alpha } \omega _{\lambda }(x,y) $$

for all \(x,y\in X_{\omega }\) and any \(\lambda >0\).

Remark 1.3

If ω satisfies the \(\Delta _{2}\)-type condition, then ω is regular and \(X_{\omega }=X_{\omega }^{*}=X\).

A condition weaker than the \(\Delta _{2}\)-type condition is often used in the literature:

Definition 1.4

We say that ω satisfies the \(\Delta _{2}\)-condition if \(\lim_{n\rightarrow +\infty }\omega _{\lambda }(x_{n},x)=0\) for some \(\lambda >0\) implies that \(\lim_{n\rightarrow +\infty }\omega _{\lambda }(x_{n},x)=0\) for all \(\lambda >0\).

It is clear that if ω satisfies the \(\Delta _{2}\)-type condition, then ω satisfies the \(\Delta _{2}\)-condition, and that the converse is not true. Throughout this paper, we consider the modular metrics satisfying the \(\Delta _{2}\)-type condition, and we adopt the definitions of some topological notions as stated in [11].

Definition 1.5

Let ω be a modular metric on X.

  1. 1.

    We say that a sequence \(\{x_{n}\}\subset X_{\omega }\) is ω-convergent to some \(x\in X_{\omega }\) if \(\lim_{n\rightarrow +\infty }\omega _{\lambda }(x_{n},x)=0\) for some \(\lambda >0\). We will call x the ω-limit of \(\{x_{n}\}\).

    If ω satisfies the \(\Delta _{2}\)-type condition, then \(\lim_{n\rightarrow +\infty }\omega _{\lambda }(x_{n},x)=0\) for all \(\lambda >0\).

  2. 2.

    We say that a sequence \(\{x_{n}\}\subset X_{\omega }\) is ω-Cauchy if, for some \(\lambda >0\),

    $$ \lim_{n,m\rightarrow +\infty }\omega _{\lambda }(x_{n},x_{m})=0. $$

    If ω satisfies the \(\Delta _{2}\)-type condition, then \(\{x_{n}\}\) is ω-Cauchy if \(\lim_{n,m\rightarrow + \infty }\omega _{\lambda }(x_{n},x_{m})=0\) for all \(\lambda >0\).

  3. 3.

    We say that \(M \subset X_{\omega }\) is ω-closed if the ω-limit of any ω-convergent sequence of M is in M.

  4. 4.

    We say that \(M \subset X_{\omega }\) is ω-complete if any ω-Cauchy sequence in M is ω-convergent and its ω-limit belongs to M.

  5. 5.

    We say that ω satisfies the Fatou property if, for some \(\lambda >0\), we have

    $$ \omega _{\lambda }(x,y)\leq \liminf_{n\rightarrow +\infty } \omega _{\lambda }(x_{n},y) $$

    for any sequence \(\{x_{n}\}\subset X_{\omega }\) which is ω-convergent to x and for any \(y\in X_{\omega }\).

Let V be an arbitrary set. A directed graph, or digraph, is a pair \(G = (V,E)\) where E is a subset of the Cartesian product \(V \times V\). The elements of V are called vertices or nodes of G, and the elements of E are the edges also called oriented edges or arcs of G. An edge of the form \((v, v)\) is a loop on v. Another way to express that E is a subset of \(V \times V\) is to say that E is a binary relation over V. Given a digraph G, the set of vertices (respectively of edges) of G is denoted by \(V(G)\) (respectively \(E(G)\)). A digraph \(G'=(V',E')\) is said to be an induced subgraph of a digraph \(G=(V,E)\) on \(V'\) if \(V'\subseteq V\) and \(E'=E\cap (V'\times V')\). We denote \(G'\) by \(G[V']\).

The digraph \(G=(V,E)\) is said to be

  1. (i)

    transitive if whenever \((x,y)\in E\) and \((y,z)\in E\), then \((x,z)\in E\).

  2. (ii)

    reflexive if \(\Delta := \{ (v, v) : v \in V \}\) is a subset of E.

A vertex x is said to be

  1. (i)

    a start point of G if there exists no vertex y such that \((y,x)\in E\).

  2. (ii)

    isolated if, for each vertex \(y\neq x\), we have neither \((x,y)\in E\) nor \((y,x)\in E\).

Given two vertices \(x,y\in V\). A path in G, from (or joining) x to y is a sequence of vertices \(p=\{a_{i}\}_{0\leq i\leq n}\), \(n\in \mathbb{N}^{\ast }\) such that \(a_{0}=x\), \(a_{n}=y\) and \((a_{i},a_{i+1})\in E\) for all \(i\in \{0,1,\ldots,n-1\}\). The integer n is the length of the path p. If \(x=y\) and \(n>1\), the path p is called a directed cycle. An acyclic digraph is a digraph which has no directed cycle.

We denote by \(y\in [x]_{G}\) the fact that there is a directed path in G joining x to y.

A sequence \(\{ x_{n} \}_{n\in \mathbb{N}}\) is said to be G-nondecreasing if \(x_{n+1}\in [x_{n}]_{G}\) for all \(n\in \mathbb{N}\).

A modular metric space \((X,\omega )\) endowed with a digraph G such that \(V(G)=X\) is denoted by \((X,\omega ,G)\). In recent years, there has been a great interest in the study of the fixed point property in modular metric spaces endowed with a partial order, see [5] and the references therein.

In this work, we investigate the existence and uniqueness of the common fixed point of a pair of mappings satisfying a generalized contractive condition in the setting of a modular metric space with a reflexive digraph. The main result is illustrated by an example and is used to show the existence of a solution of a system of Fredholm integral equations.

