1 Introduction and preliminaries

Let p, q be quantum constants satisfying \(0< q< p\leq1\). The \((p,q)\)-number, \([n]_{p,q}\), is defined by

$$ [n]_{p,q}=\frac{p^{n}-q^{n}}{p-q}. $$

If n is a positive integer, then

$$[n]_{p,q}=p^{n-1}+p^{n-2}q+\cdots +pq^{n-2}+q^{n-1}\quad \text{and} \quad\lim_{(p,q)\to(1,1)}[n]_{p,q}=n.$$

The \((p,q)\)-difference of a function f on \([0,\infty)\) is defined by

$$ D_{p,q}f(t)=\frac{f(pt)-f(qt)}{(p-q)t}, \quad t\neq0, $$
(1.1)

and \(D_{p,q}f(0)=f'(0)\). If \(f(t)=t^{\alpha}\), \(\alpha\geq0\), then we have

$$ D_{p,q}t^{\alpha}=[\alpha]_{p,q}t^{\alpha-1}. $$
(1.2)

Note that if the function f is defined on \([0,T]\), then the function \(D_{p,q}f(t)\) is defined on \([0, T/p]\). For some details of the shifting property and nonlocal boundary value problems for first-order \((p,q)\)-difference equations, we refer the reader to [1]. In addition, in [2], the authors defined the second-order \((p,q)\)-difference by

$$ D_{p,q}^{2}f(t)=\frac{qf(p^{2}t)-(p+q)f(pqt)+pf(q^{2}t)}{pq(p-q)^{2}t^{2}}. $$

Then we see that if \(f(t)\) is defined on \([0,T]\) then the function \(D_{p,q}^{2}f(t)\) is defined on \([0, T/p^{2}]\).

The \((p,q)\)-integral of a function f on \([0,\infty)\) is defined by

$$ \int_{0}^{t}f(s)\,d_{p,q}s =(p-q)t\sum _{n=0}^{\infty}\frac {q^{n}}{p^{n+1}}f \biggl( \frac{q^{n}}{p^{n+1}}t \biggr). $$
(1.3)

If \(f(t)=t^{\alpha}\), \(\alpha>0\), then we have the formula

$$ \int_{0}^{t}s^{\alpha}\,d_{p,q}s = \frac{p-q}{p^{\alpha+1}-q^{\alpha +1}}t^{\alpha+1}. $$
(1.4)

Now we observe that if the function f is defined on a finite interval \([0,T]\) then the function \(\int_{0}^{t}f(s)\,d_{p,q}s\) is defined on \([0, pT]\). In [1], the authors gave the formula of the double \((p,q)\)-integral

$$\begin{aligned} \int_{0}^{t} \int_{0}^{s}f(r)\,d_{p,q}r\,d_{p,q}s =& \frac{1}{p} \int _{0}^{t}(t-qs)f \biggl(\frac{1}{p}s \biggr)\,d_{p,q}s \\ =& \frac{1}{p}(p-q)t^{2}\sum_{n=0}^{\infty} \frac{q^{n}}{p^{2n+2}} \bigl(p^{n+1}-q^{n+1} \bigr)f \biggl( \frac{q^{n}}{p^{n+2}}t \biggr), \end{aligned}$$

which implies that if f is defined on \([0,T]\), then the function \(\int_{0}^{t}\int_{0}^{s}f(r)\,d_{p,q}r\,d_{p,q}s\) is defined on \([0, p^{2}T]\).

The \((p,q)\)-calculus was introduced in [3]. For some recent results, see [410] and references cited therein. For \(p=1\), the \((p,q)\)-calculus is reduced to the classical q-calculus initiated by Jackson [11, 12]. See also [13, 14].

In [15, 16], M. Tunç and E. Göv defined the quantum \((p,q)\)-difference of a function f on the finite interval \([a,b]\) by

$$ {_{a}}D_{p,q}f(t)=\frac{f(pt+(1-p)a)-f(qt+(1-q)a)}{(p-q)(t-a)}, \quad t \neq a, $$
(1.5)

and \({_{a}}D_{p,q}f(a)=f'(a)\). The \((p,q)\)-difference of a power function \(f(t)=(t-a)^{\alpha}\), \(\alpha\geq0\), is given by

$$ D_{p,q}(t-a)^{\alpha}=[\alpha]_{p,q}(t-a)^{\alpha-1}. $$
(1.6)

Furthermore, they defined the \((p,q)\)-integral of a function f on \([a,b]\) as

$$ \int_{a}^{t}f(s)\,{_{a}}d_{p,q}s=(p-q) (t-a)\sum_{n=0}^{\infty}\frac {q^{n}}{p^{n+1}}f \biggl(\frac{q^{n}}{p^{n+1}}t+ \biggl(1-\frac {q^{n}}{p^{n+1}} \biggr)a \biggr). $$
(1.7)

As is customary, we put the following relation:

$$ \int_{a}^{t}(s-a)^{\alpha}\,{_{a}}d_{p,q}s =\frac{p-q}{ (p^{\alpha +1}-q^{\alpha+1} )}(t-a)^{\alpha+1},\quad\alpha\geq0. $$
(1.8)

It is obvious that if \(a=0\), then equations (1.5)–(1.8) are reduced to (1.1)–(1.4), respectively.

The domain-shift properties of the \((p,q)\)-difference and \((p,q)\)-integral operators for a function \(f(t)\), \(t\in[a,b]\) are respectively given by

$$ {_{a}}D_{p,q}f(t),\quad t\in \biggl[a,\frac{1}{p}(b-a)+a \biggr]\quad\text{and}\quad \int_{a}^{t}f(s)\,{_{a}}d_{p,q}s,\quad t\in \bigl[a,p(b-a)+a \bigr]. $$

Also we remark that if \(p=1\), then both domains are reduced to \([a,b]\). For the shifting of the second order \((p,q)\)-difference and integral domains, we consider the following result.

Lemma 1.1

Letfbe a function defined on an interval\([a,b]\)with\(a\geq0\). The domains of\({_{a}}D_{p,q}^{2}f\)and\(\int_{a}^{t}\int_{a}^{r}f(s) \,{_{a}}d_{p,q}s \,{_{a}}d_{p,q}r\)are

$$ \biggl[a,\frac{1}{p^{2}}(b-a)+a \biggr]\quad\textit{and}\quad \bigl[a,p^{2}(b-a)+a \bigr], $$

respectively.

Proof

We have

$$\begin{aligned} {_{a}}D_{p,q}^{2}f(t) =&{_{a}}D_{p,q} ({_{a}}D_{p,q}f ) (t) ={_{a}}D_{p,q} \biggl(\frac {f(pt+(1-p)a)-f(qt+(1-q)a)}{(p-q)(t-a)} \biggr) \\ =& \biggl\{ \frac {f(p(pt+(1-p)a)+(1-p)a)-f(q(pt+(1-p)a)+(1-q)a)}{(p-q)((pt+(1-p)a)-a)} \\ &{}- \frac {f(p(qt+(1-q)a)+(1-p)a)-f(q(qt+(1-q)a)+(1-q)a)}{(p-q)((qt+(1-q)a)-a)} \biggr\} \\ &{} /(p-q) (t-a) \\ =&\frac {qf(p^{2}t+(1-p^{2})a)-(p+q)f(pqt+(1-pq)a)+pf(q^{2}t+(1-q^{2})a)}{pq(p-q)^{2}(t-a)^{2}}. \end{aligned}$$

Setting \(p^{2}t+(1-p^{2})a=b\), we have

$$ t=\frac{1}{p^{2}}(b-a)+a. $$

Then \({_{a}}D_{p,q}^{2}f\) is defined on \([a,(b-a)/p^{2}+a]\).

Next we write the double \((p,q)\)-integral in the form of an infinite sum of a function f defined on \([a,b]\). We have

$$\begin{aligned} \int_{a}^{t} \int_{a}^{s}f(r) \,{_{a}}d_{p,q}r \,{_{a}}d_{p,q}s &= \int_{a}^{t} \Biggl[(p-q) (s-a)\sum _{n=0}^{\infty}\frac {q^{n}}{p^{n+1}}f \biggl( \frac{q^{n}}{p^{n+1}}s+ \biggl\{ 1-\frac {q^{n}}{p^{n+1}} \biggr\} a \biggr)\,{_{a}}d_{p,q}s \Biggr] \\ &=(p-q)\sum_{n=0}^{\infty}\frac{q^{n}}{p^{n+1}} \biggl[ \int _{a}^{t}(s-a)f \biggl(\frac{q^{n}}{p^{n+1}}s+ \biggl\{ 1-\frac {q^{n}}{p^{n+1}} \biggr\} a \biggr)\,{_{a}}d_{p,q}s \biggr].\end{aligned} $$

Now we consider

$$\begin{aligned} & \int_{a}^{t}(s-a)f \biggl(\frac{q^{n}}{p^{n+1}}s+ \biggl\{ 1-\frac {q^{n}}{p^{n+1}} \biggr\} a \biggr)\,{_{a}}d_{p,q}s \\ &\quad=(p-q) (t-a)\sum_{m=0}^{\infty} \frac{q^{m}}{p^{m+1}} \biggl(\frac {q^{m}}{p^{m+1}}t+ \biggl\{ 1-\frac{q^{m}}{p^{m+1}} \biggr\} a-a \biggr) \\ &\qquad{}\times f \biggl(\frac{q^{n}}{p^{n+1}} \biggl[\frac {q^{m}}{p^{m+1}}t+ \biggl\{ 1- \frac{q^{m}}{p^{m+1}} \biggr\} a \biggr]+ \biggl\{ 1-\frac{q^{n}}{p^{n+1}} \biggr\} a \biggr) \\ &\quad=(p-q) (t-a)^{2}\sum_{m=0}^{\infty} \frac{q^{2m}}{p^{2m+2}}f \biggl(\frac{q^{m+n}}{p^{m+n+2}}t+ \biggl\{ 1-\frac{q^{m+n}}{p^{m+n+2}} \biggr\} a \biggr), \end{aligned}$$

which leads to the expression

$$\begin{aligned} & \int_{a}^{t} \int_{a}^{s}f(r) \,{_{a}}d_{p,q}r \,{_{a}}d_{p,q}s \\ &\quad=(p-q)^{2}(t-a)^{2}\sum_{n=0}^{\infty} \sum_{m=0}^{\infty}\frac {q^{2m+n}}{p^{2m+n+3}} f \biggl( \frac{q^{m+n}}{p^{m+n+2}}t+ \biggl\{ 1-\frac {q^{m+n}}{p^{m+n+2}} \biggr\} a \biggr). \end{aligned}$$
(1.9)

For \(m=n=0\) and setting

$$ \frac{1}{p^{2}}t+ \biggl\{ 1-\frac{1}{p^{2}} \biggr\} a=b, $$

we obtain \(t=p^{2}(b-a)+a\), which implies that \(\int_{a}^{t}\int_{a}^{r}f(s) \,{_{a}}d_{p,q}s \,{_{a}}d_{p,q}r\) is valid on \([a, p^{2}(b-a)+a]\). The proof is completed. □

Before going to the next result, we would like to recall the operator \({_{a}}\varPhi_{r}\) defined by

$$ {_{a}}\varPhi_{r}(m)=rm+(1-r)a, $$

where \(m,a\in{\mathbb{R}}\) and \(r\in[0,1]\). Some properties of this operator can be found in [17].

