1 Introduction

Banach contraction principle in metric spaces is one of the most important results in fixed theory and nonlinear analysis in general. Since 1922, when Stefan Banach [1] formulated the concept of contraction and posted a famous theorem, scientists around the world have published new results related to the generalization of a metric space or with contractive mappings (see [124]). Banach contraction principle is considered to be the initial result of the study of fixed point theory in metric spaces.

In the year 1989, Bakhtin introduced the concept of b-metric spaces as a generalization of metric spaces [6]. Later several authors proved so many results on b-metric spaces (see [1316]). Mustafa and Sims defined the concept of a generalized metric space which is called a G-metric space [12]. Sedghi, Shobe and Aliouche gave the notion of an S-metric space and proved some fixed point theorems for a self-mapping on a complete S-metric space [22]. Aghajani, Abbas and Roshan presented a new type of metric which is called \(G_{b}\)-metric and studied some properties of this metric [2].

Recently Sedghi et al. [20] defined \(S_{b}\)-metric spaces using the concept of S-metric spaces [22].

The aim of this paper is to prove some unique fixed point theorems for generalized contractive conditions in complete \(S_{b}\)-metric spaces. Also, we give applications to integral equations as well as homotopy theory. Throughout this paper \(R, R^{+}\) and N denote the sets of all real numbers, non-negative real numbers and positive integers, respectively.

First we recall some definitions, lemmas and examples.

2 Preliminaries

Definition 2.1

[22]

Let X be a non-empty set. An S-metric on X is a function \(S:X^{3} \to[0,+\infty) \) that satisfies the following conditions for each \(x,y,z,a \in X\):

\((S1)\)::

\(0 < S(x, y, z) \) for all \(x,y,z \in X\) with \(x \neq y \neq z \neq x\),

\((S2)\)::

\(S(x, y, z) = 0 \mbox{ if and only if } x = y = z\),

\((S3)\)::

\(S(x,y,z) \leq S(x ,x, a) + S(y, y, a) + S(z, z, a)\) for all \(x,y,z,a \in X\).

Then the pair \((X, S)\) is called an S-metric space.

Definition 2.2

[20]

Let X be a non-empty set and \(b \geq1\) be a given real number. Suppose that a mapping \(S_{b}:X^{3} \to\mathcal{[}0,\infty ) \) is a function satisfying the following properties:

\((S_{b} 1)\) :

\(0 < S_{b}(x,y,z)\) for all \(x,y,z \in X \) with \(x \neq y \neq z \neq x \),

\((S_{b} 2)\) :

\(S_{b}(x, y, z) = 0 \mbox{ if and only if } x = y = z\),

\((S_{b} 3)\) :

\(S_{b}(x,y,z) \leq b(S_{b}(x, x, a) + S_{b}(y, y, a) + S_{b}(z, z, a))\) for all \(x,y,z,a \in X\).

Then the function \(S_{b}\) is called an \(S_{b}\)-metric on X and the pair \((X,S_{b})\) is called an \(S_{b}\)-metric space.

Remark 2.3

[20]

It should be noted that the class of \(S_{b}\)-metric spaces is effectively larger than that of S-metric spaces. Indeed each S-metric space is an \(S_{b}\)-metric space with \(b=1\).

The following example shows that an \(S_{b}\)-metric on X need not be an S-metric on X.

Example 2.4

[20]

Let \((X,S)\) be an S-metric space and \(S_{*}(x,y,z) = S(x,y,z)^{p}\), where \(p>1\) is a real number. Note that \(S_{*}\) is an \(S_{b}\)-metric with \(b = 2^{2(p-1)}\). Also, \((X,S_{*})\) is not necessarily an S-metric space.

Definition 2.5

[20]

Let \((X,S_{b})\) be an \(S_{b}\)-metric space. Then, for \(x \in X\), \(r > 0\), we define the open ball \(B_{S_{b}} (x,r)\) and the closed ball \(B_{S_{b}} [x,r]\) with center x and radius r as follows, respectively:

$$\begin{aligned} &B_{S_{b}} (x,r) = \bigl\{ y \in X: S_{b}(y,y,x) < r\bigr\} , \\ &B_{S_{b}} [x,r] = \bigl\{ y \in X: S_{b}(y,y,x) \le r\bigr\} . \end{aligned}$$

Lemma 2.6

[20]

In an \(S_{b}\)-metric space, we have

$$S_{b}(x,x,y) \le b S_{b}(y,y,x) $$

and

$$S_{b}(y,y,x) \le b S_{b}(x,x,y). $$

Lemma 2.7

[20]

In an \(S_{b}\)-metric space, we have

$$S_{b}(x,x,z) \le2 b S_{b}(x,x,y)+b^{2} S_{b}(y,y,z). $$

Definition 2.8

[20]

If \((X,S_{b})\) is an \(S_{b}\)-metric space, a sequence \(\{x_{n}\}\) in X is said to be:

  1. (1)

    \(S_{b}\)-Cauchy sequence if, for each \(\epsilon> 0\), there exists \(n_{0} \in\mathcal {N}\) such that \(S_{b}(x_{n},x_{n},x_{m}) < \epsilon\) for each \(m,n \geq n_{0}\).

  2. (2)

    \(S_{b}\)-convergent to a point \(x \in X\) if, for each \(\epsilon> 0\), there exists a positive integer \(n_{0}\) such that \(S_{b}(x_{n},x_{n},x) < \epsilon\) or \(S_{b}(x,x,x_{n}) < \epsilon\) for all \(n \geq n_{0}\), and we denote \(\mathop{\lim} _{n \rightarrow\infty}x_{n} = x\).

Definition 2.9

[20]

An \(S_{b}\)-metric space \((X,S_{b})\) is called complete if every \(S_{b}\)-Cauchy sequence is \(S_{b}\)-convergent in X.

Lemma 2.10

[20]

If \((X,S_{b})\) is an \(S_{b}\)-metric space with \(b\geq1\), and suppose that \(\{x_{n}\}\) is \(S_{b}\)-convergent to x, then we have

$$\mathrm{(i)}\quad \frac{1}{2b}S_{b}(y,x,x) \le\mathop{\lim} _{n \rightarrow\infty} \inf S_{b}(y,y,x_{n}) \le\mathop{\lim} _{n \rightarrow\infty} \sup S_{b}(y,y,x_{n}) \le2b S_{b}(y,y,x) $$

and

$$\mathrm{(ii)}\quad \frac{1}{b^{2}}S_{b}(x,x,y) \le\mathop{\lim} _{n \rightarrow\infty} \inf S_{b}(x_{n},x_{n},y) \le\mathop{\lim} _{n \rightarrow\infty} \sup S_{b}(x_{n},x_{n},y) \le b^{2} S_{b}(x,x,y) $$

for all \(y \in X\).

