1 Introduction

The fractional differential equation is a mathematical model which is useful for the explanation of hereditary characteristics and memory of different processes and materials. A variety of research work is based on the basic study of fractional differential equations [16] as in further work various researchers considered control problems; for example, see [79].

The controllability shows a major presence in the advancement of modern mathematical control theory and engineering which has a close connection with structural decomposition, quadratic optimal and so on; see [1017]. Controllability is a qualitative property of fractional delay dynamical system, so one needs to find its representation of a solution. He and Wei [18, 19] gave a representation of a solution and discussed the controllability and then for a fractional control delay system obtained necessary and sufficient conditions, Nirmala [11] give a representation of a solution by using Laplace transform and Mittag-Leffler function and established controllability criteria for fractional delay dynamical system. Moreover, Khusainov et al. [20] obtained the representation of a solution of a Cauchy problem for a linear differential equation with pure delay by using the delayed Mittag-Leffler function, Shukla et al. [2124] discussed the complete and approximate controllability of semilinear stochastic systems with delays in the state and control function with non-Lipschitz coefficients, the Schauder fixed point theorem, sequence methods and by the theory of the strongly continuous z-order cosine family, and the fixed point theorem, respectively. In a most recent work [25] the authors discussed the relative controllability problem and an explicit representation of solutions is given with the use of delayed Mittag-Leffler function, Li and Wang [26] discussed the controllability criteria of a fractional differential system with state delay by using an explicit solution formula. By following this study we consider a fractional differential system with state and control delay and discussed its controllability by giving its necessary and sufficient conditions. Li and Wang [27] considered pure delay for linear fractional differential equations and gave a representation of a solution by using a delayed Mittag-Leffler type matrix:

$$\begin{aligned} \left \{ \textstyle\begin{array}{l} {}^{c}D^{\alpha}_{0^{+}}x(t)=Ax(t-h), \quad x(t)\in\mathcal{R}^{n}, t \in J:=[0,t_{1}],h > 0, \\ x(t)=\varphi(t), \quad{-}h\leq t \leq0,\varphi\in\mathcal {C}^{1}_{h}:=\mathcal{C}^{1}([-h,0],\mathcal{R}^{n}), \end{array}\displaystyle \right . \end{aligned}$$
(1)

where \({}^{c}D^{\alpha}_{0^{+}}x(t)\) stands for the αth order Caputo fractional derivative of \(x(t)\) where zero is a lower limit, \(t_{1}\) is the integral multiple of h, \(A\in\mathcal {R}^{n\times n}\), \(h >0\) is a time delay, \(n \in\mathcal{N}\) stands for a constant matrix. \(\mathcal{E}^{A.^{\alpha}}_{h}\) is a new notation (delayed Mittag-Leffler type matrix) being reported in Definition 2.3 [28], any solution \(x \in C ([-h, t_{1}], \mathcal{R}^{n})\) of (1) can be established by Li:

$$ x(t) = \mathcal{E}^{A t^{\alpha}}_{h}\varphi(-h) + \int^{0}_{-h}\mathcal {E}^{A(t-h-\tau)^{\alpha}}_{h} \varphi'(\tau)\,d\tau. $$
(2)

Motivated by the previous study, in this research work we deal with the fractional differential systems with state and control delay by using of an explicit formula governed by

$$\begin{aligned} \left \{ \textstyle\begin{array}{l} {}^{c}D^{\alpha}_{0^{+}}x(t)=Ax(t-h)+Bu(t)+Cu(t-h),\quad x(t)\in J:=[0,t_{1}],h > 0,t_{1} \geq0, \\ x(t)=\varphi(t), \quad {-}h\leq t \leq0,\\ u(t)=\psi(t), \quad{-}h\leq t \leq0, \end{array}\displaystyle \right . \end{aligned}$$
(3)

where \(x: [-h, t_{1}] \rightarrow\mathcal{R}^{n}\) is a continuous differentiable on \([0, t_{1}]\) with \(t_{1} >(n-1)h\), \(0<\alpha\leq1\), \(A\in\mathcal{R}^{n\times n}\), \(B, C\in\mathcal{R}^{n\times m}\) are any matrices, \(h >0\) shows the time delay, \(x(t)\in\mathcal{R}^{n} \) denotes the state vector, \(u(t)\in\mathcal{R}^{m}\) shows the control vector, \(\varphi(t)\) shows the initial state function and \(\psi(t)\) shows the initial control function \(\varphi\in\mathcal {C}^{1}_{h}:=\mathcal{C}^{1}([-h,0],\mathcal{R}^{n})\). The lay-out of this article as follows, Sect. 2 includes some useful definitions, preliminary results, and lemmas about delayed Mittag-Leffler type matrix to establish the controllability of fractional differential systems with state and control delay. In Sect. 3 we obtain necessary and sufficient conditions for controllability criteria for the above fractional differential delay system (3). Section 4 presents an example to explain the applicability of the theoretical results.