Lemma 1.2

Letfbe a function defined on\([a,b]\). Then the double\((p,q)\)-integral offcan be written as a single one by

$$ \int_{a}^{t} \int_{a}^{s}f(r) \,{_{a}}d_{p,q}r \,{_{a}}d_{p,q}s=\frac{1}{p} \int _{a}^{t}\bigl(t-{_{a}} \varPhi_{q}(s)\bigr)f \bigl({_{a}}\varPhi_{\frac{1}{p}}(s) \bigr)\,{_{a}}d_{p,q}s,\quad t\in\bigl[a,p^{2}(b-a)+a \bigr]. $$
(1.10)

Proof

The double summation in (1.9) can be formulated by a single summation as

$$\begin{aligned} &\sum_{n=0}^{\infty}\sum _{m=0}^{\infty}\frac{q^{2m+n}}{p^{2m+n+3}} f \biggl( \frac{q^{m+n}}{p^{m+n+2}}t+ \biggl\{ 1-\frac {q^{m+n}}{p^{m+n+2}} \biggr\} a \biggr) \\ &\quad=\sum_{n=0}^{\infty} \biggl[ \frac{q^{n}}{p^{n+3}} f \biggl(\frac{q^{n}}{p^{n+2}}t+ \biggl\{ 1-\frac{q^{n}}{p^{n+2}} \biggr\} a \biggr)+\frac{q^{n+2}}{p^{n+5}} f \biggl(\frac{q^{n+1}}{p^{n+3}}t+ \biggl\{ 1- \frac {q^{n+1}}{p^{n+3}} \biggr\} a \biggr) \\ &\quad\quad{}+ \frac{q^{n+4}}{p^{n+7}} f \biggl(\frac{q^{n+2}}{p^{n+4}}t+ \biggl\{ 1- \frac {q^{n+2}}{p^{n+4}} \biggr\} a \biggr)+\frac{q^{n+6}}{p^{n+9}} f \biggl( \frac{q^{n+3}}{p^{n+5}}t+ \biggl\{ 1-\frac {q^{n+3}}{p^{n+5}} \biggr\} a \biggr)+\cdots \biggr] \\ &\quad=\frac{1}{p^{3}}f \biggl(\frac{1}{p^{2}}t+ \biggl\{ 1-\frac {1}{p^{2}} \biggr\} a \biggr)+\frac{q}{p^{4}} \biggl(1+\frac{q}{p} \biggr) f \biggl( \frac{q}{p^{3}}t+ \biggl\{ 1-\frac{q}{p^{3}} \biggr\} a \biggr) \\ &\qquad{}+ \frac{q^{2}}{p^{5}} \biggl(1+\frac{q}{p}+\frac{q^{2}}{p^{2}} \biggr) f \biggl(\frac{q^{2}}{p^{4}}t+ \biggl\{ 1-\frac{q^{2}}{p^{4}} \biggr\} a \biggr)+\cdots \\ &\quad=\sum_{n=0}^{\infty}\frac{q^{n}}{p^{n+3}} \biggl(\frac {p^{n+1}-q^{n+1}}{p^{n}(p-q)} \biggr)f \biggl(\frac{q^{n}}{p^{n+2}}t+ \biggl\{ 1- \frac{q^{n}}{p^{n+2}} \biggr\} a \biggr) \\ &\quad=\frac{1}{p-q}\sum_{n=0}^{\infty} \frac{q^{n}}{p^{n+1}} \biggl(\frac {1}{p}-\frac{q^{n+1}}{p^{n+2}} \biggr)f \biggl( \frac {q^{n}}{p^{n+2}}t+ \biggl\{ 1-\frac{q^{n}}{p^{n+2}} \biggr\} a \biggr). \end{aligned}$$

Substituting into (1.9) yields

$$\begin{aligned} & \int_{a}^{t} \int_{a}^{s}f(r) \,{_{a}}d_{p,q}r \,{_{a}}d_{p,q}s \\ &\quad=\frac{1}{p}(p-q) (t-a)\sum_{n=0}^{\infty} \frac{q^{n}}{p^{n+1}} \biggl(t- \biggl[\frac{q^{n+1}}{p^{n+1}}t+ \biggl\{ 1- \frac {q^{n+1}}{p^{n+1}} \biggr\} a \biggr] \biggr) \\ &\qquad{}\times f \biggl(\frac{q^{n}}{p^{n+2}}t+ \biggl\{ 1-\frac {q^{n}}{p^{n+2}} \biggr\} a \biggr) \\ &\quad=\frac{1}{p}(p-q) (t-a)\sum_{n=0}^{\infty} \frac{q^{n}}{p^{n+1}} \biggl(t-{_{a}}\varPhi_{q} \biggl( \biggl[\frac{q^{n}}{p^{n+1}}t+ \biggl\{ 1-\frac {q^{n}}{p^{n+1}} \biggr\} a \biggr] \biggr) \biggr) \\ &\qquad{}\times f \biggl({_{a}}\varPhi_{\frac{1}{p}} \biggl( \frac {q^{n}}{p^{n+1}}t+ \biggl\{ 1-\frac{q^{n}}{p^{n+1}} \biggr\} a \biggr) \biggr) \\ &\quad=\frac{1}{p} \int_{a}^{t}\bigl(t-{_{a}} \varPhi_{q}(s)\bigr)f \bigl({_{a}}\varPhi _{\frac{1}{p}}(s) \bigr)\,{_{a}}d_{p,q}s, \end{aligned}$$

which is completed the proof. □

Remark 1.3

If \(a=0\), then (1.10) is reduced to a result of Theorem 3 in [1].

The following theorem has been proved in [16].

Theorem 1.4

The fundamental relations of\((p,q)\)-calculus can be stated as

  1. (i)

    \({_{a}}D_{p,q}\int_{a}^{t} f(s) \,{_{a}}d_{p,q}s=f(t)\);

  2. (ii)

    \(\int_{a}^{t}{_{a}}D_{p,q}f(s) \,{_{a}}d_{p,q}s=f(t)-f(a)\).

In this paper we study the impulsive \((p,q)\)-difference equations with initial and boundary conditions. We consider four types of problems, two impulsive \((p,q)\)-difference equations of type I and two impulsive \((p,q)\)-difference equations of type II (explained in the next section). Existence and uniqueness results are proved via Banach’s contraction mapping principle. Examples illustrating the obtained results are also constructed.

2 Impulsive \((p,q)\)-difference equations

In this section, we consider the first and second order \((p,q)\)-difference equations with initial or boundary conditions and also prove the existence and uniqueness of solutions for impulsive problems. Firstly, let \(t_{k}\), \(k=1,\ldots,m\), be the impulsive points such that \(0=t_{0}< t_{1}<\cdots<t_{k}<\cdots<t_{m}<t_{m+1}=T\) and \(J_{k}=(t_{k},t_{k+1}]\), \(k=1,\ldots,m\), \(J_{0}=[0,t_{1}]\) be the intervals such that \(\bigcup_{k=0}^{m}J_{k}=[0,T]:=J\). The investigations are based on \((p,q)\)-calculus introduced in the previous section by replacing a point a by \(t_{k}\), quantum numbers p by \(p_{k}\) and q by \(q_{k}\), \(k=0,1,\ldots,m\), and also applying the \((p_{k},q_{k})\)-difference and \((p_{k},q_{k})\)-integral operators only on a finite subinterval of J. In addition, the consecutive subintervals can be related with jump conditions which provide a meaning of quantum difference equations with impulse effects. There are two types of impulsive problems which will be established in the next two subsections. The consecutive domains of impulsive \((p,q)\)-difference equations of type I are overlapped, while the unknown functions of impulsive equations of type II are defined on disconnected consecutive domains.

2.1 Impulsive \((p,q)\)-difference equations of type I

Consider the first-order impulsive \((p,q)\)-difference impulsive boundary value problem of the form

$$ \textstyle\begin{cases} {_{t_{k}}}D_{p_{k},q_{k}}x(t)=f(t,x(t)),\quad t\in (t_{k}, \frac {1}{p_{k}}(t_{k+1}-t_{k})+t_{k} ], k=0,1,\ldots,m,\\ \Delta x(t_{k})=\varphi_{k}(x(t_{k})),\quad k=1,2,\ldots, m,\\ \alpha x(0)+\beta x(T)=\gamma, \end{cases} $$
(2.1)

where α, β, and γ are real constants with \(\alpha\neq-\beta\), the quantum numbers \(p_{k}\), \(q_{k}\) satisfy \(0< q_{k}< p_{k}\leq1\), \(k=0,1,\ldots,m\), \(f:[0, ((T-t_{m})/p_{m})+t_{m}]\times {\mathbb{R}}\to{\mathbb{R}}\) and \(\varphi_{k}:{\mathbb{R}}\to {\mathbb{R}}\), \(k=1,2,\ldots,m\), are given functions, and \({_{t_{k}}}D_{p_{k},q_{k}}\) is the quantum \((p_{k},q_{k})\)-difference operator starting at a point \(t_{k}\), \(k=0,1,\ldots,m\).

We remark that there are some overlapped intervals of domains of the first equation in (2.1). For example, if the unknown function \(x(t)\) is defined on \(J=[0,2]\) and if there is an impulse point \(t_{1}=1\), that is, \(x(1^{+})\neq x(1^{-})\), with \(p_{0}=1/2\), \(q_{0}=1/3\), \(p_{1}=1/4\), and \(q_{1}=1/5\). Then we have the \((p,q)\)-difference equations

$$ {_{0}}D_{\frac{1}{2},\frac{1}{3}}x(t)=f\bigl(t,x(t)\bigr),\quad t\in (0, 2 ] \quad\text{and}\quad{_{1}}D_{\frac{1}{4},\frac {1}{5}}x(t)=f\bigl(t,x(t)\bigr), \quad t\in (1, 5 ]. $$

However, by the shifting property of \((p,q)\)-integration applied to the two above equations, we have

$$ x(t)=x(0)+ \int_{0}^{t}f\bigl(s,x(s)\bigr) \,{_{0}}d_{\frac{1}{2},\frac{1}{3}}s \quad t\in (0, 1 ], $$

and

$$ x(t)=x\bigl(1^{+}\bigr)+ \int_{1}^{t}f\bigl(s,x(s)\bigr)\, {_{1}}d_{\frac{1}{4},\frac{1}{5}}s,\quad t\in (1, 2 ], $$

respectively.

Theorem 2.1

The nonlinear first-order\((p,q)\)-difference boundary value problem (2.1) can be transformed into an integral equation

$$ \begin{aligned}[b] x(t)&= \frac{\gamma}{(\alpha+\beta)}-\frac{\beta}{(\alpha+\beta )} \Biggl(\sum _{i=0}^{m} \int _{t_{i}}^{t_{i+1}}f\bigl(s,x(s)\bigr)\,{_{t_{i}}}d_{p_{i},q_{i}}s +\sum_{j=1}^{m}\varphi _{j} \bigl(x(t_{j})\bigr) \Biggr) \\ &\quad+ \sum_{i=0}^{k-1} \int_{t_{i}}^{t_{i+1}}f\bigl(s,x(s)\bigr) \,{_{t_{i}}}d_{p_{i},q_{i}}s +\sum_{j=1}^{k} \varphi_{j}\bigl(x(t_{j})\bigr)+ \int _{t_{k}}^{t}f\bigl(s,x(s)\bigr) \,{_{t_{k}}}d_{p_{k},q_{k}}s,\quad t\in J,\end{aligned} $$
(2.2)

with\(\sum_{a}^{b}(\cdot)=0\), if\(b< a\).