In particular, if \(x=y\), then we have \(\mathop{\lim} _{n \rightarrow \infty} S_{b}(x_{n},x_{n},y) = 0\).

Now we prove our main results.

3 Results and discussions

Definition 3.1

Let \((X, S_{b}, \preceq)\) be a partially ordered complete \(S_{b}\)-metric space which is said to be regular if every two elements of X are comparable,

$$\mbox{i.e., if } x, y \in X \Rightarrow\mbox{ either } x \preceq y \mbox{ or } y \preceq x. $$

Definition 3.2

Let \((X, S_{b}, \preceq)\) be a partially ordered complete \(S_{b}\)-metric space which is also regular; let \(f: X \to X \) be a mapping. We say that f satisfies \((\psi, \phi)\)-contraction if there exist \(\psi, \phi : [0, \infty) \to[0, \infty)\) such that

(3.2.1):

f is non-decreasing,

(3.2.2):

ψ is continuous, monotonically non-decreasing and ϕ is lower semi-continuous,

(3.2.3):

\(\psi(t) = 0 = \phi(t)\) if and only if \(t= 0\),

(3.2.4):

\(\psi (4b^{4} {S_{b} ( {fx, fx, fy} )} ) \le \psi ( { M_{f}^{i} ( {x,y} )} ) - \phi ( {M_{f}^{i} ( {x,y} )} )\), \(\forall x, y \in X\), \(x \preceq y\), \(i = 3, 4, 5\) and

$$\begin{aligned} &M_{f}^{5} ( {x,y} ) = \max \left \{ {S_{b}(x, x,y), S_{b}(x, x,fx),S_{b}(y, y, fy),S_{b}(x, x,fy), S_{b}(y, y, fx) } \right \}, \\ &M_{f}^{4} ( {x,y} ) = \max \left \{ {S_{b}(x, x,y), S_{b}(x, x,fx),S_{b}(y, y, fy), \frac{1}{4b^{4}} \bigl[S_{b}(x, x,fy)+S_{b}(y, y, fx) \bigr] } \right \}, \\ &M_{f}^{3} ( {x,y} ) = \max\biggl\{ S_{b}(x, x,y), \frac{1}{4b^{4}} \bigl[S_{b}(x, x,fx)+S_{b}(y, y, fy) \bigr],\\ &\phantom{M_{f}^{3} ( {x,y} ) =}\frac{1}{4b^{4}} \bigl[S_{b}(x, x,fy)+S_{b}(y, y, fx) \bigr] \biggr\} . \end{aligned}$$

Definition 3.3

Suppose that \((X, \preceq)\) is a partially ordered set and f is a mapping of X into itself. We say that f is non-decreasing if for every \(x, y \in X\),

$$ x \preceq y \mbox{ implies that } f x \preceq f y. $$
(1)

Theorem 3.4

Let \((X,S_{b}, \preceq)\) be an ordered complete \(S_{b}\) metric space, which is also regular, and let \(f : X \to X \) satisfy \((\psi, \phi )\)-contraction with \(i = 5\). If there exists \(x_{0} \in X\) with \(x_{0} \preceq f x_{0}\), then f has a unique fixed point in X.

Proof

Since f is a mapping from X into X, there exists a sequence \(\{x_{n} \}\) in X such that

$$x_{n+1} = f x_{n}, \quad n = 0, 1, 2, 3, \ldots. $$

Case (i): If \(x_{n} = x_{n+1}\), then \(x_{n}\) is a fixed point of f.

Case (ii): Suppose \(x_{n} \neq x_{n+1}\ \forall n \).

Since \(x_{0} \preceq fx_{0} = x_{1}\) and f is non-decreasing, it follows that

$$x_{0} \preceq f x_{0} \preceq f^{2} x_{0} \preceq f^{3} x_{0} \preceq\cdots \preceq f^{n} x_{0} \preceq f^{n+1} x_{0} \preceq\cdots. $$

Now

$$\begin{aligned} \psi \bigl(4b^{4} S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr) \bigr) &= \psi \bigl(4b^{4} S_{b} ( fx_{0}, fx_{0}, fx_{1} ) \bigr) \\ & \leq\psi \bigl(M_{f}^{5} ( x_{0},x_{1} ) \bigr) - \phi \bigl(M_{f}^{5} ( x_{0},x_{1} ) \bigr), \end{aligned}$$

where

$$\begin{aligned} M_{f}^{5} ( x_{0},x_{1} ) & = \max \left \{ \begin{matrix} S_{b} ( x_{0}, x_{0}, x_{1} ), S_{b} ( x_{0}, x_{0}, fx_{0} ), S_{b} ( x_{1}, x_{1}, fx_{1} )\\ S_{b} ( x_{0}, x_{0}, f^{2}x_{0} ), S_{b} ( fx_{0}, fx_{0}, f x_{0} ) \end{matrix} \right \} \\ & = \max \left \{ S_{b} ( x_{0}, x_{0}, fx_{0} ), S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr), S_{b} \bigl( x_{0}, x_{0}, f^{2}x_{0} \bigr) \right \} . \end{aligned}$$

Therefore

$$\begin{aligned} &\psi \bigl(4b^{4} S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr) \bigr) \\ &\quad \leq \psi \left (\max \left \{ S_{b} ( x_{0}, x_{0}, fx_{0} ), S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr), S_{b} \bigl( x_{0}, x_{0}, f^{2}x_{0} \bigr) \right \} \right ) \\ &\qquad{} - \phi \left (\max \left \{ S_{b} ( x_{0}, x_{0}, fx_{0} ), S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr), S_{b} \bigl( x_{0}, x_{0}, f^{2}x_{0} \bigr) \right \} \right ) \\ &\quad \leq \psi \left (\max \left \{ S_{b} ( x_{0}, x_{0}, fx_{0} ), S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr), S_{b} \bigl( x_{0}, x_{0}, f^{2}x_{0} \bigr) \right \} \right ). \end{aligned}$$

By the definition of ψ, we have that

$$ S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr) \leq \max \left \{ \begin{matrix} {\frac{1}{4b^{4}} S_{b} ( x_{0}, x_{0}, fx_{0} )} \\ {\frac{1}{4b^{4}} S_{b} ( fx_{0}, fx_{0}, f^{2}x_{0} )}\\ {\frac{1}{4b^{4}} S_{b} ( x_{0}, x_{0}, f^{2}x_{0} )} \end{matrix} \right \}. $$
(2)