As in [6], we use the property (OSC) defined as follows.

Definition 1.6

Let \((X,\omega ,G)\) be a modular metric space endowed with a digraph. We say that X satisfies the property (OSC) if, for any G-nondecreasing sequence \(\{x_{n}\}\subseteq X\) which is ω-convergent to \(x\in X\), we have \(x\in [x_{n}]_{G}\) for all \(n\in \mathbb{N}\).

2 Main result

The following technical lemmas borrowed from [5] are useful in the sequel and highlight the use of the \(\Delta _{2}\)-type condition to establish the main result.

Lemma 2.1

If ω satisfies the \(\Delta _{2}\)-type condition, then

$$\begin{aligned}& \omega _{\lambda }(x,y)< \infty \quad \textit{for all }\lambda >0\textit{ and for all } (x,y)\in X_{\omega }^{2}. \end{aligned}$$

Lemma 2.2

Let \(s,t\in \mathbb{N}^{*}\). If ω satisfies the \(\Delta _{2}\)-type condition and \(\{x_{n}\}\) is not ω-Cauchy, then there exist \(\varepsilon >0\) and two subsequences of integers \(\{n_{k}\}\) and \(\{m_{k}\}\) such that \(n_{k}> m_{k}\geq k\), \(\omega _{2^{s}}(x_{n_{k}},x_{m_{k}})\geq \varepsilon \), and \(\omega _{\frac{1}{2^{t}}}(x_{n_{k}-1},x_{m_{k}})< \varepsilon \).

From now on, we mean 1 instead of λ for the same reason Abdou and Khamsi used in [1]. One can see that the proof of the main result remains even if we replace 1 with any \(\lambda >0\).

Let \(\psi : \mathopen[0,+\infty\mathclose[\longrightarrow \mathopen[0,+\infty\mathclose[\) be a function satisfying the two conditions:

  1. (i)

    \(\psi (t)< t\) for all \(t> 0\);

  2. (ii)

    ψ is right upper semicontinuous on \(\mathopen[0,+\infty\mathclose[\).

Let

$$ M(x,y)=\max \biggl\{ \omega _{1}(x,y),\omega _{1}(x,Sx), \omega _{1}(y,Ty), \frac{\omega _{2}(x,Ty)+\omega _{2}(y,Sx)}{2}\biggr\} $$

and

$$ \mathcal{O}_{x_{0}}(S,T)=\bigl\{ (TS)^{n}(x_{0}),S(TS)^{n}(x_{0}) : n\in \mathbb{N} \bigr\} . $$

Theorem 2.1

Let \((X,\omega , G)\) be a modular metric space endowed with a reflexive digraph G where ω satisfies the \(\Delta _{2}\)-type condition and the Fatou property. Let C be an ω-complete nonempty subset of \(X_{\omega }\) and \(T,S : C \rightarrow C\) be two self-mappings. If the following conditions are satisfied:

  1. (i)

    for all \(x,y\in C\),

    $$ \bigl( y\in [x]_{G} \textit{ or }x\in [y]_{G} \bigr) \quad \Longrightarrow \quad F\bigl(\omega _{1}(Sx,Ty)\bigr)\leq \psi \bigl(F\bigl(M(x,y)\bigr)\bigr); $$
    (1)
  2. (ii)

    there exists an element \(x_{0}\in C\) such that the induced subgraph \(G[\mathcal{O}_{x_{0}}(S,T)]\) is a directed path with a unique starting point \(x_{0}\);

  3. (iii)

    ω satisfies the property (OSC),

then S and T have a common fixed point in C.

Proof

Let \(x_{0}\) be an element of C such that \(G[\mathcal{O}_{x_{0}}(S,T)]\) is a directed path. Consider the sequence \(\{x_{n}\}\) defined by

$$\begin{aligned}& x_{2n+1}=Sx_{2n}\quad \text{and} \quad x_{2n+2}=Tx_{2n+1} \quad \text{for all } n\in \mathbb{N}. \end{aligned}$$

Condition (ii) insures that \(\{x_{n}\}\) is G-nondecreasing. If there exists an integer n such that

$$ x_{2n}=x_{2n+1}=x_{2n+2}, $$

then \(x_{2n}\) is a common fixed point of S and T. Otherwise, suppose that

$$\begin{aligned}& x_{2n}\neq x_{2n+1}\quad \text{or} \quad x_{2n}\neq x_{2n+2}\quad \text{for all } n\in \mathbb{N}. \end{aligned}$$

Let \(n\in \mathbb{N}\). From \(x_{2n+1}\in [x_{2n}]_{G}\) and applying (1) for \(x=x_{2n}\) and \(y=x_{2n+1}\), we obtain

$$ F\bigl(\omega _{1}(x_{2n+1},x_{2n+2}) \bigr)\leq \psi \bigl(F\bigl(M(x_{2n},x_{2n+1})\bigr) \bigr).$$
(2)

From

$$ M(x_{2n},x_{2n+1})=\max \biggl\{ \omega _{1}(x_{2n},x_{2n+1}), \omega _{1}(x_{2n+1},x_{2n+2}), \frac{\omega _{2}(x_{2n},x_{2n+2})}{2} \biggr\} $$

and

$$ \frac{\omega _{2}(x_{2n},x_{2n+2})}{2}\leq \frac{\omega _{1}(x_{2n},x_{2n+1})+\omega _{1}(x_{2n+1},x_{2n+2})}{2}, $$

it follows that

$$ M(x_{2n},x_{2n+1})=\max \bigl\{ \omega _{1}(x_{2n},x_{2n+1}), \omega _{1}(x_{2n+1},x_{2n+2}) \bigr\} . $$