2 Preliminaries and essential lemmas

This part includes some basic definitions and results used throughout this paper and some lemmas for the main results. We recall some well-known definitions. For more details, see [3, 5].

Definition 2.1

([29])

We consider a function \(f:[0,\infty)\rightarrow\mathcal{R}\) where its Caputo fractional derivative of order (\(0 < \alpha< 1 \)) is defined as

$$\bigl({}^{c}D^{\alpha}_{0^{+}} x \bigr) (t)= \frac{1}{\varGamma(1-\alpha)} \int_{0}^{t}\frac{ x'(\theta)}{(t-\theta)^{\alpha}}\,d\theta,\quad t>0. $$

Here the Gamma function is denoted by \(\varGamma(\cdot)\).

Definition 2.2

([29])

We consider a function \(f: [0,\infty)\rightarrow\mathcal{R}\) where its fractional integral of order \(\alpha>0\) is defined as

$$\bigl(I^{\alpha}_{0^{+}}f \bigr) (t)=\frac{1}{\varGamma(\alpha)} \int_{0}^{t}(t-\theta )^{\alpha-1}f(\theta)\,d \theta. $$

Here \(\varGamma(\cdot)\) denotes the Gamma function.

Definition 2.3

([26])

A matrix \(\mathcal{E}^{A.^{\alpha}}_{h}:\mathcal{R}\rightarrow\mathcal {R}^{n\times n}\) known as a delayed Mittag-Leffler type matrix is defined as

$$\begin{aligned} \mathcal{E}^{A t^{\alpha}}_{h} = \left \{ \textstyle\begin{array}{l@{\quad}l} \varTheta,&- \infty< t < -h,\\ I ,&- h \leq t\leq0,\\ I+A\frac{(t)^{\alpha}}{\varGamma(\alpha+1)}+A^{2}\frac{(t-h)^{2\alpha }}{\varGamma(2\alpha+1)}+\cdots+A^{k}\frac{(t-(k-1)h)^{k\alpha}}{\varGamma (k\alpha+1)},&(k-1) h \leq t \leq k h,k \in\mathcal{N}, \end{array}\displaystyle \right . \end{aligned}$$
(4)

where zero and identity matrices are shown by Θ and I, respectively.

Definition 2.4

The system (3) is said to be controllable on \(J=[0, t_{1}]\) if one can reach any state from any allowed initial state \(x(t)=\varphi (t)\) and initial control \(u(t)=\psi(t)\).

Lemma 2.5

([26])

Let \(f: J \rightarrow\mathcal{R}^{n}\)be a continuous vector value function. A solution \(x \in C ([-h,t_{1}], \mathcal{R}^{n})\)of the following system:

$$\begin{aligned} \left \{ \textstyle\begin{array}{l} {}^{c}D^{\alpha}_{0^{+}}x(t)=Ax(t-h)+f(t), \quad x(t)\in\mathcal{R}^{n}, t \in J:=[0,t_{1}], h > 0, \\ x(t)=\varphi(t), \quad {-}h\leq t \leq0, \varphi\in\mathcal{C}^{1}_{h}, \end{array}\displaystyle \right . \end{aligned}$$
(5)

can be written in the form of an integral equation by using the method in [26];

$$\begin{aligned} x(t) = \mathcal{E}^{A t^{\alpha}}_{h}\varphi(-h) + \int^{0}_{-h}\mathcal {E}^{A(t-h-\tau)^{\alpha}}_{h} \varphi'(\tau)\,d\tau+ \int^{t}_{0}\mathcal {E}^{A(t-h-\tau)^{\alpha}}_{h}f( \tau)\,d\tau. \end{aligned}$$

By Lemma 2.8in [26], a solution \(x \in C ([-h,t_{1}], \mathcal{R}^{n})\)of system (3) can be composed in the form

$$ \begin{aligned}[b]x(t) &= \mathcal{E}^{A t^{\alpha}}_{h}\varphi(-h) + \int ^{0}_{-h}\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h} \varphi'(\tau)\,d\tau \\ &\quad+ \int^{t}_{0}\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h}Bu( \tau )\,d\tau+ \int^{t}_{0}\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h}Cu( \tau-h)\,d\tau.\end{aligned} $$
(6)

Lemma 2.6

([18])