But

$$\begin{aligned} \frac{1}{4b^{4}} S_{b} \bigl( x_{0}, x_{0}, f^{2}x_{0} \bigr)&\leq \frac{1}{4b^{4}} \bigl[2b S_{b} ( x_{0}, x_{0}, fx_{0} ) + b^{2} S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr) \bigr] \\ &\leq \max \biggl\{ \frac{1}{b^{3}} S_{b} ( x_{0}, x_{0}, fx_{0} ) , \frac{1}{2b^{2}} S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr) \biggr\} . \end{aligned}$$

From (2) we have that

$$\begin{aligned} S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr) \leq \max \biggl\{ \frac{1}{b^{3}} S_{b} ( x_{0}, x_{0}, fx_{0} ) , \frac{1}{2b^{2}} S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr) \biggr\} . \end{aligned}$$

If \(\frac{1}{2b^{2}} S_{b} ( fx_{0}, fx_{0}, f^{2}x_{0} )\) is maximum, we get a contradiction. Hence

$$ S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr) \leq \frac{1}{b^{3}} S_{b} ( x_{0}, x_{0}, fx_{0} ). $$
(3)

Also

$$\begin{aligned} \psi \bigl(4b^{4} S_{b} \bigl( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} \bigr) \bigr) &= \psi \bigl(4b^{4} S_{b} ( fx_{1}, fx_{1}, fx_{2} ) \bigr) \\ & \leq\psi \bigl(M_{f}^{5} ( x_{1},x_{2} ) \bigr) - \phi \bigl(M_{f}^{4} ( x_{1},x_{2} ) \bigr), \end{aligned}$$

where

$$\begin{aligned} M_{f}^{5} ( x_{1},x_{2} ) & = \max \left \{ \begin{matrix} S_{b} ( fx_{0}, fx_{0}, f^{2}x_{0} ), S_{b} ( fx_{0}, fx_{0}, f^{2}x_{0} ), S_{b} ( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} )\\ S_{b} ( fx_{0}, fx_{0}, f^{3}x_{0} ), S_{b} ( f^{2}x_{0}, f^{2}x_{0}, f^{2} x_{0} ) \end{matrix} \right \} \\ & = \max \left \{ S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr), S_{b} \bigl( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} \bigr), S_{b} \bigl( fx_{0}, fx_{0}, f^{3}x_{0} \bigr) \right \} . \end{aligned}$$

Therefore

$$\begin{aligned} &\psi \bigl(4b^{4} S_{b} \bigl( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} \bigr) \bigr)\\ &\quad\leq \psi \left (\max \left \{ \begin{matrix} S_{b} ( fx_{0}, fx_{0}, f^{2}x_{0} ), S_{b} ( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} )\\ S_{b} ( fx_{0}, fx_{0}, f^{3}x_{0} ) \end{matrix} \right \} \right ) \\ &\qquad{} - \phi \left (\max \left \{ \begin{matrix} S_{b} ( fx_{0}, fx_{0}, f^{2}x_{0} ), S_{b} ( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} )\\ S_{b} ( fx_{0}, fx_{0}, f^{3}x_{0} ) \end{matrix} \right \} \right ) \\ &\quad\leq \psi \left (\max \left \{ \begin{matrix} S_{b} ( fx_{0}, fx_{0}, f^{2}x_{0} ), S_{b} ( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} )\\ S_{b} ( fx_{0}, fx_{0}, f^{3}x_{0} ) \end{matrix} \right \} \right ). \end{aligned}$$

By the definition of ψ, we have that

$$ S_{b} \bigl( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} \bigr) \leq \max \left \{ \begin{matrix} {\frac{1}{4b^{4}} S_{b} ( fx_{0}, fx_{0}, f^{2}x_{0} )} \\ {\frac{1}{4b^{4}} S_{b} ( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} )} \\ {\frac{1}{4b^{4}} S_{b} ( fx_{0}, fx_{0}, f^{3}x_{0} )} \end{matrix} \right \}. $$
(4)

But

$$\begin{aligned} &\frac{1}{4b^{4}} S_{b} \bigl( fx_{0}, fx_{0}, f^{3}x_{0} \bigr)\\ &\quad\leq \frac {1}{4b^{4}} \bigl[2b S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr) + b^{2} S_{b} \bigl( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} \bigr) \bigr] \\ &\quad\leq \max \biggl\{ \frac{1}{b^{3}} S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr) , \frac{1}{2b^{2}} S_{b} \bigl( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} \bigr) \biggr\} . \end{aligned}$$

From (4) we have that

$$\begin{aligned} S_{b} \bigl( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} \bigr) \leq \max \biggl\{ \frac {1}{b^{3}} S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr) , \frac{1}{2 b^{2}} S_{b} \bigl( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} \bigr) \biggr\} . \end{aligned}$$

If \(\frac{1}{2b^{2}} S_{b} ( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} )\) is maximum, we get a contradiction. Hence

$$\begin{aligned} S_{b} \bigl( f^{2}x_{0}, f^{2}x_{0}, f^{3}x_{0} \bigr) \leq& \frac{1}{b^{3}} S_{b} \bigl( fx_{0}, fx_{0}, f^{2}x_{0} \bigr) \\ \le&\frac{1}{(b^{3})^{2}} S_{b} ( x_{0}, x_{0}, fx_{0} ) . \end{aligned}$$

Continuing this process, we can conclude that

$$\begin{aligned} S_{b} \bigl( f^{n}x_{0}, f^{n}x_{0}, f^{n+1}x_{0} \bigr) &\leq \frac {1}{(b^{3})^{n}} S_{b} ( x_{0}, x_{0}, f x_{0} ) \\ &\to 0 \quad\mbox{as } n \to\infty. \end{aligned}$$

That is,

$$\begin{aligned} \mathop{\lim} _{n \rightarrow\infty} S_{b} \bigl( f^{n}x_{0}, f^{n}x_{0}, f^{n+1}x_{0} \bigr) = 0. \end{aligned}$$
(5)

Now we prove that \(\{ f^{n} x_{0} \}\) is an \(S_{b}\)-Cauchy sequence in \((X, S_{b})\). On the contrary, we suppose that \(\{ f^{n} x_{0} \}\) is not \(S_{b}\)-Cauchy. Then there exist \(\epsilon> 0\) and monotonically increasing sequences of natural numbers \(\{m_{k}\}\) and \(\{ n_{k}\}\) such that \(n_{k} > m_{k}\).