Proof

From \({_{t_{0}}}D_{p_{0},q_{0}}x(t)=f(t,x(t))\), \(t\in(t_{0}, (1/p_{0})(t_{1}-t_{0})+t_{0}]\), by taking the \((p_{0},q_{0})\)-integral, we obtain

$$ x(t)=x(0)+ \int_{t_{0}}^{t}f\bigl(s,x(s)\bigr) \,{_{t_{0}}}d_{p_{0},q_{0}}s, \quad t\in(t_{0},t_{1}], $$

by using Theorem 1.4 and the shifting property. Next, for \({_{t_{1}}}D_{p_{1},q_{1}}x(t)=f(t,x(t))\), \(t\in(t_{1}, (1/p_{1})(t_{2}-t_{1})+t_{1}]\), where \(t_{1}\) is the first impulsive point in J, we also obtain by applying the \((p_{1},q_{1})\)-integration,

$$ x(t)=x\bigl(t_{1}^{+}\bigr)+ \int_{t_{1}}^{t}f\bigl(s,x(s)\bigr) \,{_{t_{1}}}d_{p_{1},q_{1}}s, \quad t\in(t_{1},t_{2}]. $$

By the impulsive condition \(x(t_{1}^{+})=x(t_{1})+\varphi_{1}(x(t_{1}))\), it follows, for \(t\in(t_{1},t_{2}]\), that

$$ x(t)=x(0)+ \int_{t_{0}}^{t_{1}}f\bigl(s,x(s)\bigr)\,{_{t_{0}}}d_{p_{0},q_{0}}s+ \varphi _{1}\bigl(x(t_{1})\bigr)+ \int_{t_{1}}^{t}f\bigl(s,x(s)\bigr) \,{_{t_{1}}}d_{p_{1},q_{1}}s. $$

For \({_{t_{2}}}D_{p_{2},q_{2}}x(t)=f(t,x(t))\), \(t\in(t_{2}, (1/p_{2})(t_{3}-t_{2})+t_{2}]\), we get

$$ x(t)=x\bigl(t_{2}^{+}\bigr)+ \int_{t_{2}}^{t}f\bigl(s,x(s)\bigr) \,{_{t_{2}}}d_{p_{2},q_{2}}s, \quad t\in(t_{2},t_{3}], $$

by \((p_{2},q_{2})\)-integration and

$$\begin{aligned} x(t) =& x(0)+ \int_{t_{0}}^{t_{1}}f\bigl(s,x(s)\bigr) \,{_{t_{0}}}d_{p_{0},q_{0}}s+ \int _{t_{1}}^{t_{2}}f\bigl(s,x(s)\bigr) \,{_{t_{1}}}d_{p_{1},q_{1}}s \\ &{}+ \varphi_{1}\bigl(x(t_{1})\bigr)+\varphi_{2} \bigl(x(t_{2})\bigr)+ \int_{t_{2}}^{t}f\bigl(s,x(s)\bigr) \,{_{t_{2}}}d_{p_{2},q_{2}}s, \quad t\in(t_{2},t_{3}], \end{aligned}$$

due to the impulsive condition \(x(t_{2}^{+})=x(t_{2}^{-})+\varphi_{2}(x(t_{2}))\).

Repeating this process, we obtain, for \(t\in J_{k}\), \(k=0,1,\ldots,m\), that

$$ x(t)=x(0)+\sum_{i=0}^{k-1} \int_{t_{i}}^{t_{i+1}}f\bigl(s,x(s)\bigr) \,{_{t_{i}}}d_{p_{i},q_{i}}s +\sum_{j=1}^{k} \varphi_{j}\bigl(x(t_{j})\bigr)+ \int _{t_{k}}^{t}f\bigl(s,x(s)\bigr) \,{_{t_{k}}}d_{p_{k},q_{k}}s. $$
(2.3)

After that from the boundary condition \(\alpha x(0)+\beta x(T)=\gamma \), we have

$$ x(0)=\frac{\gamma}{(\alpha+\beta)}-\frac{\beta}{(\alpha+\beta )} \Biggl(\sum _{i=0}^{m} \int_{t_{i}}^{t_{i+1}}f\bigl(s,x(s)\bigr) \,{_{t_{i}}}d_{p_{i},q_{i}}s +\sum_{j=1}^{m} \varphi_{j}\bigl(x(t_{j})\bigr) \Biggr). $$

Putting the value of \(x(0)\) into (2.3), shows that (2.2) is true and the proof is completed. □

Remark 2.2

If \(\alpha\neq0\) and \(\beta=0\), then the boundary value problem (2.1) can be reduced to the initial value problem with initial condition \(x(0)=\gamma/\alpha\).

Before going to the second-order impulsive problem, we define

$$ \tau_{k}=\frac{1}{p_{k-1}}(t_{k}-t_{k-1})+t_{k-1}, \quad k=1,2,\ldots,m, $$

which are impulsive shifting points of the \((p_{k},q_{k})\)-derivative of the unknown function in our system. In addition, we introduce a notation

$$ \langle t_{i+1}\rangle_{k}= \textstyle\begin{cases} t_{i+1},& t_{i+1}\leq t_{k},\\ t,& t_{i+1}> t_{k}. \end{cases} $$

For example,

$$\begin{aligned} \sum_{i=0}^{2} \bigl(\langle t_{i+1}\rangle_{2}-t_{i} \bigr)K_{i} =& \bigl(\langle t_{1}\rangle_{2}-t_{0} \bigr)K_{0}+ \bigl(\langle t_{2}\rangle _{2}-t_{2} \bigr)K_{1}+ \bigl(\langle t_{3}\rangle_{2}-t_{2} \bigr)K_{2} \\ =&(t_{1}-t_{0})K_{0}+(t_{2}-t_{1})K_{1}+(t-t_{2})K_{2}, \end{aligned}$$

where \(K_{i}\in{\mathbb{R}}\), \(i=0,1,2\).

Now, we consider the second-order impulsive \((p,q)\)-difference initial value problem of the form

$$ \textstyle\begin{cases} {_{t_{k}}}D_{p_{k},q_{k}}^{2}x(t)=f(t,x(t)),\quad t\in (t_{k}, \frac {1}{p_{k}^{2}}(t_{k+1}-t_{k})+t_{k} ], k=0,1,\ldots,m,\\ \Delta x(t_{k})=\varphi_{k}(x(t_{k})),\quad k=1,2,\ldots, m,\\ {_{t_{k}}}D_{p_{k},q_{k}}x(t_{k}^{+})-{_{t_{k-1}}}D_{p_{k-1},q_{k-1}}x(\tau _{k})=\varphi_{k}^{\ast}(x(t_{k})),\quad k=1,2,\ldots, m,\\ x(0)=\lambda_{1},\qquad{_{t_{0}}}D_{p_{0},q_{0}}x(0)=\lambda_{2}, \end{cases} $$
(2.4)

where \(f:[0,((T-t_{m})/p_{m}^{2})+t_{m}]\times{\mathbb{R}}\to{\mathbb{R}}\), \(\varphi_{k}:{\mathbb{R}}\to{\mathbb{R}}\) and \(\varphi_{k}^{\ast }:{\mathbb{R}}\to{\mathbb{R}}\), are given functions, \(\lambda_{1}\), \(\lambda_{2}\) are given constants. Observe that the distance between the impulsive points \(t_{k}\) and \(\tau_{k}\) in the third equation of (2.4) depends on the value of \(p_{k-1}\) for \(k=1,2,\ldots,m\). Indeed,

$$ \tau_{k}-t_{k}=\frac{1}{p_{k-1}}(t_{k}-t_{k-1})+t_{k-1}-t_{k}= \frac {(1-p_{k-1})}{p_{k-1}}(t_{k}-t_{k-1}), $$

which has appeared by the shifting property of \((p,q)\)-calculus as discussed in the previous section.

Theorem 2.3

The impulsive initial value problem of type I given by the\((p,q)\)-difference equation (2.4) can be expressed as an integral equation of the form

$$\begin{aligned} x(t) =& \lambda_{1}+\sum_{i=0}^{k} \bigl(\langle t_{i+1}\rangle _{k}-t_{i} \bigr) \Biggl[\lambda_{2}+\sum_{j=0}^{i-1} \biggl\{ \int _{t_{j}}^{\tau_{j+1}}f\bigl(s,x(s)\bigr) \,{_{t_{j}}}d_{p_{j},q_{j}}s+\varphi^{\ast }_{j+1} \bigl(x(t_{j+1})\bigr) \biggr\} \Biggr] \\ &{}+ \sum_{r=0}^{k-1} \biggl\{ \frac{1}{p_{r}} \int_{t_{r}}^{t_{r+1}} \bigl(t_{r+1}-{_{t_{r}}} \varPhi_{q_{r}}(s) \bigr)f_{x} \bigl({_{t_{r}}}\varPhi _{\frac{1}{p_{r}}}(s) \bigr) \,{_{t_{r}}}d_{p_{r},q_{r}}s + \varphi_{r+1}\bigl(x(t_{r+1})\bigr) \biggr\} \\ &{}+ \frac{1}{p_{k}} \int_{t_{k}}^{t} \bigl(t-{_{t_{k}}}\varPhi _{q_{k}}(s) \bigr)f_{x} \bigl({_{t_{k}}} \varPhi_{\frac{1}{p_{k}}}(s) \bigr) \,{_{t_{k}}}d_{p_{k},q_{k}}s,\quad t\in J_{k}, k=0,1,\ldots,m, \end{aligned}$$
(2.5)

where\(f_{x} ({_{t_{r}}}\varPhi_{\frac{1}{p_{r}}}(s) )=f ({_{t_{r}}}\varPhi_{\frac{1}{p_{r}}}(s),x ({_{t_{r}}}\varPhi_{\frac {1}{p_{r}}}(s) ) )\), \(r=0,1,\ldots,k\), and\(\sum_{a}^{b}(\cdot )=0\), when\(b< a\).