From Lemma 2.5for system (3), a general solution can be composed as

$$ \begin{aligned}[b] x(t) &= \mathcal{E}^{A t^{\alpha}}_{h}\varphi(-h) + \int^{0}_{-h}\mathcal {E}^{A(t-h-\tau)^{\alpha}}_{h} \varphi'(\tau)\,d\tau+ \int^{t-h}_{0}\mathcal {E}^{A(t-h-\tau)^{\alpha}}_{h}Bu( \tau)\,d\tau \\ &\quad + \int^{t}_{t-h}\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h}Bu( \tau )\,d\tau+ \int^{t-h}_{0}\mathcal{E}^{A(t-2h-\tau)^{\alpha}}_{h}Cu( \tau )\,d\tau \\ &\quad+ \int^{0}_{-h}\mathcal{E}^{A(t-2h-\tau)^{\alpha}}_{h}C \psi(\tau)\,d\tau.\end{aligned} $$
(7)

Definition 2.7

We call the set in [18] \(R(\varphi,\psi)\) = \(\{\nu\mid\) there exists \(t_{1} > 0, u(t)\in C^{l-1}\), such that the solution of the system (3) \(x(t,\varphi ,\psi)\) satisfies \(x(t_{1},\varphi,\psi)=\nu\}\) the reachable set of (3) with \(x(t)=\varphi(t)\) and \(u(t)=\psi (t)\) at \(-h \leq t \leq0\).

Lemma 2.8

([18])

For the beta function

$$\mathcal{B}(p,q) = \int^{1}_{0}s^{p-1}(1-s)^{q-1}\,ds\quad \bigl(Re(p)>0, Re(q)>0 \bigr), $$

we have

$$\mathcal{B}(p,q) =\frac{\varGamma(p)\varGamma(q)}{\varGamma(p+q)}. $$

Lemma 2.9

([28])

Let \((k-1) h \leq t \leq k h\), \(k \in\mathcal{N}\), we have

$$\begin{aligned} \int^{t}_{(k-1)h}(t-s)^{-\alpha} \bigl(s- (k-1)h \bigr)^{k\alpha-1} \,ds =& \bigl(t-(k-1)h \bigr)^{(k-1)\alpha}\mathcal{B}[1- \alpha, k\alpha], \end{aligned}$$

where \(\mathcal{B}\)is the beta function; see Lemma 2.8.

Lemma 2.10

For a delayed Mittag-Leffler type matrix \(\mathcal{E}^{A . ^{\alpha}}_{h} : \mathcal{R} \rightarrow\mathcal{R}^{n\times n}\), one has

$$ {}^{c}D^{\alpha}_{0^{+}} \bigl( \mathcal{E}^{A t^{\alpha}}_{h} \bigr)= A \mathcal {E}^{A(t-h)^{\alpha}}_{h}, $$
(8)

i.e., \(\mathcal{E}^{A t^{\alpha}}_{h}\)is a solution of \(({}^{c}D^{\alpha }_{0^{+}}x)(t) = A x(t-h)\)that satisfies the initial conditions \(\mathcal{E}^{ A t^{\alpha}}_{h}= I\), \(- h \leq t\leq0\).

Proof

For arbitrary \(t \in(-\infty,-h]\), \(\mathcal{E}^{ At^{\alpha}}_{h} = \mathcal{E}^{A(t-h)^{\alpha}}_{h} = \varTheta\). Obviously, (8) holds. Next for \(t \in(-h, 0]\), \(\mathcal{E}^{ At^{\alpha}}_{h}= I\) and \(\mathcal{E}^{A(t-h)^{\alpha}}_{h} = \varTheta\). which shows \({}^{c}D^{\alpha }_{0^{+}}I = \varTheta= A \varTheta\). Thus, (8) holds.

For arbitrary \(t \in((k-1) h, Kh]\), \(k \in\mathcal{N}\), we follow mathematical induction to establish our result.

(1) For \(k = 1\), \(0 \leq t\leq h\), we have

$$\begin{aligned} x(t)= \mathcal{E}^{ At^{\alpha}}_{h} = I + \frac{A(t)^{\alpha}}{\varGamma(\alpha +1)},\qquad x'(t)=\frac{\alpha A(t)^{\alpha-1}}{\varGamma(\alpha+1)}. \end{aligned}$$
(9)

Next by using the Caputo fractional differentiation expression of \(\mathcal{E}^{ A.^{\alpha}}_{h}\) via (9) and Lemma 2.9, we obtain

$$ {}^{c}D^{\alpha}_{0^{+}} \bigl( \mathcal{E}^{A s^{\alpha}}_{h} \bigr) (t)= \frac{\alpha A}{\varGamma(\alpha+1)\varGamma(1-\alpha)} \int^{t}_{0}(t-s)^{-\alpha }(s)^{\alpha-1}\,ds =A. $$
(10)