$$ S_{b} \bigl( f^{m_{k}}x_{0}, f^{m_{k}}x_{0}, f^{n_{k}}x_{0} \bigr) \geq\epsilon $$
(6)

and

$$ S_{b} \bigl( f^{m_{k}}x_{0}, f^{m_{k}}x_{0}, f^{n_{k} - 1}x_{0} \bigr) < \epsilon . $$
(7)

From (6) and (7), we have

$$\begin{aligned} \epsilon\le{}& S_{b} \bigl( f^{m_{k}}x_{0}, f^{m_{k}}x_{0}, f^{n_{k}}x_{0} \bigr) \\ \le{}& 2b S_{b} \bigl( f^{m_{k}}x_{0}, f^{m_{k}}x_{0}, f^{m_{k}+1}x_{0} \bigr) \\ &{}+ b^{2} S_{b} \bigl( f^{m_{k}+1}x_{0}, f^{m_{k}+1}x_{0}, f^{n_{k}}x_{0} \bigr). \end{aligned}$$

So that

$$\begin{aligned} 4 b^{2} \epsilon\le{}& 8 b^{3} S_{b} \bigl( f^{m_{k}}x_{0}, f^{m_{k}}x_{0}, f^{m_{k}+1}x_{0} \bigr)\\ &{} + 4b^{4} S_{b} \bigl( f^{m_{k}+1}x_{0}, f^{m_{k}+1}x_{0}, f^{n_{k}}x_{0} \bigr). \end{aligned}$$

Letting \(k \to\infty\) and applying ψ on both sides, we have that

$$\begin{aligned} \psi \bigl(4 b^{2} \epsilon \bigr) &\le \mathop{\lim} _{k \rightarrow \infty} \psi \bigl(4b^{4} S_{b} \bigl( f^{m_{k}+1}x_{0}, f^{m_{k}+1}x_{0}, f^{n_{k}}x_{0} \bigr) \bigr) \\ &= \mathop{\lim} _{k \rightarrow\infty} \psi \bigl(4b^{4} S_{b} ( fx_{m_{k}}, fx_{m_{k}}, fx_{n_{k}-1} ) \bigr) \\ &\leq \mathop{\lim} _{k \rightarrow\infty} \psi \bigl( M_{f}^{5} ( x_{m_{k}}, x_{n_{k}-1} ) \bigr) - \mathop{\lim} _{k \rightarrow \infty} \phi \bigl( M_{f}^{5} ( x_{m_{k}}, x_{n_{k}-1} ) \bigr), \end{aligned}$$
(8)

where

$$\begin{aligned} & \mathop{\lim} _{k \rightarrow\infty} M_{f}^{5} ( x_{m_{k}}, x_{n_{k}-1} ) \\ &\quad= \mathop{\lim} _{k \rightarrow\infty} \max \left \{ \begin{matrix} {S_{b} ( f^{m_{k}}x_{0}, f^{m_{k}}x_{0}, f^{n_{k}-1}x_{0} ), S_{b} ( f^{m_{k}}x_{0}, f^{m_{k}}x_{0}, f^{m_{k}+1}x_{0} ) }\\ {S_{b} ( f^{n_{k}-1}x_{0} , f^{n_{k}-1}x_{0} , f^{n_{k}}x_{0} )}, S_{b} ( f^{m_{k}}x_{0}, f^{m_{k}}x_{0}, f^{n_{k}}x_{0} ) \\ S_{b} ( f^{n_{k}-1}x_{0},f^{n_{k}-1}x_{0}, f^{m_{k}+1}x_{0} ) \end{matrix} \right \} \\ &\quad < \mathop{\lim} _{k \rightarrow\infty} \max \left \{ {\epsilon, 0, 0, } S_{b} \bigl( f^{m_{k}}x_{0}, f^{m_{k}}x_{0}, f^{n_{k}}x_{0} \bigr), S_{b} \bigl( f^{n_{k}-1}x_{0},f^{n_{k}-1}x_{0}, f^{m_{k}+1}x_{0} \bigr) \right \}. \end{aligned}$$

But

$$\begin{aligned} \mathop{\lim} _{k \rightarrow\infty} S_{b} \bigl( f^{m_{k}}x_{0}, f^{m_{k}}x_{0}, f^{n_{k}}x_{0} \bigr)&\le \mathop{\lim} _{k \rightarrow \infty} \left [ \begin{matrix} 2b S_{b} ( f^{m_{k}}x_{0}, f^{m_{k}}x_{0}, f^{n_{k}-1}x_{0} )\\ {}+ b^{2} S_{b} ( f^{n_{k}-1}x_{0}, f^{n_{k}-1}x_{0}, f^{n_{k}}x_{0} ) \end{matrix} \right ] < 2 b \epsilon. \end{aligned}$$

Also

$$\begin{aligned} \mathop{\lim} _{k \rightarrow\infty} S_{b} \bigl( f^{n_{k}-1}x_{0},f^{n_{k}-1}x_{0}, f^{m_{k}+1}x_{0} \bigr) &\le \mathop {\lim} _{k \rightarrow\infty} \left [ \begin{matrix} 2b S_{b} ( f^{n_{k}-1}x_{0},f^{n_{k}-1}x_{0}, f^{m_{k}}x_{0} )\\ {}+ b^{2}S_{b} ( f^{m_{k}}x_{0},f^{m_{k}}x_{0}, f^{m_{k}+1}x_{0} ) \end{matrix} \right ] < 2 b^{2} \epsilon. \end{aligned}$$

Therefore

$$\begin{aligned} \mathop{\lim} _{k \rightarrow\infty} M_{f}^{5} ( x_{m_{k}}, x_{n_{k}-1} ) \le& \max \left \{ {\epsilon, 2 b \epsilon, 2 b^{2} \epsilon} \right \} \\ =& 2 b^{2} \epsilon. \end{aligned}$$

From (8), by the definition of ψ, we have that

$$4 b ^{2} \epsilon\le 2 b^{2} \epsilon, $$

which is a contradiction. Hence \(\{ f^{n} x_{0} \}\) is an \(S_{b}\)-Cauchy sequence in complete regular \(S_{b}\)-metric spaces \((X, S_{b}, \preceq)\). By the completeness of \((X, S_{b})\), it follows that the sequence \(\{ f^{n} x_{0} \}\) converges to α in \(( X, S_{b} )\). Thus

$$\mathop{\lim} _{k \rightarrow\infty} f^{n} x_{0} = \alpha= \mathop{\lim } _{k \rightarrow\infty} f^{n+1} x_{0}. $$

Since \(x_{n}, \alpha\in X\) and X is regular, it follows that either \(x_{n} \preceq\alpha\) or \(\alpha\preceq x_{n}\).

Now we have to prove that α is a fixed point of f.