Proof

By computing the \((p_{0},q_{0})\)-integral of both sides of the first equation of (2.4), we get

$$ {_{t_{0}}}D_{p_{0},q_{0}}x(t)={_{t_{0}}}D_{p_{0},q_{0}}x(0)+ \int_{t_{0}}^{t}f\bigl(s, x(s)\bigr) \,{_{t_{0}}}d_{p_{0},q_{0}}s,\quad t\in \biggl(0,\frac{1}{p_{0}}t_{1} \biggr]. $$

Applying another \((p_{0},q_{0})\)-integration, we obtain, for \(t\in(0,t_{1}]\),

$$\begin{aligned} x(t) =& x(0)+t{_{t_{0}}}D_{p_{0},q_{0}}x(0)+ \int_{t_{0}}^{t} \int_{t_{0}}^{r}f\bigl(s, x(s)\bigr) \,{_{t_{0}}}d_{p_{0},q_{0}}s \,{_{t_{0}}}d_{p_{0},q_{0}}r \\ =&\lambda_{1}+\lambda_{2}t+\frac{1}{p_{0}} \int_{t_{0}}^{t} \bigl(t-{_{t_{0}}} \varPhi_{q_{0}}(s) \bigr)f_{x} \bigl({_{t_{0}}} \varPhi_{\frac {1}{p_{0}}}(s) \bigr) \,{_{t_{0}}}d_{p_{0},q_{0}}s. \end{aligned}$$

For \(t\in(t_{1},((t_{2}-t_{1})/p_{1}^{2})+t_{1}]\), applying the double \((p_{1},q_{1})\)-integration to both sides of the first equation of (2.4), we have

$$ x(t)=x\bigl(t_{1}^{+}\bigr)+(t-t_{1}){_{t_{1}}}D_{p_{1},q_{1}}x \bigl(t_{1}^{+}\bigr)+\frac{1}{p_{1}} \int _{t_{1}}^{t} \bigl(t-{_{t_{1}}} \varPhi_{q_{1}}(s) \bigr)f_{x} \bigl({_{t_{1}}} \varPhi_{\frac{1}{p_{1}}}(s) \bigr) \,{_{t_{1}}}d_{p_{1},q_{1}}s, $$

where \(t\in(t_{1},t_{2}]\). Due to the impulsive conditions

$$\begin{aligned} x\bigl(t_{1}^{+}\bigr) =& x(t_{1})+\varphi_{1} \bigl(x(t_{1})\bigr) \\ =&\lambda_{1}+\lambda_{2}t_{1}+ \frac{1}{p_{0}} \int_{t_{0}}^{t_{1}} \bigl(t_{1}-{_{t_{0}}} \varPhi_{q_{0}}(s) \bigr)f_{x} \bigl({_{t_{0}}} \varPhi_{\frac {1}{p_{0}}}(s) \bigr) \,{_{t_{0}}}d_{p_{0},q_{0}}s+ \varphi_{1}\bigl(x(t_{1})\bigr) \end{aligned}$$

and

$$\begin{aligned} {_{t_{1}}}D_{p_{1},q_{1}}x\bigl(t_{1}^{+}\bigr) =& {_{t_{0}}}D_{p_{0},q_{0}}x(\tau_{1})+\varphi _{1}^{\ast}\bigl(x(t_{1})\bigr) \\ =&\lambda_{2}+ \int_{t_{0}}^{\tau_{1}}f\bigl(s, x(s)\bigr) \,{_{t_{0}}}d_{p_{0},q_{0}}s+\varphi_{1}^{\ast} \bigl(x(t_{1})\bigr), \end{aligned}$$

we have

$$\begin{aligned} x(t)&=\lambda_{1}+\lambda_{2}t_{1}+ \frac{1}{p_{0}} \int_{t_{0}}^{t_{1}} \bigl(t_{1}-{_{t_{0}}} \varPhi_{q_{0}}(s) \bigr)f_{x} \bigl({_{t_{0}}} \varPhi_{\frac {1}{p_{0}}}(s) \bigr) \,{_{t_{0}}}d_{p_{0},q_{0}}s+ \varphi_{1}\bigl(x(t_{1})\bigr) \\ &\quad+ (t-t_{1}) \biggl[ \lambda_{2}+ \int_{t_{0}}^{\tau_{1}}f\bigl(s, x(s)\bigr) \,{_{t_{0}}}d_{p_{0},q_{0}}s+\varphi_{1}^{\ast} \bigl(x(t_{1})\bigr) \biggr] \\ &\quad+ \frac{1}{p_{1}} \int_{t_{1}}^{t} \bigl(t-{_{t_{1}}} \varPhi_{q_{1}}(s) \bigr)f_{x} \bigl({_{t_{1}}} \varPhi_{\frac{1}{p_{1}}}(s) \bigr) \,{_{t_{1}}}d_{p_{1},q_{1}}s, \quad t \in(t_{1},t_{2}].\end{aligned} $$

Similarly, we deduce the integral equation (2.5), as desired. □

Now, the existence and uniqueness results for problems (2.1) and (2.4) will be proved by using the Banach’s contraction mapping principle. Let us define the space \(\mathit{PC}(J,{\mathbb{R}})=\{x:J\to{\mathbb{R}}\): \(x(t)\) is continuous everywhere except for some \(t_{k}\) in which \(x(t_{k}^{+})\) and \(x(t_{k}^{-})\) exist and \(x(t_{k}^{-})=x(t_{k})\), \(k=1,2,\ldots,m\}\). The set \(\mathit{PC}(J,{\mathbb{R}})\) is a Banach space equipped with the norm \(\|x\| =\sup\{|x(t)|: t\in J\}\). For convenience, we put

$$\begin{aligned}& \varOmega_{1}=\frac{ \vert \beta \vert + \vert \alpha+\beta \vert }{ \vert \alpha+\beta \vert }\sum_{i=0}^{m}(t_{i+1}-t_{i}), \\& \varOmega_{2}=m \biggl(\frac{ \vert \beta \vert + \vert \alpha+\beta \vert }{ \vert \alpha+\beta \vert } \biggr), \\& \varOmega_{3}=\sum_{i=0}^{m} \Biggl\{ (t_{i+1}-t_{i})\sum_{j=0}^{i-1}( \tau _{j+1}-t_{j}) \Biggr\} +\sum _{r=0}^{m}\frac{(t_{r+1}-t_{r})^{2}}{p_{r}+q_{r}}, \\& \varOmega_{4}=\sum_{i=0}^{m}(t_{i+1}-t_{i})i. \end{aligned}$$

Theorem 2.4

Let\(f:[0,((T-t_{m})/p_{m})+t_{m}]\times {\mathbb{R}}\to{\mathbb{R}}\)and\(\varphi_{k}:{\mathbb{R}}\to {\mathbb{R}}\), \(k=1,2,\ldots,m\), be given functions satisfying

\((H_{1})\):

There exist positive constants\(L_{1}\)and\(L_{2}\)such that

$$\begin{aligned} \bigl\vert f(t, x) - f(t, y) \bigr\vert \leq L_{1} \vert x - y \vert \quad\textit{and}\quad \bigl\vert \varphi _{k}(x) - \varphi_{k}(y) \bigr\vert \leq L_{2} \vert x - y \vert , \end{aligned}$$

for all\(t\in[0,((T-t_{m})/p_{m})+t_{m}]\), \(x,y\in{\mathbb{R}}\)and\(k=1,2,\ldots,m\).

If

$$ L_{1}\varOmega_{1}+L_{2} \varOmega_{2}< 1, $$
(2.6)

then the boundary value problem (2.1) has a unique solution onJ.

Proof

In view of Theorem 2.1, we define the operator \({\mathcal{A}}:\mathit{PC}(J,{\mathbb{R}})\to \mathit{PC}(J,{\mathbb{R}})\) by

$$\begin{aligned} {\mathcal{A}}x(t) =& \frac{\gamma}{(\alpha+\beta)}-\frac{\beta }{(\alpha+\beta)} \Biggl(\sum _{i=0}^{m} \int_{t_{i}}^{t_{i+1}}f\bigl(s,x(s)\bigr) \,{_{t_{i}}}d_{p_{i},q_{i}}s +\sum_{j=1}^{m} \varphi_{j}\bigl(x(t_{j})\bigr) \Biggr) \\ &{}+ \sum_{i=0}^{k-1} \int_{t_{i}}^{t_{i+1}}f\bigl(s,x(s)\bigr) \,{_{t_{i}}}d_{p_{i},q_{i}}s +\sum_{j=1}^{k} \varphi_{j}\bigl(x(t_{j})\bigr)+ \int _{t_{k}}^{t}f\bigl(s,x(s)\bigr) \,{_{t_{k}}}d_{p_{k},q_{k}}s,\quad t\in J. \end{aligned}$$

Define the ball \(B_{r_{1}}=\{x\in \mathit{PC}(J,{\mathbb{R}}):\|x\|\leq r_{1}\}\) where the positive constant \(r_{1}\) is defined by

$$ r_{1}>\frac{ ( \vert \gamma \vert / \vert \alpha+\beta \vert )+M_{1}\varOmega _{1}+M_{2}\varOmega_{2}}{1-(L_{1}\varOmega_{1}+L_{2}\varOmega_{2})}. $$

The Banach contraction mapping principle is used to claim that there exists a unique fixed point of an operator equation \(x={\mathcal{A}}x\) in \(B_{r_{1}}\). By setting \(\sup_{t\in J}|f(t,0)|=M_{1}\), and \(\sup\{ |\varphi_{i}(0)|, i=1,2,\ldots, m\}=M_{2}\) and using the inequalities \(|f(t,x)|\leq|f(t,x)-f(t,0)|+|f(t,0)|\leq L_{1}r_{1}+M_{1}\) and \(|\varphi _{i}(x)|\leq|\varphi_{i}(x)-\varphi_{i}(0)|+|\varphi_{i}(0)|\leq L_{1}r_{1}+M_{2}\), \(i=1,2,\ldots, m\), we have

$$\begin{aligned} \bigl\vert {\mathcal{A}}x(t) \bigr\vert \leq& \frac{ \vert \gamma \vert }{ \vert \alpha+\beta \vert }+ \frac { \vert \beta \vert }{ \vert \alpha+\beta \vert } \Biggl(\sum_{i=0}^{m} \int _{t_{i}}^{t_{i+1}} \bigl\vert f\bigl(s,x(s)\bigr) \bigr\vert \,{_{t_{i}}}d_{p_{i},q_{i}}s +\sum _{j=1}^{m} \bigl\vert \varphi _{j} \bigl(x(t_{j})\bigr) \bigr\vert \Biggr) \\ &{}+ \sum_{i=0}^{k-1} \int_{t_{i}}^{t_{i+1}} \bigl\vert f\bigl(s,x(s)\bigr) \bigr\vert \,{_{t_{i}}}d_{p_{i},q_{i}}s +\sum_{j=1}^{k} \bigl\vert \varphi_{j}\bigl(x(t_{j})\bigr) \bigr\vert + \int _{t_{k}}^{t} \bigl\vert f\bigl(s,x(s)\bigr) \bigr\vert \,{_{t_{k}}}d_{p_{k},q_{k}}s \\ \leq&\frac{ \vert \gamma \vert }{ \vert \alpha+\beta \vert }+\frac{ \vert \beta \vert }{ \vert \alpha +\beta \vert } \Biggl(\sum _{i=0}^{m}(L_{1}r_{1}+M_{1}) \int _{t_{i}}^{t_{i+1}}(1)\,{_{t_{i}}}d_{p_{i},q_{i}}s +(L_{2}r_{1}+M_{2})\sum _{j=1}^{m}(1) \Biggr) \\ & {}+(L_{1}r_{1}+M_{1})\sum _{i=0}^{m-1} \int _{t_{i}}^{t_{i+1}}(1)\,{_{t_{i}}}d_{p_{i},q_{i}}s+(L_{2}r_{1}+M_{2}) \sum_{j=1}^{m}(1) \\ &{}+(L_{1}r_{1}+M_{1}) \int_{t_{m}}^{t_{m+1}}(1)\,{_{t_{k}}}d_{p_{k},q_{k}}s \\ =&\frac{ \vert \gamma \vert }{ \vert \alpha+\beta \vert }+\frac{ \vert \beta \vert }{ \vert \alpha+\beta \vert } \Biggl((L_{1}r_{1}+M_{1}) \sum_{i=0}^{m}(t_{i+1}-t_{i}) +m(L_{2}r_{1}+M_{2}) \Biggr) \\ &{}+ (L_{1}r_{1}+M_{1})\sum _{i=0}^{m-1}(t_{i+1}-t_{i}) +m(L_{2}r_{1}+M_{2})+(L_{1}r_{1}+M_{1}) (t_{m+1}-t_{m}) \\ =&\frac{ \vert \gamma \vert }{ \vert \alpha+\beta \vert }+L_{1}\varOmega_{1}r_{1}+L_{2} \varOmega _{2}r_{1}+M_{1}\varOmega_{1}+M_{2} \varOmega_{2}< r_{1}, \end{aligned}$$