If we suppose that there exists an integer n such that

$$ \omega _{1}(x_{2n},x_{2n+1})\leq \omega _{1}(x_{2n+1},x_{2n+2}), $$

then

$$ M(x_{2n},x_{2n+1})=\omega _{1}(x_{2n+1},x_{2n+2}). $$

Thus

$$ F\bigl(\omega _{1}(x_{2n+1},x_{2n+2})\bigr)\leq \psi \bigl(F\bigl(\omega _{1}(x_{2n+1},x_{2n+2})\bigr) \bigr), $$

which implies that \(F(\omega _{1}(x_{2n+1},x_{2n+2}))=0\). Hence, \(x_{2n+1}=x_{2n+2}\) and, from (2), \(x_{2n}=x_{2n+1}\), a contradiction. Hence, for each integer n, we have

$$ \omega _{1}(x_{2n+1},x_{2n+2})\leq \omega _{1}(x_{2n},x_{2n+1}). $$

By the same argument, if we take, in inequality (1), \(x=x_{2n-1}\) and \(y=x_{2n}\), we obtain

$$\begin{aligned}& \omega _{1}(x_{2n},x_{2n+1})< \omega _{1}(x_{2n-1},x_{2n})\quad \text{for all } n\in \mathbb{N}^{\ast }. \end{aligned}$$

Then \(\omega _{1}(x_{n+1},x_{n+2})<\omega _{1}(x_{n},x_{n+1})\) for all \(n\in \mathbb{N}\). Thus, the sequence \(\{\omega _{1}(x_{n},x_{n+1})\}\) is decreasing and bounded below. Therefore it is ω-convergent to some \(r\geq 0\). Since

$$\begin{aligned} \lim_{n\rightarrow +\infty }M(x_{2n},x_{2n+1})=\lim _{n \rightarrow +\infty }\max \bigl\{ \omega _{1}(x_{2n},x_{2n+1}), \omega _{1}(x_{2n+1},x_{2n+2}) \bigr\} =r, \end{aligned}$$

by letting to limit superior in inequality (2), we obtain

$$ F(r)\leq \limsup_{n}\psi (F\bigl(M(x_{2n},x_{2n+1}) \bigr)\leq \psi \bigl(F(r)\bigr), $$

which implies that \(r=0\). Thus, \(\lim_{n\rightarrow +\infty }\omega _{1}(x_{n},x_{n+1})=0\).

Let us prove that the sequence \(\{x_{n}\}\) is ω-Cauchy. For this, it is sufficient to show that the subsequence \(\{x_{2n}\}\) is ω-Cauchy. Assume the contrary. Then, according to Lemma 2.2, there exists \(\varepsilon >0\) such that we can find two subsequences \(\{m_{k}\}\) and \(\{n_{k}\}\) of positive integers satisfying \(n_{k}>m_{k}\geq k\) such that the following inequalities hold:

$$\begin{aligned}& \omega _{8}(x_{2n_{k}},x_{2m_{k}})\geq \varepsilon \quad \text{and} \quad \omega _{\frac{1}{4}}(x_{2n_{k}-1},x_{2m_{k}})< \varepsilon . \end{aligned}$$

If we take \(x=x_{2n_{k}}\) and \(y=x_{2m_{k}-1}\), then \(y\in [x]_{G}\) and inequality (1) becomes

$$ \psi (F\bigl(\omega _{1}(x_{2n_{k}+1},x_{2m_{k}})\bigr)\leq F\bigl(M(x_{2n_{k}},x_{2m_{k}-1})\bigr), $$

where

$$\begin{aligned} M(x_{2n_{k}},x_{2m_{k}-1}) =&\max \biggl\{ \omega _{1}(x_{2n_{k}},x_{2m_{k}-1}), \omega _{1}(x_{2n_{k}},x_{2n_{k}+1}) ,\omega _{1}(x_{2m_{k}-1},x_{2m_{k}}), \\ &\frac{\omega _{2}(x_{2n_{k}},x_{2m_{k}})+\omega _{2}(x_{2m_{k}-1},x_{2n_{k}+1})}{2} \biggr\} . \end{aligned}$$

Since

$$\begin{aligned} \varepsilon &\leq \omega _{8}(x_{2n_{k}},x_{2m_{k}})\leq \omega _{2}(x_{2n_{k}},x_{2m_{k}}) \\ &\leq \omega _{1}(x_{2n_{k}},x_{2m_{k}}) \\ &\leq \omega _{\frac{1}{2}}(x_{2n_{k}-1},x_{2m_{k}})+\omega _{ \frac{1}{2}}(x_{2n_{k}-1},x_{2n_{k}}) \\ &\leq \omega _{\frac{1}{4}}(x_{2n_{k}-1},x_{2m_{k}})+\omega _{ \frac{1}{2}}(x_{2n_{k}-1},x_{2n_{k}}) \\ &\leq \varepsilon +\omega _{\frac{1}{2}}(x_{2n_{k}-1},x_{2n_{k}}), \end{aligned}$$

it follows that \(\lim_{k\rightarrow +\infty }\omega _{2}(x_{2n_{k}},x_{2m_{k}})= \lim_{k\rightarrow +\infty }\omega _{1}(x_{2n_{k}},x_{2m_{k}})= \varepsilon \).