Suppose \(f\alpha\neq\alpha\), by Lemma (2.10), we have that

$$\frac{1}{2b} S_{b}(f\alpha, f\alpha, \alpha) \le\mathop{\lim} _{n \rightarrow\infty} \inf S_{b} (f\alpha, f\alpha, f^{n+1}x_{0} ). $$

Now from (3.2.4) and applying ψ on both sides, we have that

$$\begin{aligned} \psi \bigl(2b^{3} S_{b}(f\alpha, f\alpha, \alpha) \bigr) \le{}& \mathop {\lim} _{n \rightarrow\infty} \inf \psi \bigl(4 b^{4} S_{b} \bigl(f\alpha, f\alpha, f^{n+1}x_{0} \bigr) \bigr) \\\le{}& \mathop{\lim} _{n \rightarrow\infty} \inf \psi \bigl( M_{f}^{5} ( \alpha, x_{n} ) \bigr) - \mathop{\lim} _{n \rightarrow\infty} \inf \phi \bigl( M_{f}^{5} ( \alpha, x_{n} ) \bigr). \end{aligned}$$
(9)

Here

$$\begin{aligned} \mathop{\lim} _{n \rightarrow\infty} \inf M_{f}^{5} ( \alpha, x_{n} ) &= \mathop{\lim} _{n \rightarrow\infty} \inf\max \left \{ \begin{matrix} {S_{b} (\alpha, \alpha, x_{n} ), S_{b} (\alpha, \alpha, f\alpha ), S_{b} (x_{n}, x_{n}, fx_{n} ) }\\ {S_{b} (\alpha, \alpha, fx_{n} ), S_{b} (x_{n}, x_{n}, f\alpha ) } \end{matrix} \right \} \\ &\le \mathop{\lim} _{n \rightarrow\infty} \sup\max \left \{ {0, S_{b} ( \alpha, \alpha, f\alpha ), 0, 0, S_{b} (x_{n}, x_{n}, f\alpha ) } \right \} \\ & \le\max \left \{ S_{b} (\alpha, \alpha, f\alpha ), b^{2} S_{b} (\alpha, \alpha, f\alpha ) \right \} \\ &\le b^{3} S_{b} (f\alpha, f\alpha, \alpha ). \end{aligned}$$

Hence from (9) we have that

$$\begin{aligned} \psi \bigl(2 b^{3} S_{b}(f\alpha, f\alpha, \alpha) \bigr) & \le \psi \bigl(b^{3}S_{b} (\alpha, \alpha, f\alpha ) \bigr) - \mathop {\lim} _{n \rightarrow\infty} \inf \phi \bigl( M_{f}^{5} ( \alpha, x_{n} ) \bigr) \\ &\le \psi \bigl(b^{3} S_{b} (f\alpha, f\alpha, \alpha ) \bigr) , \end{aligned}$$

which is a contradiction. So that α is a fixed point of f.

Suppose that \(\alpha^{\ast}\) is another fixed point of f such that \(\alpha\neq\alpha^{\ast}\).

Consider

$$\begin{aligned} \psi \bigl( 4 b^{4} S_{b} \bigl(\alpha, \alpha, \alpha^{\ast} \bigr) \bigr) \le{}& \psi \bigl( M_{f}^{5} \bigl(\alpha, \alpha^{\ast} \bigr) \bigr) - \phi \bigl( M_{f}^{5} \bigl( \alpha, \alpha^{\ast} \bigr) \bigr) \\ = {}& \psi \bigl(\max \bigl\{ S_{b} \bigl(\alpha, \alpha, \alpha^{\ast} \bigr), S_{b} \bigl(\alpha^{\ast}, \alpha^{\ast}, \alpha \bigr) \bigr\} \bigr) \\ &{}- \phi \bigl(\max \bigl\{ S_{b} \bigl(\alpha, \alpha, \alpha^{\ast } \bigr), S_{b} \bigl(\alpha^{\ast}, \alpha^{\ast}, \alpha \bigr) \bigr\} \bigr) \\ \le{} & \psi \bigl(b S_{b} \bigl(\alpha, \alpha, \alpha^{\ast} \bigr) \bigr), \end{aligned}$$

which is a contradiction.

Hence α is a unique fixed point of f in \((X, S_{b} )\). □

Example 3.5

Let \(X = [0, 1]\) and \(S : X \times X \times X \to\mathbb {R}^{+}\) by \(S_{b}(x,y,z) = ( \vert y+z-2x \vert + \vert y-z \vert )^{2}\) and ⪯ by \(a \preceq b \iff a\le b\), then \((X, S_{b} , \preceq )\) is a complete ordered \(S_{b}\)-metric space with \(b = 4\). Define \(f: X \rightarrow X\) by \(f(x) = \frac{x}{32\sqrt{2}} \). Also define \(\psi,\phi:\mathbb{R}^{+} \to\mathbb{R}^{+}\) by \(\psi(t) = t \) and \(\phi(t) = \frac{t}{2}\).

$$\begin{aligned} \psi \bigl(4 b^{4} S_{b}(fx, fx, fy) \bigr) &= 4 b^{4} \bigl( \vert fx + fy - 2 fx \vert + \vert fx - fy \vert \bigr)^{2} \\ &= 4 b^{4} \biggl(2 \biggl\vert \frac{x}{32\sqrt{2}} - \frac{y}{32\sqrt {2}} \biggr\vert \biggr)^{2} \\ &= \frac{4 b^{4}}{8 b^{4}}S_{b}(x,x, y) \\ &\le \frac{1}{2}M_{f}^{5}(x, y) \\ &\le \psi \bigl(M_{f}^{5}(x, y) \bigr) - \phi \bigl(M_{f}^{5}(x, y) \bigr), \end{aligned}$$

where

$$M_{f}^{5} ( {x,y} ) = \max \left \{ S_{b}(x, x,y), S_{b}(x, x,fx),S_{b}(y, y, fy),S_{b}(x, x,fy), S_{b}(y, y, fx) \right \}. $$

Hence, all the conditions of Theorem 3.4 are satisfied and 0 is a unique fixed point of f.

Theorem 3.6

Let \((X,S_{b}, \preceq)\) be an ordered complete \(S_{b}\) metric space, and let \(f : X \to X \) satisfy \((\psi, \phi)\)-contraction with \(i = 3\textit{ or }4\). If there exists \(x_{0} \in X\) with \(x_{0} \preceq f x_{0}\), then f has a unique fixed point in X.