which leads to \({\mathcal{A}}B_{r_{1}}\subset B_{r_{1}} \). To prove that \({\mathcal{A}}\) is a contraction, we let \(x,y\in B_{r_{1}}\). Then we have

$$\begin{aligned}& \bigl\vert {\mathcal{A}}x(t)-{\mathcal{A}}y(t) \bigr\vert \\& \quad\leq \frac{ \vert \beta \vert }{ \vert \alpha+\beta \vert } \Biggl(\sum_{i=0}^{m} \int _{t_{i}}^{t_{i+1}} \bigl\vert f\bigl(s,x(s)\bigr)-f \bigl(s,y(s)\bigr) \bigr\vert \,{_{t_{i}}}d_{p_{i},q_{i}}s+ \sum_{j=1}^{m} \bigl\vert \varphi_{j}\bigl(x(t_{j})\bigr)-\varphi_{j} \bigl(y(t_{j})\bigr) \bigr\vert \Biggr) \\& \qquad{}+\sum _{i=0}^{k-1} \int_{t_{i}}^{t_{i+1}} \bigl\vert f\bigl(s,x(s)\bigr)-f \bigl(s,y(s)\bigr) \bigr\vert \,{_{t_{i}}}d_{p_{i},q_{i}}s \\& \qquad{}+ \sum_{j=1}^{k} \bigl\vert \varphi_{j}\bigl(x(t_{j})\bigr)-\varphi _{j} \bigl(y(t_{j})\bigr) \bigr\vert + \int_{t_{k}}^{t} \bigl\vert f\bigl(s,x(s)\bigr)-f \bigl(s,y(s)\bigr) \bigr\vert \,{_{t_{k}}}d_{p_{k},q_{k}}s \\& \quad\leq\frac{ \vert \beta \vert }{ \vert \alpha+\beta \vert } \Biggl(L_{1} \Vert x-y \Vert \sum _{i=0}^{m}(t_{i+1}-t_{i}) +mL_{2} \Vert x-y \Vert \Biggr) \\& \qquad{}+ L_{1} \Vert x-y \Vert \sum_{i=0}^{m}(t_{i+1}-t_{i}) +mL_{2} \Vert x-y \Vert \\& \quad=(L_{1}\varOmega_{1}+L_{2} \varOmega_{2}) \Vert x-y \Vert . \end{aligned}$$

Therefore, \(\|{\mathcal{A}}x-{\mathcal{A}}y\|\leq(L_{1}\varOmega _{1}+L_{2}\varOmega_{2})\|x-y\|\). By means of the Banach contraction mapping principle, the operator \({\mathcal{A}}\) has a unique fixed point in \(B_{r_{1}}\) which is a unique solution of boundary value problem (2.1). The proof is completed. □

Theorem 2.5

Assume that the functions\(f:[0,((T-t_{m})/p_{m}^{2})+t_{m}]\times{\mathbb {R}}\to{\mathbb{R}}\)and\(\varphi_{k}:{\mathbb{R}}\to{\mathbb{R}}\), \(k=1,2,\ldots,m\), satisfy\((H_{1})\). In addition, we suppose that the functions\(\varphi_{k}^{\ast}:{\mathbb{R}}\to{\mathbb{R}}\), \(k=1,2,\ldots,m\), satisfy

\((H_{2})\):

There exists a positive constant\(L_{3}\)such that

$$\begin{aligned} \bigl\vert \varphi_{k}^{\ast}(x) - \varphi_{k}^{\ast}(y) \bigr\vert \leq L_{3} \vert x - y \vert , \end{aligned}$$

for all\(x,y\in{\mathbb{R}}\).

If

$$ L_{1}\varOmega_{3}+L_{2}m+L_{3} \varOmega_{4}< 1, $$
(2.7)

then the boundary value problem (2.4) has a unique solution on\([0,T]\).

Proof

The proof is similar to that of Theorem 2.4 and is omitted. □

Example 2.6

Consider the following first-order impulsive quantum \((p,q)\)-difference equation of type I subject to the boundary condition of the form:

$$ \textstyle\begin{cases} {_{k}}D_{\frac{1}{k+2},\frac{1}{k+3}} x(t)=\frac{1}{18+t^{2}} (\frac{x^{2}(t)+2 \vert x(t) \vert }{1+ \vert x(t) \vert } )+\frac{3}{2},\quad t\in (k, 2k+2 ], k=0,1,2,\\ \Delta x(k)=\frac{1}{6k}\sin x(t_{k}),\quad k=1,2,\\\frac{1}{2} x(0)+\frac{1}{3} x(3)=\frac{1}{4}. \end{cases} $$
(2.8)

Here \(p_{k}=1/(k+2)\), \(q_{k}=1/(k+3)\), \(k=0,1,2\), \(\alpha=1/2\), \(\beta =1/3\), \(\gamma=1/4\), \(t_{k}=k\), \(k=1,2\), \(T=3\), and \(m=2\). The given data leads to constants \(\varOmega_{1}=21/5\), \(\varOmega_{2}=14/5\). Setting

$$ f(t,x)=\frac{1}{18+t^{2}} \biggl(\frac{x^{2}+2 \vert x \vert }{1+ \vert x \vert } \biggr)+\frac {3}{2} \quad\text{and}\quad\varphi_{k}(x)=\frac{1}{6k}\sin x, $$

we have \(|f(t,x)-f(t,y)|\leq(1/9)|x-y|\) and \(|\varphi_{k}(x)-\varphi _{k}(y)|\leq(1/6)|x-y|\) which satisfy Condition \((H_{1})\) in Theorem 2.4 with \(L_{1}=1/9\) and \(L_{2}=1/6\). Since \(L_{1}\varOmega _{1}+L_{2}\varOmega_{2}=14/15<1\), by Theorem 2.4, the boundary value problem (2.8) has a unique solution x on \([0, 3]\).

Example 2.7

Consider the following second-order impulsive quantum \((p,q)\)-difference equation of type I with the initial conditions of the form:

$$ \textstyle\begin{cases} {_{k}}D_{\frac{1}{k+2},\frac{1}{k+3}}^{2} x(t)=\frac{1}{5(t+5)}\tan ^{-1} \vert x(t) \vert +\frac{1}{2},\quad t\in (k, k^{2}+5k+4 ], k=0,1,2,\\ \Delta x(k)=\frac{ \vert x(t_{k}) \vert }{10k(1+ \vert x(t_{k}) \vert )},\quad k=1,2,\\ {_{k}}D_{\frac{1}{k+2},\frac{1}{k+3}} x(k)-{_{(k-1)}}D_{\frac {1}{k+1}, \frac{1}{k+2}}x(2k)=\frac{1}{15k^{2}}\sin \vert x(t_{k}) \vert ,\quad k=1,2,\\x(0)=\frac{3}{5},\qquad{_{0}}D_{\frac{1}{2},\frac{1}{3}}x(0)=\frac{5}{7}. \end{cases} $$
(2.9)

Here the quantum constants \(p_{k}\), \(q_{k}\) and impulsive points \(t_{k}\), are as in Example 2.6. In addition, \(\tau_{k}=2k\), \(k=1,2\), and initial constants \(\lambda_{1}=3/5\), \(\lambda_{2}=5/7\). Next, we can compute that \(\varOmega_{3}=12.1365\) and \(\varOmega_{4}=3\). Set

$$ f(t,x)=\frac{1}{5(t+5)}\tan^{-1} \vert x \vert + \frac{1}{2},\qquad\varphi _{k}(x)=\frac{ \vert x \vert }{10k(1+ \vert x \vert )},\quad \text{and}\quad\varphi^{\ast }_{k}(x)=\frac{1}{15k^{2}}\sin \vert x \vert . $$

It is easy to see that f, \(\varphi_{k}\), and \(\varphi_{k}^{\ast}\) satisfy \((H_{1})\) and \((H_{2})\) with \(L_{1}=1/25\), \(L_{2}=1/10\), and \(L_{3}=1/15\). Therefore, we have \(L_{1}\varOmega_{3}+L_{2}m+L_{3}\varOmega _{4}=0.8855<1\). Hence the boundary value problem (2.9) has a unique solution x on \([0, 3]\) by Theorem 2.5.

2.2 Impulsive \((p,q)\)-difference equations of type II

Now we study the first-order impulsive \((p,q)\)-difference boundary value problem of the form

$$ \textstyle\begin{cases} {_{t_{k}}}D_{p_{k},q_{k}}x(t)=f(t,x(t)),\quad t\in (t_{k}, t_{k+1} ], k=0,1,\ldots,m,\\ x(t_{k}^{+})-x(\rho_{k})=\varphi_{k}(x(\rho_{k})),\quad k=1,2,\ldots, m,\\ \alpha x(0)+\beta x(\rho_{m+1})=\gamma, \end{cases} $$
(2.10)

where \(f:J\times{\mathbb{R}}\to{\mathbb{R}}\) and the functions \(\varphi_{k}\), \(k=1,2,\ldots,m\), and constants α, β, γ are defined as in Sect. 2.1. The constant \(\rho_{k}\) is defined by

$$ \rho_{k}=p_{k-1}(t_{k}-t_{k-1})+t_{k-1}, \quad k=1,2,\ldots,m, m+1. $$

Then the lagging distance is \(t_{k}-\rho_{k}=(1-p_{k-1})(t_{k}-t_{k-1})\) which depends on the value of \(p_{k-1}\in(0,1]\).

To observe the special characteristic of this type, by the shifting property of the \((p,q)\)-derivative, we see that the unknown function \(x(t)\) is defined on \([t_{0},\rho_{1}]\cup(t_{k},\rho_{k+1}]\), \(k=1,2,\ldots,m\).

Example 2.8

Let \(J=[0,2]\) and \(t_{1}=1\) be an impulsive point. Then

$$ {_{0}}D_{\frac{1}{2}, \frac{1}{3}}x(t)=f\bigl(t,x(t)\bigr),\quad t\in[0,1], $$

and

$$ {_{1}}D_{\frac{1}{4}, \frac {1}{5}}x(t)=f\bigl(t,x(t)\bigr), \quad t\in(1,2], $$

can be presented as

$$ x(t)=x(0)+ \int_{0}^{t}f\bigl(s,x(s)\bigr) \,{_{0}}d_{\frac{1}{2}, \frac{1}{3}}, \quad t\in \biggl[0, \frac{1}{2} \biggr], $$

and

$$ x(t)=x\bigl(1^{+}\bigr)+ \int_{1}^{t}f\bigl(s,x(s)\bigr) \,{_{1}}d_{\frac{1}{4}, \frac {1}{5}}, \quad t\in \biggl(1, \frac{5}{4} \biggr]. $$

Theorem 2.9

The first-order type II\((p,q)\)-difference boundary value problem (2.10) can be expressed as an integral equation

$$\begin{aligned} x(t) =& \frac{\gamma}{(\alpha+\beta)}-\frac{\beta}{(\alpha+\beta )} \Biggl(\sum _{i=0}^{m} \int_{t_{i}}^{\rho_{i+1}}f\bigl(s,x(s)\bigr) \,{_{t_{i}}}d_{p_{i},q_{i}}s +\sum_{j=1}^{m} \varphi_{j}\bigl(x(\rho_{j})\bigr) \Biggr) \\ &{}+ \sum_{i=0}^{k-1} \int_{t_{i}}^{\rho_{i+1}}f\bigl(s,x(s)\bigr) \,{_{t_{i}}}d_{p_{i},q_{i}}s +\sum_{j=1}^{k} \varphi_{j}\bigl(x(\rho_{j})\bigr)+ \int _{t_{k}}^{t}f\bigl(s,x(s)\bigr) \,{_{t_{k}}}d_{p_{k},q_{k}}s, \end{aligned}$$
(2.11)

with\(\sum_{a}^{b}(\cdot)=0\), if\(b< a\).