(2) For \(k = 2\), \(h \leq t\leq2h\), we have

$$\begin{aligned} \begin{gathered}x(t)= \mathcal{E}^{ At^{\alpha}}_{h} = I + \frac{A(t)^{\alpha}}{\varGamma(\alpha+1)}+\frac{A^{2}(t-h)^{2\alpha}}{\varGamma(2\alpha+1)}, \\ x'(t)=\frac{\alpha A(t)^{\alpha-1}}{\varGamma(\alpha+1)} + \frac{2\alpha A^{2}(t-h)^{2\alpha-1}}{\varGamma(2\alpha+1)}.\end{gathered} \end{aligned}$$
(11)

Next by using the Caputo fractional differentiation expression of \(\mathcal{E}^{ A.^{\alpha}}_{h}\) via (11), (10) and Lemma 2.9, we obtain

$$\begin{aligned} {}^{c}D^{\alpha}_{0^{+}} \bigl(\mathcal{E}^{A s^{\alpha}}_{h} \bigr) (t) =& A +\frac {2\alpha A^{2}}{\varGamma(2\alpha+1)\varGamma(1-\alpha)} \int ^{t}_{h}(t-s)^{-\alpha}(s-h)^{2\alpha-1}\,ds \\ =& A +\frac {A^{2}(t-h)^{\alpha}}{\varGamma(\alpha+1)}. \end{aligned}$$

(3) Let \(k = M\), \((M-1)h \leq t\leq M h \) and \(M \in\mathcal{N;}\) the following relation holds:

$$\begin{aligned} {}^{c}D^{\alpha}_{0^{+}} \bigl(\mathcal{E}^{A s^{\alpha}}_{h} \bigr) (t) =& A +\frac {A^{2}(t-h)^{\alpha}}{\varGamma(\alpha+1)}+\frac{A^{3}(t-2h)^{2\alpha }}{\varGamma(2\alpha+1)}+\cdots \\ &{}+\frac{A^{M}(t-(M-1)h)^{(M-1)\alpha }}{\varGamma((M-1)\alpha+1)}. \end{aligned}$$

Next let \(k = M+1, Mh \leq t\leq(M+1)h\); by elementary computation, we get

$$ \begin{aligned}[b]{x'}(t)&=\frac{\alpha A(t)^{\alpha-1}}{\varGamma(\alpha+1)} + \frac {2\alpha A^{2}(t-h)^{2\alpha-1}}{\varGamma(2\alpha+1)}+ \cdots \\ &\quad+\frac{(M+1)\alpha A^{(M+1)}(t-M h)^{(M+1)\alpha-1}}{\varGamma ((M+1)\alpha+1)}.\end{aligned} $$
(12)

Now taking the Caputo fractional differentiation expression of \(\mathcal {E}^{ A.^{\alpha}}_{h}\) via (12) and Lemma 2.9, we obtain

$$\begin{aligned} &{}^{c}D^{\alpha}_{0^{+}} \bigl(\mathcal{E}^{A s^{\alpha}}_{h} \bigr) (t) \\ &\quad= \frac{\alpha A}{\varGamma(\alpha+1)\varGamma(1-\alpha)} \int ^{t}_{0}(t-s)^{-\alpha}s^{\alpha-1}\,ds \\ &\qquad{}+ \frac{2\alpha A^{2}}{\varGamma (2\alpha+1)\varGamma(1-\alpha)} \int^{t}_{h}(t-s)^{-\alpha}(s-h)^{2\alpha -1}\,ds+\cdots \\ &\qquad{}+\frac{(M+1)\alpha A^{(M+1)}}{\varGamma(1-\alpha)\varGamma ((M+1)\alpha+1)} \int^{t}_{Mh}(t-s)^{-\alpha}(s-Mh)^{(M+1)\alpha-1}\,ds \\ &\quad= A+\frac{A^{2}(t-h)^{\alpha}}{\varGamma(\alpha+1)}+\frac {A^{3}(t-2h)^{2\alpha}}{\varGamma(2\alpha+1)}+\cdots+\frac{A^{(M+1)}(t-M h)^{M\alpha}}{\varGamma(M\alpha+1)}. \end{aligned}$$

This shows that Eq. (8) is satisfied for any \((k-1)h \leq t\leq kh \) and \(k \in\mathcal{N}\). The proof is completed. From Lemma 2.10, we have

$$ {}^{c}D^{\alpha}_{0^{+}} \bigl( \mathcal{E}^{A (t-h-\tau)^{\alpha}}_{h} \bigr)= A \mathcal {E}^{A(t-2h-\tau)^{\alpha}}_{h}. $$
(13)

 □

3 Main results

In this part for the controllability of system (3) necessary and sufficient conditions are given. Firstly we prove a lemma, then by using this lemma the main results are constructed.