Proof

Follows along similar lines of Theorem 3.4 if we take \(M_{f}^{3} ( {x,y} )\) or \(M_{f}^{4} ( {x,y} )\) in place of \(M_{f}^{5} ( {x,y} )\) in Theorem 3.4. □

Theorem 3.7

Let \((X,S_{b}, \preceq)\) be an ordered complete \(S_{b}\) metric space, and let \(f : X \to X \) satisfy

$$4 b^{4} S_{b} ( {fx, fx, fy} ) \le M_{f}^{i} ( {x,y} ) - \varphi \bigl( {M_{f}^{i} ( {x,y} )} \bigr), $$

where \(\varphi:[0, \infty) \to[0, \infty) \) and i= 3 or 4 or 5. If there exists \(x_{0} \in X\) with \(x_{0} \preceq f x_{0}\), then f has a unique fixed point in X.

Proof

The proof follows from Theorems 3.4 and 3.6 by taking \(\psi(t) = t\) and \(\phi(t) = \varphi(t)\). □

Theorem 3.8

Let \((X,S_{b}, \preceq)\) be an ordered complete \(S_{b}\) metric space, and let \(f : X \to X \) satisfy

$$S_{b} ( {fx, fx, fy} ) \le\lambda M_{f}^{i} ( {x,y} ), $$

where \(\lambda\in [ {0, \frac{1}{4b^{4}}} )\) and \(i = 3, 4, 5\). If there exists \(x_{0} \in X\) with \(x_{0} \preceq f x_{0}\), then f has a unique fixed point in X.

3.1 Application to integral equations

In this section, we study the existence of a unique solution to an initial value problem as an application to Theorem 3.4.

Theorem 3.9

Consider the initial value problem

$$ x^{1} (t) = T \bigl(t, x(t) \bigr),\quad t \in I= [0, 1], x(0) = x_{0}, $$
(10)

where \(T: I \times [ {\frac{{x_{0} }}{4},\infty} ) \to [ {\frac{{x_{0} }}{4},\infty} )\) and \(x_{0} \in\mathbb{R}\). Then there exists a unique solution in \(C (I, [ {\frac{{x_{0} }}{4},\infty} ) )\) for initial value problem (10).

Proof

The integral equation corresponding to initial value problem (10) is

$$\begin{aligned} x(t) = x_{0} +3 b^{2} \int_{0}^{t} {T \bigl(s, x(s) \bigr)} \,ds . \end{aligned}$$

Let \(X =C (I, [ {\frac{{x_{0} }}{4},\infty} ) )\) and \(S_{b}(x,y,z) = ( \vert y+z-2x \vert + \vert y-z \vert )^{2} for x, y \in X\). Define \(\psi, \phi: [0, \infty) \to[0, \infty)\) by \(\psi(t) = t \), \(\phi(t)= \frac{5t}{9} \). Define \(f: X \to X\) by

$$ f(x) (t) = \frac{x_{0}}{3b^{2}} + \int_{0}^{t} {T \bigl(s, x(s) \bigr)} \,ds . $$
(11)

Now

$$\begin{aligned} &\psi \bigl(4 b^{4} S_{b}\bigl(fx(t), fx(t), fy(t)\bigr) \bigr) \\ &\quad = 4 b^{4} \bigl\{ { \bigl\vert fx(t)+ fy(t)-2fx(t) \bigr\vert + \bigl\vert fx(t)- fy(t) \bigr\vert } \bigr\} ^{2} \\ &\quad = 16 b^{4} \bigl\vert fx(t)- fy(t) \bigr\vert ^{2} \\ &\quad = \frac{16 b^{4}}{9b^{4}} \biggl\vert x_{0} + 3 b^{2} \int_{0}^{t} {T\bigl(s, x(s)\bigr)} \,ds - y_{0} - 3 b^{2} \int_{0}^{t} {T\bigl(s, y(s)\bigr)} \,ds \biggr\vert ^{2} \\ & \quad= \frac{16}{9} \bigl\vert x(t) - y(t) \bigr\vert ^{2} \\ &\quad = \frac{4}{9} S(x,x,y) \\ & \quad\le\frac{4}{9} M_{f}^{5}(x, y) \\ &\quad= \psi \bigl(M_{f}^{5}(x, y) \bigr) - \phi \bigl(M_{f}^{5}(x, y) \bigr) , \end{aligned}$$

where

$$M_{f}^{5} ( {x,y} ) = \max \left \{ {S_{b}(x, x,y), S_{b}(x, x,fx),S_{b}(y, y, fy), S_{b}(x, x,fy), S_{b}(y, y, fx) } \right \}. $$

It follows from Theorem 3.4 that f has a unique fixed point in X. □

3.2 Application to homotopy

In this section, we study the existence of a unique solution to homotopy theory.

Theorem 3.10

Let \((X, S_{b})\) be a complete \(S_{b}\)-metric space, U be an open subset of X and be a closed subset of X such that \(U \subseteq\overline{U}\). Suppose that \(H : \overline{U} \times[0, 1] \to X \) is an operator such that the following conditions are satisfied:

  1. (i)

    \(x \neq H(x, \lambda)\) for each \(x \in\partial{U}\) and \(\lambda \in[0, 1]\) (here ∂U denotes the boundary of U in X),

  2. (ii)

    \(\psi(4b^{4} S_{b}(H(x, \lambda),H(x, \lambda), H(y, \lambda) )) \leq\psi( S_{b}(x, x, y)) - \phi( S_{b}(x, x, y))\) \(\forall x, y \in\overline{U}\) and \(\lambda\in[0, 1]\), where \(\psi :[0,\infty) \to[0,\infty)\) is continuous, non-decreasing and \(\phi :[0,\infty) \to[0,\infty)\) is lower semi-continuous with \(\phi(t)>0\) for \(t>0\),

  3. (iii)

    there exists \(M\geq0\) such that

    $$S_{b} \bigl(H(x, \lambda),H(x, \lambda), H(x, \mu) \bigr) \leq M \vert \lambda - \mu \vert $$

    for every \(x \in\overline{U}\) and \(\lambda, \mu\in[0, 1]\).

Then \(H(\cdot, 0)\) has a fixed point if and only if \(H(\cdot, 1)\) has a fixed point.

Proof

Consider the set

$$A = \bigl\{ \lambda\in[0, 1] : x = H(x, \lambda) \mbox{ for }\mbox{ some }x \in U \bigr\} . $$

Since \(H(\cdot, 0)\) has a fixed point in U, we have that \(0 \in A\). So that A is a non-empty set.

We will show that A is both open and closed in \([0, 1]\), and so, by the connectedness, we have that \(A = [0, 1]\). As a result, \(H(\cdot, 1)\) has a fixed point in U. First we show that A is closed in \([0, 1]\). To see this, let \(\{ { \lambda_{n}} \}_{n = 1}^{\infty }\subseteq A\) with \(\lambda_{n} \to\lambda\in[0, 1]\) as \(n \to\infty \).