From

$$ \varepsilon \leq \omega _{2}(x_{2n_{k}},x_{2m_{k}})\leq \omega _{1}(x_{2n_{k}},x_{2n_{k}+1})+ \omega _{1}(x_{2n_{k}+1},x_{2m_{k}}), $$

we get

$$\begin{aligned} \varepsilon -\omega _{1}(x_{2n_{k}},x_{2n_{k}+1})&\leq \omega _{1}(x_{2n_{k}+1},x_{2m_{k}}) \\ &\leq \omega _{\frac{1}{2}}(x_{2n_{k}-1},x_{2m_{k}})+\omega _{ \frac{1}{4}}(x_{2n_{k}-1},x_{2n_{k}}) \\ &\quad {} +\omega _{\frac{1}{4}}(x_{2n_{k}},x_{2n_{k}+1}) \\ &\leq \varepsilon +\omega _{\frac{1}{4}}(x_{2n_{k}-1},x_{2n_{k}}) + \omega _{\frac{1}{4}}(x_{2n_{k}},x_{2n_{k}+1}). \end{aligned}$$

Thus

$$ \lim_{k\rightarrow +\infty }\omega _{1}(x_{2n_{k}+1},x_{2m_{k}})= \varepsilon . $$

Similarly, using

$$ \varepsilon \leq \omega _{2}(x_{2n_{k}},x_{2m_{k}})\leq \omega _{1}(x_{2n_{k}},x_{2m_{k}-1})+ \omega _{1}(x_{2m_{k}-1},x_{2m_{k}}), $$

we get

$$\begin{aligned} \varepsilon -\omega _{1}(x_{2m_{k}-1},x_{2m_{k}})&\leq \omega _{1}(x_{2n_{k}},x_{2m_{k}-1}) \\ &\leq \omega _{\frac{1}{2}}(x_{2n_{k}},x_{2n_{k}-1})+\omega _{ \frac{1}{4}}(x_{2n_{k}-1},x_{2m_{k}}) \\ &\quad {} +\omega _{\frac{1}{4}}(x_{2m_{k}},x_{2m_{k}-1}) \\ &\leq \omega _{\frac{1}{2}}(x_{2n_{k}},x_{2n_{k}-1})+\varepsilon + \omega _{\frac{1}{4}}(x_{2m_{k}},x_{2m_{k}-1}). \end{aligned}$$

Therefore \(\lim_{k\rightarrow +\infty }\omega _{1}(x_{2n_{k}},x_{2m_{k}-1})= \varepsilon \).

From

$$\begin{aligned} &\omega _{8}(x_{2n_{k}},x_{2m_{k}})-\omega _{4}(x_{2n_{k}},x_{2n_{k}+1})- \omega _{2}(x_{2m_{k}-1},x_{2m_{k}}) \\ &\quad \leq \omega _{2}(x_{2m_{k}-1},x_{2n_{k}+1}) \\ &\quad \leq \omega _{1}(x_{2m_{k}-1},x_{2n_{k}})+\omega _{1}(x_{2n_{k}},x_{2n_{k}+1}), \end{aligned}$$

we get \(\lim_{k\rightarrow +\infty }\omega _{2}(x_{2m_{k}-1},x_{2n_{k}+1})= \varepsilon \). Since

$$\begin{aligned} \omega _{2}(x_{2m_{k}-1},x_{2n_{k}+1})&\leq \omega _{1}(x_{2m_{k}-1},x_{2n_{k}+1}) \\ & \leq \omega _{\frac{1}{2}}(x_{2m_{k}-1},x_{2m_{k}})+\omega _{ \frac{1}{4}}(x_{2n_{k}-1},x_{2m_{k}}) +\omega _{\frac{1}{8}}(x_{2n_{k}-1},x_{2n_{k}}) \\ &\quad{} +\omega _{\frac{1}{8}}(x_{2n_{k}},x_{2n_{k}+1}) \\ &\leq \omega _{\frac{1}{2}}(x_{2m_{k}-1},x_{2m_{k}})+ \varepsilon + \omega _{\frac{1}{8}}(x_{2n_{k}-1},x_{2n_{k}})+\omega _{\frac{1}{8}}(x_{2n_{k}},x_{2n_{k}+1}) \end{aligned}$$

and by letting \(k\rightarrow +\infty \), we obtain \(\lim_{k\rightarrow +\infty }\omega _{1}(x_{2m_{k}-1},x_{2n_{k}+1})= \varepsilon \). Therefore

$$ \lim_{k\rightarrow +\infty }M(x_{2n_{k}},x_{2m_{k}-1})= \varepsilon . $$

From the continuity of F and the upper semicontinuity of ψ, we have

$$ F(\varepsilon )\leq \psi \bigl(F(\varepsilon )\bigr), $$

a contradiction since \(\epsilon > 0\). Therefore the sequence \(\{x_{n}\}\) is ω-Cauchy. Using the ω-completeness of C, there exists \(x^{\ast }\in C\) such that \(\lim_{n\rightarrow +\infty }\omega _{1}(x_{n},x^{\ast })=0\). The property (OSC) insures that \(x^{\ast }\in [x_{n}]\) for all \(n\in \mathbb{N}\). Then

$$ F\bigl(\omega _{1}\bigl(Sx_{2n},Tx^{\ast } \bigr)\bigr)\leq \psi \bigl(F\bigl(M\bigl(x_{2n},x^{\ast }\bigr) \bigr)\bigr), $$
(3)

where

$$\begin{aligned} \begin{aligned} M\bigl(x_{2n},x^{\ast }\bigr)={}&\max \biggl\{ \omega _{1}\bigl(x_{2n},x^{\ast }\bigr),\omega _{1}(x_{2n},x_{2n+1}), \omega _{1} \bigl(x^{\ast },Tx^{\ast }\bigr), \\&{}\frac{\omega _{2}(x_{2n},Tx^{\ast })+\omega _{2}(x^{\ast },x_{2n+1})}{2} \biggr\} . \end{aligned} \end{aligned}$$

Since \(\omega _{2}(x_{2n},Tx^{\ast })\leq \omega _{1}(x_{2n},x^{\ast })+ \omega _{1}(x^{\ast },Tx^{\ast })\), \(\lim_{n}M(x_{2n},x^{\ast })=\omega _{1}(x^{\ast },Tx^{\ast })\).