Proof

Firstly, the \((p_{0},q_{0})\)-integration of the first equation in (2.10) yields

$$ x(t)=x(0)+ \int_{t_{0}}^{t}f\bigl(s,x(s)\bigr) \,{_{t_{0}}}d_{p_{0},q_{0}}s, \quad t\in (t_{0},\rho_{1}]. $$

In particular, for \(t=\rho_{1}\), we have

$$ x(\rho_{1})=x(0)+ \int_{t_{0}}^{\rho_{1}}f\bigl(s,x(s)\bigr) \,{_{t_{0}}}d_{p_{0},q_{0}}s. $$

For \(k=1\), by \((p_{1},q_{1})\)-integration, we obtain

$$ x(t)=x\bigl(t_{1}^{+}\bigr)+ \int_{t_{1}}^{t}f\bigl(s,x(s)\bigr) \,{_{t_{1}}}d_{p_{1},q_{1}}s, \quad t\in (t_{1},\rho_{2}], $$

which leads to

$$ x(t)=x(0)+ \int_{t_{0}}^{\rho_{1}}f\bigl(s,x(s)\bigr)\,{_{t_{0}}}d_{p_{0},q_{0}}s+ \varphi _{1}\bigl(x(\rho_{1})\bigr)+ \int_{t_{1}}^{t}f\bigl(s,x(s)\bigr) \,{_{t_{1}}}d_{p_{1},q_{1}}s, $$

by using the impulse condition \(x(t_{1}^{+})=x(\rho_{1})+\varphi_{1}(x(\rho_{1}))\).

Repeating the process for any \(t\in(t_{k},\rho_{k+1}]\), we get

$$ x(t)=x(0)+\sum_{i=0}^{k-1} \int_{t_{i}}^{\rho_{i+1}}f\bigl(s,x(s)\bigr) \,{_{t_{i}}}d_{p_{i},q_{i}}s +\sum_{j=1}^{k} \varphi_{j}\bigl(x(\rho_{j})\bigr)+ \int _{t_{k}}^{t}f\bigl(s,x(s)\bigr) \,{_{t_{k}}}d_{p_{k},q_{k}}s. $$

Since

$$ x(\rho_{m+1})=x(0)+\sum_{i=0}^{m} \int_{t_{i}}^{\rho_{i+1}}f\bigl(s,x(s)\bigr) \,{_{t_{i}}}d_{p_{i},q_{i}}s +\sum_{j=1}^{m} \varphi_{j}\bigl(x(\rho_{j})\bigr), $$

by the boundary condition, we have

$$ x(0)=\frac{\gamma}{(\alpha+\beta)}-\frac{\beta}{(\alpha+\beta )} \Biggl(\sum _{i=0}^{m} \int_{t_{i}}^{\rho_{i+1}}f\bigl(s,x(s)\bigr) \,{_{t_{i}}}d_{p_{i},q_{i}}s +\sum_{j=1}^{m} \varphi_{j}\bigl(x(\rho_{j})\bigr) \Biggr), $$

which implies that (2.11) holds. This completes the proof. □

Next we define the points \(\rho^{\ast }_{k}=p_{k-1}^{2}(t_{k}-t_{k-1})+t_{k-1}\), \(k=1,2,\ldots,m,m+1\). Now we consider the second-order type II impulsive \((p,q)\)-difference initial value problem of the form

$$ \textstyle\begin{cases} {_{t_{k}}}D_{p_{k},q_{k}}^{2}x(t)=f(t,x(t)),\quad t\in (t_{k}, t_{k+1} ], k=0,1,\ldots,m,\\ x(t_{k}^{+})-x(\rho_{k}^{\ast})=\varphi_{k}(x(\rho^{\ast}_{k})),\quad k=1,2,\ldots, m,\\ {_{t_{k}}}D_{p_{k},q_{k}}x(t_{k}^{+})-{_{t_{k-1}}}D_{p_{k-1},q_{k-1}}x(\rho _{k})=\varphi_{k}^{\ast}(x(\rho^{\ast}_{k})),\quad k=1,2,\ldots, m,\\ x(0)=\lambda_{1},\qquad{_{t_{0}}}D_{p_{0},q_{0}}x(0)=\lambda_{2}, \end{cases} $$
(2.12)

where \(f:J\times{\mathbb{R}}\to{\mathbb{R}}\), while other functions and constants are defined as in Sect. 2.1. Since \(0< p_{k}\leq1\), we have \(\rho^{\ast}_{k}\leq t_{k}\), and consequently \((t_{k},\rho^{\ast }_{k}]\subseteq(t_{k},t_{k+1}]\) for all \(k=0,1,\ldots,m\). By Lemma 1.1, the unknown function \(x(t)\) of problem (2.12) is defined on \([t_{0},\rho^{\ast}_{1}]\bigcup_{k=1}^{m}(t_{k}, \rho^{\ast}_{k+1}]\).

Theorem 2.10

The initial value problem (2.12) of the impulsive\((p,q)\)-difference equation of type II can be stated as an integral equation of the form

$$\begin{aligned} x(t) =& \lambda_{1}+\sum_{i=0}^{k} \bigl(\bigl\langle \rho^{\ast }_{i+1}\bigr\rangle _{k}-t_{i} \bigr) \Biggl[\lambda_{2}+\sum_{j=0}^{i-1} \biggl\{ \int_{t_{j}}^{\rho_{j+1}}f\bigl(s,x(s)\bigr) \,{_{t_{j}}}d_{p_{j},q_{j}}s+\varphi^{\ast }_{j+1} \bigl(x\bigl(\rho^{\ast}_{j+1}\bigr)\bigr) \biggr\} \Biggr] \\ &{}+ \sum_{r=0}^{k-1} \biggl\{ \frac{1}{p_{r}} \int_{t_{r}}^{\rho^{\ast }_{r+1}} \bigl(\rho^{\ast}_{r+1}-{_{t_{r}}} \varPhi_{q_{r}}(s) \bigr)f_{x} \bigl({_{t_{r}}} \varPhi_{\frac{1}{p_{r}}}(s) \bigr) \,{_{t_{r}}}d_{p_{r},q_{r}}s + \varphi_{r+1}\bigl(x\bigl(\rho^{\ast}_{r+1}\bigr) \bigr) \biggr\} \\ &{}+ \frac{1}{p_{k}} \int_{t_{k}}^{t} \bigl(t-{_{t_{k}}}\varPhi _{q_{k}}(s) \bigr)f_{x} \bigl({_{t_{k}}} \varPhi_{\frac{1}{p_{k}}}(s) \bigr) \,{_{t_{k}}}d_{p_{k},q_{k}}s,\quad t \in(t_{k},\rho^{\ast}_{k+1}], k=0,1,\ldots ,m. \end{aligned}$$
(2.13)

Proof

The mathematical induction will be used to prove that (2.13) holds. To do this, by applying the double \((p_{0},q_{0})\)-integration to the first equation of (2.12), we obtain

$$ x(t)=\lambda_{1}+\lambda_{2}t+\frac{1}{p_{0}} \int_{t_{0}}^{t} \bigl(t-{_{t_{0}}} \varPhi_{q_{0}}(s) \bigr)f_{x} \bigl({_{t_{0}}} \varPhi_{\frac {1}{p_{0}}}(s) \bigr) \,{_{t_{0}}}d_{p_{0},q_{0}}s,\quad t \in(t_{0},\rho^{\ast}_{1}], $$

which implies that (2.13) is true for \(k=0\). In the next step, we suppose that (2.13) holds for \(t\in (t_{k},\rho^{\ast}_{k+1}]\). By mathematical induction, we shall show that (2.13) holds on \((t_{k+1}, \rho^{\ast}_{k+2}]\). Now, the double \((p_{0},q_{0})\)-integration of the first equation of (2.12) yields on \(t\in(t_{k+1},\rho^{\ast}_{k+2}]\) that

$$\begin{aligned} x(t) =&x\bigl(t_{k+1}^{+}\bigr)+(t-t_{k+1}) {_{t_{k+1}}}D_{p_{k+1},q_{k+1}}x\bigl(t_{k+1}^{+}\bigr) \\ &{} +\frac{1}{p_{k+1}} \int_{t_{k+1}}^{t} \bigl(t-{_{t_{k+1}}}\varPhi _{q_{k+1}}(s) \bigr)f_{x} \bigl({_{t_{k+1}}} \varPhi_{\frac {1}{p_{k+1}}}(s) \bigr) \,{_{t_{k+1}}}d_{p_{k+1},q_{k+1}}s. \end{aligned}$$
(2.14)

We have

$$\begin{aligned} x\bigl(t_{k+1}^{+}\bigr) =&x\bigl(\rho_{k+1}^{\ast} \bigr)+\varphi_{k+1}\bigl(x\bigl(\rho_{k}^{\ast }\bigr) \bigr) \\ =& \lambda_{1}+\sum_{i=0}^{k} \bigl( \rho^{\ast}_{i+1}-t_{i} \bigr) \Biggl[ \lambda_{2}+\sum_{j=0}^{i-1} \biggl\{ \int_{t_{j}}^{\rho_{j+1}}f\bigl(s,x(s)\bigr) \,{_{t_{j}}}d_{p_{j},q_{j}}s+\varphi^{\ast}_{j+1} \bigl(x\bigl(\rho^{\ast }_{j+1}\bigr)\bigr) \biggr\} \Biggr] \\ &{}+ \sum_{r=0}^{k} \biggl\{ \frac{1}{p_{r}} \int_{t_{r}}^{\rho^{\ast }_{r+1}} \bigl(\rho^{\ast}_{r+1}-{_{t_{r}}} \varPhi_{q_{r}}(s) \bigr)f_{x} \bigl({_{t_{r}}} \varPhi_{\frac{1}{p_{r}}}(s) \bigr) \,{_{t_{r}}}d_{p_{r},q_{r}}s + \varphi_{r+1}\bigl(x\bigl(\rho^{\ast}_{r+1}\bigr) \bigr) \biggr\} \end{aligned}$$

and

$$\begin{aligned} {_{t_{k+1}}}D_{p_{k+1},q_{k+1}}x\bigl(t_{k+1}^{+}\bigr) =&{_{t_{k}}}D_{p_{k},q_{k}}x(\rho_{k+1})+ \varphi_{k+1}^{\ast }\bigl(x\bigl(\rho_{k}^{\ast} \bigr)\bigr) \\ =& \lambda_{2}+\sum_{j=0}^{k-1} \biggl\{ \int_{t_{j}}^{\rho _{j+1}}f\bigl(s,x(s)\bigr) \,{_{t_{j}}}d_{p_{j},q_{j}}s+\varphi^{\ast}_{j+1} \bigl(x\bigl(\rho ^{\ast}_{j+1}\bigr)\bigr) \biggr\} \\ &{}+ \int_{t_{k}}^{\rho_{k+1}}f\bigl(s,x(s)\bigr) \,{_{t_{k}}}d_{p_{k},q_{k}}s+\varphi ^{\ast}_{k+1}\bigl(x \bigl(\rho^{\ast}_{k+1}\bigr)\bigr) \\ =&\lambda_{2}+\sum_{j=0}^{k} \biggl\{ \int_{t_{j}}^{\rho_{j+1}}f\bigl(s,x(s)\bigr) \,{_{t_{j}}}d_{p_{j},q_{j}}s+\varphi^{\ast}_{j+1} \bigl(x\bigl(\rho^{\ast }_{j+1}\bigr)\bigr) \biggr\} . \end{aligned}$$