We must show that \(\lambda\in A\). Since \(\lambda_{n} \in A\) for \(n = 1, 2, 3, \ldots \) , there exists \(x_{n} \in U\) with \(x_{n} = H(x_{n}, \lambda _{n})\).

Consider

$$\begin{aligned} S_{b}(x_{n}, x_{n}, x_{n + 1}) ={}& S_{b}\bigl(H(x_{n},\lambda_{n}), H(x_{n},\lambda_{n}), H(x_{n+1}, \lambda_{n+1}) \bigr) \\ \leq{}&2b S_{b}\bigl(H(x_{n},\lambda_{n}), H(x_{n},\lambda_{n}), H(x_{n+1}, \lambda _{n})\bigr) \\ &{} + b^{2}S_{b}\bigl(H(x_{n+1}, \lambda_{n}), H(x_{n+1},\lambda_{n}), H(x_{n+1}, \lambda_{n+1})\bigr) \\ \leq{}& S_{b}\bigl(H(x_{n},\lambda_{n}), H(x_{n},\lambda_{n}), H(x_{n+1}, \lambda_{n})\bigr) + M \vert \lambda_{n} - \lambda_{n+1} \vert . \end{aligned}$$

Letting \(n \to\infty\), we get

$$\mathop{\lim} _{n \to\infty} S_{b}(x_{n}, x_{n}, x_{n + 1}) \leq \mathop{\lim} _{n \to\infty} S_{b} \bigl(H(x_{n},\lambda_{n}), H(x_{n},\lambda _{n}), H(x_{n+1}, \lambda_{n}) \bigr) + 0. $$

Since ψ is continuous and non-decreasing, we obtain

$$\begin{aligned} \mathop{\lim} _{n \to\infty} \psi\bigl(4b^{4} S_{b}(x_{n}, x_{n}, x_{n + 1})\bigr) &\leq\mathop{\lim} _{n \to\infty}\psi \bigl( 4b^{4} S_{b}\bigl(H(x_{n}, \lambda_{n}), H(x_{n},\lambda_{n}), H(x_{n+1}, \lambda_{n})\bigr)\bigr) \\ &\leq \mathop{\lim} _{n \to\infty} \bigl[ {\psi\bigl( S_{b}(x_{n}, x_{n}, x_{n+1})\bigr) - \phi\bigl( S_{b}(x_{n}, x_{n}, x_{n+1})\bigr)} \bigr]. \end{aligned}$$

By the definition of ψ, it follows that

$$\mathop{\lim} _{n \to\infty} \bigl(4 b^{4} -1 \bigr)S_{b} (x_{n}, x_{n}, x_{n+1} ) \leq0. $$

So that

$$ \mathop{\lim} _{n \to\infty} S_{b}(x_{n}, x_{n}, x_{n+1}) = 0 . $$
(12)

Now we prove that \(\{x_{n}\}\) is an \(S_{b}\)-Cauchy sequence in \((X, d_{p})\). On the contrary, suppose that \(\{x_{n} \}\) is not \(S_{b}\)-Cauchy.

There exists \(\epsilon> 0\) and monotone increasing sequences of natural numbers \(\{ m_{k}\}\) and \(\{ n_{k}\}\) such that \(n_{k} > m_{k}\),

$$ S_{b}(x_{m_{k}},x_{m_{k}}, x_{n_{k}}) \geq \epsilon $$
(13)

and

$$ S_{b}(x_{m_{k}}, x_{m_{k}}, x_{n_{k}-1}) < \epsilon. $$
(14)

From (13) and (14), we obtain

$$\begin{aligned} \epsilon&\leq S_{b}(x_{m_{k}}, x_{m_{k}}, x_{n_{k}}) \\ &\leq2 b S_{b}(x_{m_{k}},x_{m_{k}}, x_{m_{k} + 1}) + b^{2} S_{b}(x_{m_{k}+1}, x_{m_{k}+1}, x_{n_{k}}). \end{aligned}$$

Letting \(k \to\infty\) and applying ψ on both sides, we have that

$$ \psi \bigl(2b^{2} \epsilon \bigr) \leq \mathop{\lim} _{n \to\infty } \psi \bigl(4b^{4} S_{b}(x_{m_{k}+1}, x_{m_{k}+1}, x_{n_{k}}) \bigr). $$
(15)

But

$$\begin{aligned} &\mathop{\lim} _{n \to\infty}\psi \bigl( 4b^{4} S_{b}(x_{m_{k}+1}, x_{m_{k}+1}, x_{n_{k}}) \bigr)\\ & \quad= \mathop{\lim} _{n \to\infty}\psi \bigl( S_{b}\bigl( 4b^{4} H(x_{m_{k}+1}, \lambda_{m_{k}+1}), H(x_{m_{k}+1},\lambda_{m_{k}+1}), H(x_{n_{k}}, \lambda_{n_{k}})\bigr)\bigr) \\ &\quad\leq \mathop{\lim} _{n \to\infty} \bigl[ {\psi\bigl( S_{b}(x_{m_{k}+1}, x_{m_{k}+1}, x_{n_{k}})\bigr) - \phi\bigl( S_{b}(x_{m_{k}+1}, x_{m_{k}+1}, x_{n_{k}})\bigr)} \bigr]. \end{aligned}$$

It follows that

$$\mathop{\lim} _{n \to\infty} \bigl( 4b^{4} -1 \bigr) S_{b} (x_{m_{k}+1}, x_{m_{k}+1}, x_{n_{k}}) \leq0. $$

Thus

$$\mathop{\lim} _{n \to\infty} S_{b} (x_{m_{k}+1}, x_{m_{k}+1}, x_{n_{k}}) = 0. $$

Hence from (15) and the definition of ψ, we have that

$$\epsilon\le0, $$

which is a contradiction.