Using the continuity of F and the upper continuity of ψ, we obtain

$$ \limsup_{n}\psi \bigl(F\bigl(M\bigl(x_{2n},x^{\ast } \bigr)\bigr)\bigr)\leq \psi (F\bigl(\omega _{1}\bigl(x^{ \ast },Tx^{\ast } \bigr)\bigr). $$

By the Fatou property, we have

$$ \omega _{1}\bigl(x^{\ast },Tx^{\ast }\bigr)\leq \liminf _{n}\omega _{1}\bigl(Sx_{2n},Tx^{ \ast } \bigr). $$

Since F is continuous and nondecreasing on \(\mathopen[0,+\infty\mathclose[\), we have

$$\begin{aligned} F(\omega _{1}\bigl(x^{\ast },Tx^{\ast }\bigr)&\leq F \Bigl(\liminf_{n}\omega _{1}\bigl(Sx_{2n},Tx^{ \ast } \bigr)\Bigr) \\ &\leq F\Bigl(\liminf_{n}\omega _{1} \bigl(Sx_{2n},Tx^{\ast }\bigr)\Bigr) \\ &\leq \limsup_{n}F\bigl(\omega _{1} \bigl(Sx_{2n},Tx^{\ast }\bigr)\bigr) \\ &\leq \limsup_{n}\psi \bigl(F\bigl(M\bigl(x_{2n},x^{\ast } \bigr)\bigr)\bigr) \\ &\leq \psi (F\bigl(\omega _{1}\bigl(x^{\ast },Tx^{\ast } \bigr)\bigr), \end{aligned}$$

which implies that \(\omega _{1}(x^{\ast },Tx^{\ast })=0\), and according to the regularity of ω, we have \(Tx^{\ast }=x^{\ast }\). Since \(x^{\ast }\in [x^{\ast }]_{G}\), \(F(\omega _{1}(Sx^{\ast },Tx^{\ast })) \leq \psi (F(M(x^{\ast },x^{\ast })))\) where

$$ M\bigl(x^{\ast },x^{\ast }\bigr)=\max \bigl\{ \omega _{1} \bigl(x^{\ast },Sx^{\ast }\bigr),\omega _{2} \bigl(x^{ \ast },Sx^{\ast }\bigr)\bigr\} =\omega _{1} \bigl(x^{\ast },Sx^{\ast }\bigr), $$

which implies that \(F(\omega _{1}(Sx^{\ast },x^{\ast }))\leq \psi (F(\omega _{1}(Sx^{\ast },x^{ \ast })))\). Hence \(\omega _{1}(Sx^{\ast },x^{\ast })=0\) and the regularity of ω insures that \(Sx^{\ast }=x^{\ast }\). □

The next example illustrates Theorem 2.1 and shows that the class of mappings satisfying our main result is a proper nonempty subset of the set of the mappings considered in [13].

Example 2.3

Consider the modular metric space \((X,\omega )\) where

$$\begin{aligned}& X=[0,1]\quad \text{and}\quad \omega _{\lambda }(x,y)=\frac{ \vert x-y \vert ^{2} }{2\lambda }\quad \text{for all }\lambda \in \mathopen]0,+\infty\mathclose[\text{ and }x,y\in X. \end{aligned}$$

Consider the reflexive digraph \(G=(X,E)\) represented in Fig. 1, where

$$\begin{aligned}& E=\Delta \cup \biggl\{ \biggl(\frac{1}{3^{n}},0 \biggr), \biggl( \frac{1}{3^{n}},\frac{1}{3^{n+1}} \biggr): n\in \mathbb{N} \biggr\} . \end{aligned}$$
Figure 1
figure 1

The digraph G (the loops and the isolated vertices are not represented)

Consider the two self-mapping S and T defined on X by

$$\begin{aligned}& Tx=\frac{x}{3}\quad \text{and} \quad Sx=\frac{x}{9}\quad \text{for all }x\in X, \end{aligned}$$

and the two functions F and ψ defined on \(\mathopen[0,+\infty\mathclose[\) by

$$\begin{aligned}& F(t)=\sqrt{t}\quad \text{and} \quad \psi (t)=\frac{t}{\sqrt{2}}\quad \text{for all } t\in \mathopen[0,+\infty\mathclose[. \end{aligned}$$

We can see that

  1. 1.

    X is ω-complete;

  2. 2.

    ω satisfies the \(\Delta _{2}\)-type condition and the Fatou property;

  3. 3.

    \(G[\mathcal{O}_{1}(S,T)]\) is a directed path with a unique starting point \(x_{0}\) (see Figure 2).

    Figure 2
    figure 2

    The digraph \(G[\mathcal{O}_{1}(S,T)]\) (the loops are not represented)

Let us show that, for all \(x,y\in C\),

$$ \bigl( y\in [x]_{G} \text{ or } x\in [y]_{G} \bigr) \quad \Longrightarrow \quad F\bigl(\omega _{1}(Sx,Ty)\bigr)\leq \psi \bigl(F \bigl(M(x,y)\bigr)\bigr). $$

For this, we proceed by disjunction of the cases:

  • The case where \(x=y=0\) is avoided.