Substituting above two values into (2.14), we obtain

$$\begin{aligned} x(t) =&\lambda_{1}+\sum_{i=0}^{k} \bigl( \rho^{\ast}_{i+1}-t_{i} \bigr) \Biggl[ \lambda_{2}+\sum_{j=0}^{i-1} \biggl\{ \int_{t_{j}}^{\rho _{j+1}}f\bigl(s,x(s)\bigr) \,{_{t_{j}}}d_{p_{j},q_{j}}s+\varphi^{\ast}_{j+1} \bigl(x\bigl(\rho ^{\ast}_{j+1}\bigr)\bigr) \biggr\} \Biggr] \\ &{}+ \sum_{r=0}^{k} \biggl\{ \frac{1}{p_{r}} \int_{t_{r}}^{\rho^{\ast }_{r+1}} \bigl(\rho^{\ast}_{r+1}-{_{t_{r}}} \varPhi_{q_{r}}(s) \bigr)f_{x} \bigl({_{t_{r}}} \varPhi_{\frac{1}{p_{r}}}(s) \bigr) \,{_{t_{r}}}d_{p_{r},q_{r}}s + \varphi_{r+1}\bigl(x\bigl(\rho^{\ast}_{r+1}\bigr) \bigr) \biggr\} \\ &{}+ (t-t_{k+1}) \Biggl(\lambda_{2}+\sum _{j=0}^{k} \biggl\{ \int _{t_{j}}^{\rho_{j+1}}f\bigl(s,x(s)\bigr) \,{_{t_{j}}}d_{p_{j},q_{j}}s+\varphi^{\ast }_{j+1} \bigl(x\bigl(\rho^{\ast}_{j+1}\bigr)\bigr) \biggr\} \Biggr) \\ &{}+ \frac{1}{p_{k+1}} \int_{t_{k+1}}^{t} \bigl(t-{_{t_{k+1}}}\varPhi _{q_{k+1}}(s) \bigr)f_{x} \bigl({_{t_{k+1}}} \varPhi_{\frac {1}{p_{k+1}}}(s) \bigr) \,{_{t_{k+1}}}d_{p_{k+1},q_{k+1}}s \\ =&\lambda_{1}+\sum_{i=0}^{k+1} \bigl(\bigl\langle \rho^{\ast }_{i+1}\bigr\rangle _{k+1}-t_{i} \bigr) \Biggl[\lambda_{2}+\sum_{j=0}^{i-1} \biggl\{ \int_{t_{j}}^{\rho_{j+1}}f\bigl(s,x(s)\bigr) \,{_{t_{j}}}d_{p_{j},q_{j}}s+\varphi ^{\ast}_{j+1} \bigl(x\bigl(\rho^{\ast}_{j+1}\bigr)\bigr) \biggr\} \Biggr] \\ &{}+ \sum_{r=0}^{k} \biggl\{ \frac{1}{p_{r}} \int_{t_{r}}^{\rho^{\ast }_{r+1}} \bigl(\rho^{\ast}_{r+1}-{_{t_{r}}} \varPhi_{q_{r}}(s) \bigr)f_{x} \bigl({_{t_{r}}} \varPhi_{\frac{1}{p_{r}}}(s) \bigr) \,{_{t_{r}}}d_{p_{r},q_{r}}s + \varphi_{r+1}\bigl(x\bigl(\rho^{\ast}_{r+1}\bigr) \bigr) \biggr\} \\ &{}+ \frac{1}{p_{k+1}} \int_{t_{k+1}}^{t} \bigl(t-{_{t_{k+1}}}\varPhi _{q_{k+1}}(s) \bigr)f_{x} \bigl({_{t_{k+1}}} \varPhi_{\frac {1}{p_{k+1}}}(s) \bigr) \,{_{t_{k+1}}}d_{p_{k+1},q_{k+1}}s, \end{aligned}$$

which holds for \((t_{k+1}, \rho^{\ast}_{k+2}]\). This completes the proof. □

To investigate the impulsive \((p,q)\)-difference equations of type II, we define intervals of solutions as \(\varLambda_{1}= (\bigcup_{k=0}^{m}(t_{k},\rho_{k+1}] )\cup\{0\}\) and \(\varLambda_{2}= (\bigcup_{k=0}^{m}(t_{k},\rho_{k+1}^{\ast}] )\cup\{0\}\), and also the spaces \(\mathit{PC}_{1}(\varLambda_{1}, {\mathbb{R}})=\{x:\varLambda_{1}\to {\mathbb{R}}\): \(x(t)\) is continuous everywhere on \(\varLambda_{1}\) such that \(x(t_{k}^{+})\) and \(x(\rho_{k+1})\) exist for all \(k=0,1,\ldots,m\}\) and \(\mathit{PC}_{2}(\varLambda_{2}, {\mathbb{R}})=\{x:\varLambda_{2}\to{\mathbb {R}}\): \(x(t)\) is continuous everywhere on \(\varLambda_{2}\) such that \(x(t_{k}^{+})\) and \(x(\rho_{k+1}^{\ast})\) exist for all \(k=0,1,\ldots,m\} \). Both of them are Banach spaces equipped with the norms \(\|x\|_{1}=\sup \{|x(t)|, t\in\varLambda_{1}\}\) and \(\|x\|_{2}=\sup\{|x(t)|, t\in \varLambda_{2}\}\).

In proving our next results, we use the constants:

$$\begin{aligned}& \varOmega_{5}=\frac{ \vert \beta \vert + \vert \alpha+\beta \vert }{ \vert \alpha+\beta \vert }\sum_{i=0}^{m}( \rho_{i+1}-t_{i}), \\& \varOmega_{6}:=\sum_{i=0}^{m} \Biggl\{ \bigl(\rho_{i+1}^{\ast}-t_{i}\bigr)\sum _{j=0}^{i-1}(\rho_{j+1}-t_{j}) \Biggr\} +\sum_{r=0}^{m}\frac{(\rho _{r+1}^{\ast}-t_{r})^{2}}{p_{r}+q_{r}}, \\& \varOmega_{7}:=\sum_{i=0}^{m} \bigl(\rho_{i+1}^{\ast}-t_{i}\bigr)i. \end{aligned}$$

Applying Theorem 2.9 to define the operator on \(\mathit{PC}_{1}(\varLambda_{1}, {\mathbb{R}})\) and following the method of Theorem 2.4, we can easily prove the existence of a unique solution of problem (2.10).

Theorem 2.11

Assume that the functions\(f:[0,T]\times{\mathbb{R}}\to{\mathbb {R}}\)and\(\varphi_{k}:{\mathbb{R}}\to{\mathbb{R}}\), \(k=1,2,\ldots ,m\), satisfy condition\((H_{1})\). If

$$ L_{1}\varOmega_{5}+L_{2} \varOmega_{2}< 1, $$
(2.15)

then the boundary value problem of type II (2.10) has a unique solution on\(\varLambda_{1}\).

Theorem 2.12

Assume that the functions\(f:[0,T]\times{\mathbb{R}}\to{\mathbb {R}}\), \(\varphi_{k}:{\mathbb{R}}\to{\mathbb{R}}\)and\(\varphi _{k}^{\ast}:{\mathbb{R}}\to{\mathbb{R}}\), \(k=1,2,\ldots,m\), satisfy\((H_{1})\)\((H_{2})\). If

$$ L_{1}\varOmega_{6}+L_{2}m+L_{3} \varOmega_{7}< 1, $$
(2.16)

then the problem of type II (2.12) has a unique solution on\(\varLambda_{2}\).

Proof

To show the technique of computation of constants \(\varOmega_{6}\) and \(\varOmega_{7}\), we give a short proof. Now we prove that the operator equation \(x={\mathcal{B}}x\) has a unique fixed point, where the operator \({\mathcal{B}}:\mathit{PC}_{2}(\varLambda _{2}, {\mathcal{R}})\to \mathit{PC}_{2}(\varLambda_{2}, {\mathcal{R}})\) is defined, in view of Theorem 2.10, by

$$\begin{aligned} {\mathcal{B}}x(t) =& \lambda_{1}+\sum_{i=0}^{k} \bigl(\bigl\langle \rho ^{\ast}_{i+1}\bigr\rangle _{k}-t_{i} \bigr) \Biggl[\lambda_{2}+\sum_{j=0}^{i-1} \biggl\{ \int_{t_{j}}^{\rho_{j+1}}f\bigl(s,x(s)\bigr) \,{_{t_{j}}}d_{p_{j},q_{j}}s+\varphi^{\ast}_{j+1} \bigl(x\bigl(\rho^{\ast }_{j+1}\bigr)\bigr) \biggr\} \Biggr] \\ &{}+ \sum_{r=0}^{k-1} \biggl\{ \frac{1}{p_{r}} \int_{t_{r}}^{\rho^{\ast }_{r+1}} \bigl(\rho^{\ast}_{r+1}-{_{t_{r}}} \varPhi_{q_{r}}(s) \bigr)f_{x} \bigl({_{t_{r}}} \varPhi_{\frac{1}{p_{r}}}(s) \bigr) \,{_{t_{r}}}d_{p_{r},q_{r}}s + \varphi_{r+1}\bigl(x\bigl(\rho^{\ast}_{r+1}\bigr) \bigr) \biggr\} \\ &{}+ \frac{1}{p_{k}} \int_{t_{k}}^{t} \bigl(t-{_{t_{k}}}\varPhi _{q_{k}}(s) \bigr)f_{x} \bigl({_{t_{k}}} \varPhi_{\frac{1}{p_{k}}}(s) \bigr) \,{_{t_{k}}}d_{p_{k},q_{k}}s,\quad t \in(t_{k},\rho^{\ast}_{k+1}], k=0,1,\ldots,m. \end{aligned}$$