Hence \(\{x_{n} \}\) is an \(S_{b}\)-Cauchy sequence in \((X, S_{b})\) and, by the completeness of \((X, S_{b})\), there exists \(\alpha\in U\) with

$$\begin{aligned} &\mathop{\lim} _{n \to\infty}x_{n} = \alpha= \mathop{\lim} _{n \to\infty} x_{n+1}, \\ &\psi \bigl(2b^{3} S_{b}\bigl(H(\alpha, \lambda), H(\alpha, \lambda), \alpha \bigr) \bigr) \leq\mathop{\lim} _{n \to\infty} \inf\psi \bigl(4b^{4} S_{b}\bigl(H(\alpha, \lambda), H(\alpha, \lambda), H(x_{n}, \lambda)\bigr) \bigr) \\ &\phantom{\psi \bigl(2b^{3} S_{b}\bigl(H(\alpha, \lambda), H(\alpha, \lambda), \alpha \bigr) \bigr)}\leq\mathop{\lim} _{n \to\infty} \inf\bigl[\psi\bigl( S_{b}(\alpha, \alpha, x_{n})\bigr) - \phi\bigl( S_{b}(\alpha, \alpha, x_{n})\bigr) \bigr] \\ &\phantom{\psi \bigl(2b^{3} S_{b}\bigl(H(\alpha, \lambda), H(\alpha, \lambda), \alpha \bigr) \bigr)}= 0. \end{aligned}$$
(16)

It follows that \(\alpha= H(\alpha, \lambda)\).

Thus \(\lambda\in A\). Hence A is closed in \([0, 1]\).

Let \(\lambda_{0} \in A\). Then there exists \(x_{0} \in U\) with \(x_{0} = H(x_{0}, \lambda_{0})\).

Since U is open, there exists \(r > 0\) such that \(B_{S_{b}}(x_{0}, r) \subseteq U\).

Choose \(\lambda\in(\lambda_{0} - \epsilon, \lambda_{0} + \epsilon)\) such that \(\vert \lambda- \lambda_{0} \vert \leq\frac{1}{M^{n}} < \epsilon\).

Then, for \(x \in\overline{B_{p} (x_{0}, r)} = \{x \in X / S_{b}(x, x, x_{0}) \leq r + b^{2} S_{b}(x_{0}, x_{0}, x_{0}) \}\),

$$\begin{aligned} &S_{b}\bigl(H(x, \lambda), H(x, \lambda), x_{0}\bigr)\\ &\quad= S_{b}\bigl(H(x,\lambda),H(x,\lambda ), H(x_{0}, \lambda_{0})\bigr) \\ &\quad\leq2 b S_{b}\bigl(H(x,\lambda),H(x,\lambda), H(x, \lambda_{0})\bigr) + b^{2} S_{b}\bigl(H(x, \lambda_{0}), H(x,\lambda_{0}), H(x_{0}, \lambda_{0})\bigr) \\ &\quad\leq2 b M \vert \lambda- \lambda_{0} \vert + b^{2} S_{b}\bigl(H(x, \lambda_{0}), H(x,\lambda_{0}), H(x_{0}, \lambda_{0})\bigr) \\ &\quad\leq\frac{2 b}{M^{n-1}} + b^{2} S_{b}\bigl(H(x, \lambda_{0}), H(x,\lambda_{0}), H(x_{0}, \lambda_{0})\bigr). \end{aligned}$$

Letting \(n \to\infty\), we obtain

$$S_{b} \bigl(H(x, \lambda), H(x, \lambda), x_{0} \bigr) \leq b^{2} S_{b} \bigl(H(x, \lambda_{0}), H(x, \lambda_{0}), H(x_{0}, \lambda_{0}) \bigr). $$

Since ψ is continuous and non-decreasing, we have

$$\begin{aligned} \psi\bigl(S_{b}\bigl(H(x, \lambda), H(x, \lambda), x_{0} \bigr)\bigr) &\leq\psi\bigl(4b^{2}S_{b}\bigl(H(x, \lambda), H(x, \lambda), x_{0}\bigr)\bigr) \\ &\leq \psi\bigl( 4b^{4} S_{b}\bigl(H(x, \lambda_{0}), H(x,\lambda_{0}), H(x_{0}, \lambda _{0})\bigr)\bigr) \\ &\leq\psi\bigl( S_{b}(x, x, x_{0})\bigr) - \phi\bigl( S_{b}(x, x, x_{0})\bigr) \\ &\leq \psi\bigl( S_{b}(x, x, x_{0})\bigr). \end{aligned}$$

Since ψ is non-decreasing, we have

$$\begin{aligned} S_{b}\bigl(H(x, \lambda),H(x, \lambda), x_{0}\bigr) &\leq S_{b}(x, x, x_{0}) \\ &\leq r + b^{2} S_{b}(x_{0}, x_{0}, x_{0}). \end{aligned}$$

Thus, for each fixed \(\lambda\in(\lambda_{0} - \epsilon, \lambda_{0} + \epsilon)\), \(H(\cdot, \lambda): \overline{B_{p} (x_{0}, r)} \to\overline {B_{p} (x_{0}, r)}\).

Since also (ii) holds and ψ is continuous and non-decreasing and ϕ is continuous with \(\phi(t)> 0\) for \(t > 0\), then all the conditions of Theorem (3.10) are satisfied.

Thus we deduce that \(H(\cdot, \lambda)\) has a fixed point in . But this fixed point must be in U since (i) holds.

Thus \(\lambda\in A\) for any \(\lambda\in(\lambda_{0} - \epsilon, \lambda _{0} + \epsilon)\).

Hence \((\lambda_{0} - \epsilon, \lambda_{0} + \epsilon) \subseteq A\) and therefore A is open in [0, 1].

For the reverse implication, we use the same strategy. □

Corollary 3.11

Let \((X, p)\) be a complete partial metric space, U be an open subset of X and \(H : \overline{U} \times[0, 1] \to X \) with the following properties:

  1. (1)

    \(x \neq H(x, t)\) for each \(x \in\partial U\) and each \(\lambda \in[0, 1]\) (here ∂U denotes the boundary of U in X),

  2. (2)

    there exist \(x, y \in\overline{U} \) and \(\lambda\in[0, 1], L \in [0, \frac{1}{4b^{4}} )\) such that

    $$S_{b} \bigl(H(x, \lambda),H(x, \lambda), H(y, \mu) \bigr) \leq L S_{b}(x, x, y), $$
  3. (3)

    there exists \(M \geq0\) such that

    $$S_{b} \bigl(H(x, \lambda), H(x, \lambda), H(x, \mu) \bigr) \leq M \vert \lambda- \mu \vert $$

    for all \(x \in\overline{U} \) and \(\lambda, \mu\in[0, 1]\).

If \(H(\cdot, 0)\) has a fixed point in U, then \(H(\cdot, 1)\) has a fixed point in U.

Proof

Proof follows by taking \(\psi(x) = x, \phi(x) = x - Lx \mbox{ with } L \in [0, \frac{1}{4b^{4}} )\) in Theorem (3.10). □

4 Conclusions

In this paper we conclude some applications to homotopy theory and integral equations by using fixed point theorems in partially ordered \(S_{b}\)-metric spaces.