  • If \(x=\frac{1}{3^{n}}\) for \(n\in \mathbb{N}\) and \(y=0\), then

    $$ F\bigl(\omega _{1}(Sx,Ty)\bigr)=\frac{1}{\sqrt{2}.3^{n+2}}\leq \frac{1}{2.3^{n}}= \psi \bigl(F\bigl(M(x,y)\bigr)\bigr). $$
  • If \(x=0\) and \(y=\frac{1}{3^{n}}\) for \(n\in \mathbb{N}\), then

    $$ F\bigl(\omega _{1}(Sx,Ty)\bigr)=\frac{1}{\sqrt{2}.3^{n+1}}\leq \frac{1}{2.3^{n}} \leq \psi \bigl(F\bigl(M(x,y)\bigr)\bigr). $$
  • If \(x=y=\frac{1}{3^{n}}\) for \(n\in \mathbb{N}\), then

    $$ F\bigl(\omega _{1}(Sx,Ty)\bigr)=\frac{\sqrt{2}}{3^{n+2}}\leq \frac{4}{3^{n+2}} \leq \psi \bigl(F\bigl(M(x,y)\bigr)\bigr). $$
  • If \(x=\frac{1}{3^{n}}\) and \(y=\frac{1}{3^{m}}\) for \(m,n\in \mathbb{N}\) such that \(m> n\), then

    $$\begin{aligned} F\bigl(\omega _{1}(Sx,Ty)\bigr)=\frac{1}{\sqrt{2}} \biggl( \frac{1}{3^{n+2}}- \frac{1}{3^{m+1}} \biggr)&\leq \frac{4}{3^{n+2}} \leq \psi \bigl(F\bigl(M(x,y)\bigr)\bigr). \end{aligned}$$
  • If \(x=\frac{1}{3^{m}}\) and \(y=\frac{1}{3^{n}}\) for \(m,n\in \mathbb{N}\) such that \(m> n\), then

    $$\begin{aligned} F\bigl(\omega _{1}(Sx,Ty)\bigr)=\frac{1}{\sqrt{2}} \biggl( \frac{1}{3^{m+2}}- \frac{1}{3^{n+1}} \biggr)\leq \frac{\sqrt{2}}{3^{n+1}} \leq \psi \bigl(F\bigl(M(x,y)\bigr)\bigr). \end{aligned}$$

All assumptions of Theorem 2.1 are satisfied and S and T have a fixed point \(x^{\ast }=0\).

Remark 2.4

In Example 2.3, if we consider the function \(\psi (t)=0.8\times \ln (1+t)\) for all \(t\in \mathopen[0,+\infty\mathclose[\), we get

$$\begin{aligned}& F\bigl(d(S x,Ty)\bigr)=\frac{1}{2} > 0.8\ln \biggl(1+\frac{\sqrt{3}}{2} \biggr)=\psi (F\bigl(M'(x, y)\bigr)\quad \text{for }x=0\text{ and }y= \frac{3}{4}, \end{aligned}$$

where \(d(x,y)= \vert x-y \vert \) and

$$ M'(x, y) = \max \biggl\{ d(x,y), d(T x, x), d(Sy, y), \frac{d(T x, y) + d(Sy,x)}{2} \biggr\} . $$

Theorem on page 2 is not applicable, but by Theorem 2.1, we obtain the existence of a common fixed point of S and T. Indeed, we have, for all \(x,y\in X\),

$$ \bigl( y\in [x]_{G} \text{ or }x\in [y]_{G} \bigr) \quad \Longrightarrow \quad F\bigl(\omega _{1}(Sx,Ty)\bigr)\leq \psi \bigl(F\bigl(M(x,y)\bigr)\bigr). $$

Corollary 2.2

Let \((X,\omega , G)\) be a modular metric space endowed with a reflexive digraph G where ω satisfies the \(\Delta _{2}\)-type condition and the Fatou property. Let C be an ω-complete nonempty subset of \(X_{\omega }\) and \(T,S : C \rightarrow C\) be two self-mappings. If the following conditions are satisfied:

  1. (i)

    there exists \(k\in \mathopen[0,1\mathclose[\) such that, for all \(x,y\in C\),

    $$ \bigl( y\in [x]_{G} \textit{ or }x\in [y]_{G} \bigr) \quad \Longrightarrow \quad \omega _{1}(Sx,Ty)\leq \bigl(1+ \omega _{1}(x,y) \bigr)^{k}-1; $$
    (4)
  2. (ii)

    there exists an element \(x_{0}\in C\) such that \(G[\mathcal{O}_{x_{0}}(S,T)]\) is a directed path with a unique starting point \(x_{0}\);

  3. (iii)

    ω satisfies the property (OSC),

then S and T have a common fixed point in C.

Proof

If we consider the two functions F and ψ defined on \(\mathopen[0,+\infty\mathclose[\) by

$$\begin{aligned}& F(t)=\ln (1+t)\quad \text{and} \quad \psi (t)=kt, \end{aligned}$$

then we can verify that the second part of implication (4) is equivalent to

$$ F\bigl(\omega _{1}(Sx,Ty)\bigr)\leq \psi \bigl(F\bigl(\omega _{1}(x,y)\bigr)\bigr), $$

which implies that \(F(\omega _{1}(Sx,Ty))\leq \psi (F(M(x,y)))\), since F and ψ are nondecreasing on \(\mathopen[0,+\infty\mathclose[\). By applying Theorem 2.1, we terminate the demonstration. □

In the sequel, we use the following lemma.