By a similar method as in Theorem 2.4, we can show that the operator \({\mathcal{B}}\) maps a subset of \(\mathit{PC}_{2}(\varLambda_{2}, {\mathcal{R}})\) into subset of \(\mathit{PC}_{2}(\varLambda_{2}, {\mathcal{R}})\). Next, we will prove that \({\mathcal{B}}\) is a contraction. Let \(x,y\in \mathit{PC}_{2}(\varLambda_{2}, {\mathcal{R}})\). Then we have

$$\begin{aligned} & \bigl\vert {\mathcal{B}}x(t)-{\mathcal{B}}y(t) \bigr\vert \\ &\quad\leq \sum_{i=0}^{k} \bigl(\bigl\langle \rho^{\ast}_{i+1}\bigr\rangle _{k}-t_{i} \bigr) \Biggl[\sum_{j=0}^{i-1} \biggl\{ \int_{t_{j}}^{\rho _{j+1}} \bigl\vert f\bigl(s,x(s)\bigr)-f \bigl(s,y(s)\bigr) \bigr\vert \,{_{t_{j}}}d_{p_{j},q_{j}}s \\ &\qquad{}+ \bigl\vert \varphi^{\ast}_{j+1}\bigl(x\bigl( \rho^{\ast}_{j+1}\bigr)\bigr)-\varphi^{\ast }_{j+1} \bigl(y\bigl(\rho^{\ast}_{j+1}\bigr)\bigr) \bigr\vert \biggr\} \Biggr] \\ &\qquad{}+ \sum_{r=0}^{k-1} \biggl\{ \frac{1}{p_{r}} \int_{t_{r}}^{\rho^{\ast }_{r+1}} \bigl(\rho^{\ast}_{r+1}-{_{t_{r}}} \varPhi_{q_{r}}(s) \bigr) \bigl\vert f_{x} \bigl({_{t_{r}}}\varPhi_{\frac{1}{p_{r}}}(s) \bigr) -f_{y} \bigl({_{t_{r}}}\varPhi_{\frac{1}{p_{r}}}(s) \bigr) \bigr\vert \,{_{t_{r}}}d_{p_{r},q_{r}}s \\ &\qquad{}+ \bigl\vert \varphi_{r+1}\bigl(x\bigl(\rho^{\ast}_{r+1} \bigr)\bigr)-\varphi_{r+1}\bigl(y\bigl(\rho ^{\ast}_{r+1} \bigr)\bigr) \bigr\vert \biggr\} \\ &\qquad{}+ \frac{1}{p_{k}} \int_{t_{k}}^{t} \bigl(t-{_{t_{k}}}\varPhi _{q_{k}}(s) \bigr) \bigl\vert f_{x} \bigl({_{t_{k}}} \varPhi_{\frac {1}{p_{k}}}(s) \bigr)-f_{y} \bigl({_{t_{k}}} \varPhi_{\frac {1}{p_{k}}}(s) \bigr) \bigr\vert \,{_{t_{k}}}d_{p_{k},q_{k}}s \\ &\leq \sum_{i=0}^{m} \bigl( \rho^{\ast}_{i+1}-t_{i} \bigr) \Biggl[\sum _{j=0}^{i-1} \biggl\{ L_{1} \Vert x-y \Vert _{2} \int_{t_{j}}^{\rho_{j+1}}(1) \,{_{t_{j}}}d_{p_{j},q_{j}}s+L_{3} \Vert x-y \Vert _{2} \biggr\} \Biggr] \\ &\qquad{}+ \sum_{r=0}^{m-1} \biggl\{ \frac{1}{p_{r}}L_{1} \Vert x-y \Vert _{2} \int _{t_{r}}^{\rho^{\ast}_{r+1}} \bigl(\rho^{\ast}_{r+1}-{_{t_{r}}} \varPhi _{q_{r}}(s) \bigr) (1) \,{_{t_{r}}}d_{p_{r},q_{r}}s+L_{2} \Vert x-y \Vert _{2} \biggr\} \\ &\qquad{}+ \frac{1}{p_{m}}L_{1} \Vert x-y \Vert _{2} \int_{t_{m}}^{\rho_{m+1}^{\ast}} \bigl(\rho_{m+1}^{\ast}-{_{t_{m}}} \varPhi_{q_{m}}(s) \bigr) (1) \,{_{t_{m}}}d_{p_{m},q_{m}}s \\ &\quad= \sum_{i=0}^{m} \bigl( \rho^{\ast}_{i+1}-t_{i} \bigr) \Biggl[\sum _{j=0}^{i-1} \bigl\{ L_{1} \Vert x-y \Vert _{2}(\rho_{j+1}-t_{j})+L_{3} \Vert x-y \Vert _{2} \bigr\} \Biggr] \\ &\qquad{}+ \sum_{r=0}^{m-1} \biggl\{ L_{1} \Vert x-y \Vert _{2}\frac{(\rho_{r+1}^{\ast }-t_{r})^{2}}{p_{r}+q_{r}}+L_{2} \Vert x-y \Vert _{2} \biggr\} +L_{1} \Vert x-y \Vert _{2}\frac{(\rho _{m+1}^{\ast}-t_{m})^{2}}{p_{m}+q_{m}} \\ &\quad=(L_{1}\varOmega_{6}+L_{2}m+L_{3} \varOmega_{7}) \Vert x-y \Vert _{2}, \end{aligned}$$

which implies that \(\|{\mathcal{B}}x-{\mathcal{B}}y\|_{2}\leq (L_{1}\varOmega_{6}+L_{2}m+L_{3}\varOmega_{7})\|x-y\|_{2}\). Condition (2.16) and the Banach contraction mapping principle guarantee that the impulsive \((p,q)\)-difference initial value problem of type II (2.12) has a unique solution on \(\varLambda_{2}\). The proof is completed. □

Example 2.13

Consider the following first-order impulsive \((p,q)\)-difference equation of type II subject to the boundary condition of the form:

$$ \textstyle\begin{cases} {_{k}}D_{\frac{k+1}{k+2},\frac{k+1}{k+3}} x(t)=\frac {5}{6(3+t)^{2}} (\frac{x^{2}(t)+2 \vert x(t) \vert }{1+ \vert x(t) \vert } )+\frac {3}{4},\quad t\in (k, k+1 ], k=0,1,2,\\ x(k)-x (\frac{k^{2}+k-1}{k+1} )=\frac{1}{6k}\tan^{-1} (x (\frac{k^{2}+k-1}{k+1} ) ),\quad k=1,2,\\\frac{1}{2} x(0)+\frac{1}{3} x (\frac{11}{4} )=\frac{1}{4}. \end{cases} $$
(2.17)

Here the quantum numbers are \(p_{k}=(k+1)/(k+2)\), \(q_{k}=(k+1)/(k+3)\), \(k=0,1,2\), \(J=[0,3]\), \(t_{k}=k\), \(k=1,2\), \(\alpha=1/2\), \(\beta=1/3\), \(\gamma=1/4\), and \(\rho_{k}=(k^{2}+k-1)/(k+1)\). We can find that \(\varOmega_{2}=2.8000\), \(\varOmega_{5}=2.6833\), and

$$ \varLambda_{1}= \biggl[0,\frac{1}{2} \biggr]\cup \biggl(1, \frac {5}{3} \biggr]\cup \biggl(2,\frac{11}{4} \biggr]. $$

By setting

$$ f(t,x)=\frac{5}{6(3+t)^{2}} \biggl(\frac{x^{2}+2 \vert x \vert }{1+ \vert x \vert } \biggr)+\frac {3}{4} \quad\text{and}\quad\varphi_{k}(x)=\frac{1}{6k} \tan^{-1} (x ), $$

we see that the functions f and \(\varphi_{k}\) satisfy \((H_{1})\) with \(L_{1}=5/27\) and \(L_{2}=1/6\), respectively. Then we get \(L_{1}\varOmega _{5}+L_{2}\varOmega_{2}=0.9543<1\). Therefore, by Theorem 2.11, the boundary value problem (2.17) has a unique solution x on \(\varLambda_{1}\).

Example 2.14

Consider the following second-order impulsive \((p,q)\)-difference equation of type II with the initial conditions of the form:

$$ \textstyle\begin{cases} {_{k}}D_{\frac{k+1}{k+2},\frac{k+1}{k+3}}^{2} x(t)=\frac {1}{10(t+6)}\sin \vert x(t) \vert +\frac{5}{6},\quad t\in (k, k+1 ], k=0,1,2,\\ x(k^{+})-x (\frac{k^{3}+2k^{2}-k-1}{(k+1)^{2}} )=\frac {3}{5(k+1)^{2}}\tan^{-1} (x (\frac {k^{3}+2k^{2}-k-1}{(k+1)^{2}} ) ),\quad k=1,2,\\ {_{k}}D_{\frac{k+1}{k+2},\frac{k+1}{k+3}} x(k^{+})-{_{(k-1)}}D_{\frac {k}{k+1}, \frac{k}{k+2}}x (\frac{k^{2}+k-1}{k+1} )=\frac {1}{5k^{3}} \vert x (\frac{k^{3}+2k^{2}-k-1}{(k+1)^{2}} ) \vert ,\quad k=1,2,\\ x(0)=\frac{3}{5},\qquad{_{0}}D_{\frac{1}{2},\frac{1}{3}}x(0)=\frac{5}{7}. \end{cases} $$
(2.18)

The quantum numbers \(p_{k}\), \(q_{k}\), impulsive points \(t_{k}\), \(\rho_{k}\), and interval J are defined the same as in Example 2.13. We have the constants \(\lambda_{1}=3/5\), \(\lambda_{2}=5/7\), and points \(\rho _{k}^{\ast}=(k^{3}+2k^{2}-k-1)/(k+1)^{2}\). Next we can find that \(\varOmega _{6}=18.4273\), \(\varOmega_{7}=1.5694\), and

$$ \varLambda_{2}= \biggl[0,\frac{1}{4} \biggr]\cup \biggl(1, \frac {13}{9} \biggr]\cup \biggl(2,\frac{41}{16} \biggr]. $$

By setting

$$ f(t,x)=\frac{1}{10(t+6)}\sin \vert x \vert +\frac{5}{6},\qquad \varphi _{k}(x)=\frac{3}{5(k+1)^{2}}\tan^{-1} (x ),\quad\text{and}\quad\varphi^{\ast}_{k}(x)=\frac{1}{5k^{3}} \vert x \vert , $$

we deduce that \((H_{1})\)\((H_{2})\) are fulfilled with \(L_{1}=1/60\), \(L_{2}=3/20\), and \(L_{3}=1/5\). Hence, it follows that \(L_{1}\varOmega _{6}+L_{2}m+L_{3}\varOmega_{7}=0.9210<1\). Therefore, by applying Theorem 2.12, the boundary value problem (2.18) has a unique solution x on \(\varLambda_{2}\).

3 Conclusion

In this research, we initiated the study of the first and second order \((p,q)\)-difference equations with initial or boundary conditions. Firstly, we let \(t_{k}\), \(k=1,\ldots,m\), be the impulsive points such that \(0=t_{0}< t_{1}<\cdots<t_{k}<\cdots<t_{m}<t_{m+1}=T\) and \(J_{k}=(t_{k},t_{k+1}]\), \(k=1,\ldots,m\), \(J_{0}=[0,t_{1}]\) be the intervals such that \(\bigcup_{k=0}^{m}J_{k}=[0,T]:=J\). The investigations were based on \((p,q)\)-calculus introduced in the first section of this paper, by replacing a point a by \(t_{k}\), quantum numbers p by \(p_{k}\) and q by \(q_{k}\), \(k=0,1,\ldots,m\), and also applying the \((p_{k},q_{k})\)-difference and \((p_{k},q_{k})\)-integral operators only on a finite subinterval of J. In addition, the consecutive subintervals could be related with jump conditions which led to a meaning of quantum difference equations with impulse effects. There are two types of impulsive problems. The consecutive domains of impulsive \((p,q)\)-difference equations of type I are overlapped, while the unknown functions of impulsive equations of type II are defined on disjoint consecutive domains. Four types of problems were considered, two impulsive \((p,q)\)-difference equations of type I and two impulsive \((p,q)\)-difference equations of type II. Existence and uniqueness results were proved via Banach’s contraction mapping principle. Examples illustrating the obtained results were also presented.