Lemma 2.5

([5])

Let \((X,\omega )\) be a modular space such that ω is convex and satisfies the \(\Delta _{2}\)-condition. If \(\{x_{n}\}\) is a sequence in \(X_{\omega }\) such that \(\lim_{n \rightarrow +\infty }\omega _{1}(x_{n},x_{n+1})=0\), then \(\{x_{n}\}\) is ω-Cauchy.

Theorem 2.3

Let \((X,\omega , G)\) be a modular metric space endowed with a reflexive digraph G where ω is convex and satisfies the \(\Delta _{2}\)-type condition and the Fatou property. Let C be an ω-complete nonempty subset of \(X_{\omega }\) and \(T,S : C \rightarrow C\) be two self-mappings. If the following conditions are satisfied:

  1. (i)

    for all \(x,y\in C\),

    $$ \bigl( y\in [x]_{G} \textit{ or }x\in [y]_{G} \bigr)\quad \Longrightarrow \quad F\bigl( \omega _{1}(Sx,Ty)\bigr)\leq \psi \bigl(F\bigl(M(x,y)\bigr)\bigr), $$
    (5)

    where

    $$ M(x,y)=\max \bigl\{ \omega _{1}(x,y),\omega _{1}(x,Sx), \omega _{1}(y,Ty), \omega _{2}(x,Ty)+\omega _{2}(y,Sx)\bigr\} ; $$
  2. (ii)

    there exists an element \(x_{0}\in C\) such that \(G[\mathcal{O}_{x_{0}}(S,T)]\) is a directed path with a unique starting point \(x_{0}\);

  3. (iii)

    ω satisfies the property (OSC),

then S and T have a common fixed point in C and \(\mathfrak{F}(S,T)=\mathfrak{F}(S)=\mathfrak{F}(T)\), where \(\mathfrak{F}(T)\) is the set of fixed points of T.

Proof

Let \(x_{0}\) an element of C such that \(G[\mathcal{O}_{x_{0}}(S,T)]\) is a directed path. Consider the sequence \(\{x_{n}\}\) defined by

$$\begin{aligned}& x_{2n+1}=Sx_{2n}\quad \text{and} \quad x_{2n+2}=Tx_{2n+1} \quad \text{for all } n\in \mathbb{N}. \end{aligned}$$

Condition (ii) insures that \(\{x_{n}\}\) is G-nondecreasing. If there exists an integer n such that

$$ x_{2n}=x_{2n+1}=x_{2n+2}, $$

then \(x_{2n}\) is a common fixed point of S and T. Otherwise, suppose that

$$\begin{aligned}& x_{2n}\neq x_{2n+1}\quad \text{or} \quad x_{2n}\neq x_{2n+2}\quad \text{for all } n\in \mathbb{N}. \end{aligned}$$

Let \(n\in \mathbb{N}\). From \(x_{2n+1}\in [x_{2n}]_{G}\) and applying (5) for \(x=x_{2n}\) and \(y=x_{2n+1}\), we obtain

$$ F\bigl(\omega _{1}(x_{2n+1},x_{2n+2}) \bigr)\leq \psi \bigl(F\bigl(M(x_{2n},x_{2n+1})\bigr) \bigr).$$
(6)

From

$$ M(x_{2n},x_{2n+1})=\max \bigl\{ \omega _{1}(x_{2n},x_{2n+1}), \omega _{1}(x_{2n+1},x_{2n+2}), \omega _{2}(x_{2n},x_{2n+2})\bigr\} , $$

since ω is convex,

$$ \omega _{2}(x_{2n},x_{2n+2})\leq \frac{\omega _{1}(x_{2n},x_{2n+1})+\omega _{1}(x_{2n+1},x_{2n+2})}{2}, $$

from which it follows that

$$ M(x_{2n},x_{2n+1})=\max \bigl\{ \omega _{1}(x_{2n},x_{2n+1}), \omega _{1}(x_{2n+1},x_{2n+2}) \bigr\} . $$

By the same arguments as in the proof of Theorem 2.1, we prove that

$$ \lim_{n\rightarrow +\infty }\omega _{1}(x_{n},x_{n+1})=0. $$

According to Lemma 2.5, the sequence \(\{x_{n}\}\) is ω-Cauchy, and since C is ω-complete, then \(\{x_{n}\}\) is ω-convergent to an element \(x^{\ast }\in C\). Again similar to the proof of Theorem 2.1, we prove that \(x^{\ast }\) is a common fixed point of S and T. □

3 Application

Consider the space \(X=\mathcal{C}^{1}([0,1],\mathbb{R})\). Let \(G=(X,E)\) be the digraph such that, for all \(x,y\in X\),

$$ (x,y)\in E\quad \Longleftrightarrow \quad x(t)\leq y(t) \quad \text{for each } t \in [0,1]. $$

Consider the function \(\omega :\mathopen]0,+\infty\mathclose[\times X\times X\longrightarrow [0,+\infty ]\) defined, for each \(\lambda \in \mathopen]0,+\infty\mathclose[\) and \(x,y\in X\), by

$$\begin{aligned}& \omega (\lambda ,x,y)=\omega _{\lambda }(x,y)=\frac{1}{\lambda } \Vert x-y \Vert _{ \infty }^{2}=\frac{1}{\lambda } \Bigl(\sup _{t\in [0,1]} \bigl\vert x(t)-y(t) \bigr\vert \Bigr)^{2}. \end{aligned}$$

It is easy to check the following result.

Lemma 3.1

The function ω is a modular metric satisfying the following:

  1. (i)

    ω satisfies the \(\Delta _{2}\)-type condition and the Fatou property;

  2. (ii)

    \(X_{\omega }=X\) is ω-complete;

  3. (iii)

    ω satisfies the (OSC) property.

Let us consider the following integral equations system:

$$ (\mathit{IES}): \quad \textstyle\begin{cases} x(t)=\int _{0}^{1} f(t,y(s)) \,\mathrm{d}s+a(t) \quad \forall t\in [0,1] , \\ y(t)=\int _{0}^{1} g(t,x(s)) \,\mathrm{d}s+a(t) \quad \forall t\in [0,1], \end{cases} $$

where \(a\in X\) and \(f,g:[0,1]\times \mathbb{R}\rightarrow \mathbb{R}\) are two mappings such that f and g are of the class \(C^{1}\) on \([0,1]\times \mathbb{R}\).

Let us consider the two mappings T and S defined in X as follows:

$$ \textstyle\begin{cases} Tx(t)=\int _{0}^{1} f(t,x(s)) \,\mathrm{d}s+a(t), \\ Sx(t)=\int _{0}^{1} g(t,x(s)) \,\mathrm{d}s+a(t), \end{cases}\displaystyle t\in [0,1]. $$

One can see that Tx and Sx are in X for all \(x\in X\).

Theorem 3.2

If the following two conditions are satisfied:

  1. (i)

    for every \(s,t\in [0,1]\) and for all comparable elements \(x,y\in X\),

    $$ \bigl\vert f\bigl(t,x(s)\bigr)-g\bigl(t,y(s)\bigr) \bigr\vert \leq -1+ \sqrt{1+ \bigl\vert x(s)-y(s) \bigr\vert }, $$
  2. (ii)

    there exists \(x_{0}\in X\) such that, for all \(t\in [0,1]\), we have

    $$ x_{0}(t)\preceq Sx_{0}(t)\preceq TSx_{0}(t) \preceq STSx_{0}(t) \preceq (TS)^{2}x_{0}(t) \preceq S(TS)^{2}x_{0}(t)\preceq \cdots, $$

then the system (IES) admits at least a solution which belongs to the diagonal of \(X^{2}\).

Proof

Let x and y be two comparable elements in X, that is, \(x\in [y]_{G}\) or \(y\in [x]_{G}\). Since, for each \(t,s\in [0,1]\),

$$ \bigl\vert f\bigl(t,x(s)\bigr)-g\bigl(t,y(s)\bigr) \bigr\vert \leq -1+ \sqrt{1+ \bigl\vert x(s)-y(s) \bigr\vert }\leq -1+ \sqrt{1+ \bigl\Vert x(s)-y(s) \bigr\Vert _{\infty }} $$

and

$$ \Vert Tx-Sy \Vert _{\infty }=\sup_{t\in [0,1]} \bigl\vert Tx(t)-Sy(t) \bigr\vert =\sup_{t\in [0,1]} \int _{0}^{1} \bigl\vert f\bigl(t,x(s)\bigr)-g \bigl(t,y(s)\bigr) \bigr\vert \,\mathrm{d}s, $$

we have

$$ \Vert Tx-Sy \Vert _{\infty }\leq -1+\sqrt{1+ \bigl\Vert x(s)-y(s) \bigr\Vert _{\infty }} . $$

Since

$$ \bigl(-1+\sqrt{1+ \bigl\Vert x(s)-y(s) \bigr\Vert _{\infty }} \bigr)^{2}\leq -1+ \sqrt{1+ \bigl\Vert x(s)-y(s) \bigr\Vert _{\infty }^{2}} , $$

we have

$$ \omega _{1}(Tx,Sy)\leq -1+ \bigl(1+\omega _{1}(x,y) \bigr)^{\frac{1}{2}}. $$

Since, for all \(t\in [0,1]\),

$$ x_{0}(t)\preceq Sx_{0}(t)\preceq TSx_{0}(t) \preceq STSx_{0}(t) \preceq (TS)^{2}x_{0}(t) \preceq S(TS)^{2}x_{0}(t)\preceq \cdots, $$

the induced subgraph \(G[\mathcal{O}_{x_{0}}(S,T)]\) is a directed path with the unique starting point \(x_{0}\).

According to Corollary 2.2, T and S have a common fixed point in X, i.e., there exists an element \(x^{\ast }\in X\) such that \((x^{\ast },x^{\ast })\) verifies the system (IES). Then the system (IES) admits at least a solution in \(X^{2}\) which belongs to \(\Delta (X\times X)= \{(u,u)/u\in X \}\) the diagonal of \(X^{2}\). □

Conclusion

Our results improve, extend, and generalize some classical results:

  1. (i)

    In Theorem 2.3, if we take \(\omega _{\lambda }(x,y)=\frac{d(x,y)}{\lambda }\) for all \(\lambda \in \mathopen]0,+\infty\mathclose[\), we get an improved version of the main result of Zhang [13, Theorem 1] by removing condition (iii) verified by the function ϕ and the monotony of ϕ.

  2. (ii)

    In Theorem 2.1, if the function F is the identity and the function ψ is nondecreasing, we obtain an analogue of [4, Theorem 2] but for a common fixed point in the setting of modular metric spaces with graph.

  3. (iii)

    Theorem 2.3generalizes and extends [3, Theorem 2.1] in the setting of a modular metric space with graph.

  4. (iv)

    Corollary 2.2generalizes and extends [1, Theorem 3.1] in the setting of modular metric spaces with graph, since

    $$ \omega _{1}(Sx,Ty)\leq k \omega _{1}(x,y)\quad \Longrightarrow \quad \omega _{1}(Sx,Ty) \leq \bigl(1+\omega _{1}(x,y) \bigr)^{k}-1. $$