Remark 3.1

Let

$$\begin{aligned} \langle A|B,C \rangle= \alpha+ A \alpha+ A^{2} \alpha+ \cdots+ A^{n-1}\alpha+ \beta+ B\beta+ B^{2}\beta+ \cdots+ B^{n-1}\beta, \end{aligned}$$

where \(\alpha= \operatorname{Image} B\), \(\beta= \operatorname{Image} C\) and n stands for order of A. Then the space \(\langle A|B,C \rangle\) is spanned by the columns of the matrix

$$\bigl[B, AB, A^{2}B,\ldots, A^{n-1}B, C, AC, A^{2}C, A^{3}C,\ldots,A^{n-1}C \bigr]. $$

Lemma 3.2

For any \(z\in\mathcal{R}^{n}\), define \(W(t) : \mathcal{R}^{n} \rightarrow \mathcal{R}^{n}\)by

$$ \begin{aligned}[b]W(t) &= \int^{t-h}_{0} \bigl[ \bigl(\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h}B + \mathcal {E}^{A(t-2h-\tau)^{\alpha}}_{h}C \bigr) \bigl(\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h}B + \mathcal{E}^{A(t-2h-\tau)^{\alpha}}_{h}C \bigr)^{T} \bigr]z\,d\tau \\ &\quad+ \int^{t}_{t-h} \bigl[ \bigl(\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h} \bigr)BB^{T} \bigl(\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h} \bigr)^{T} \bigr]z\,d\tau.\end{aligned} $$
(14)

Then

$$ \operatorname{Im} W(t) = \langle A|B,C \rangle . $$
(15)

Proof

Showing \(\operatorname{Im} W(t) = \langle A|B,C \rangle\) is equivalent to

$$ \operatorname{Ker} W(t) = \bigcap^{n-1}_{i=0} \operatorname{Ker} B^{T} \bigl(A^{T} \bigr)^{i} \bigcap^{n-1}_{j=0} \operatorname{Ker} C^{T} \bigl(A^{T} \bigr)^{j} . $$
(16)

If \(x \in\operatorname{ker} W(t)\) and \(x\neq0\) then

$$\begin{aligned} 0 =& x^{T} W(t) x \\ =& \int^{t-h}_{0} \bigl\Vert \bigl( \mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h}B + \mathcal{E}^{A(t-2h-\tau)^{\alpha}}_{h}C \bigr)^{T} x \bigr\Vert ^{2}\,d\tau \\ &{}+ \int^{t}_{t-h} \bigl\Vert B^{T} \bigl( \mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h} \bigr)^{T} x \bigr\Vert ^{2}\,d\tau, \end{aligned}$$

that is

$$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad}l} 0 = (\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h}B + \mathcal{E}^{A(t-2h-\tau )^{\alpha}}_{h}C)^{T}x, & 0 \leq\tau\leq t-h, \\ 0 = B^{T}(\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h})^{T}x ,& t-h \leq\tau< t. \end{array}\displaystyle \right . \end{aligned}$$
(17)

For the second equation of (17) by taking its Caputo derivative from Lemma 2.10 we have

$$ \begin{aligned}[b]0 &= B^{T} \bigl({}^{c}D^{\alpha}_{0^{+}} \mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h} \bigr)^{T}x \\ &= B^{T} \bigl(\mathcal{E}^{A(t-2h-\tau)^{\alpha}}_{h} \bigr)^{T} A^{T} x.\end{aligned} $$
(18)

Let \(\tau= t-h\); we have

$$\begin{aligned} 0 = B^{T} A^{T} x. \end{aligned}$$

For the second equation of (17) by performing repeatedly Caputo’s differentiation, we get

$$\begin{aligned} 0 = B^{T} A^{T} x, \quad \text{for }k = 0, 1, 2, 3, \ldots, n-1. \end{aligned}$$
(19)

Using the Cayley–Hamiltonian theorem [18]

$$ \mathcal{E}^{A u ^{\alpha}}_{h} = \sum ^{n-1}_{k=0}\frac {A^{k}(u-(k-1)h)^{(k+1)\alpha-1}}{\varGamma(k\alpha+ \beta)}, $$
(20)

where \(u = t - h - \tau\). Then when \(0 \leq\tau\leq t-h \)

$$\begin{aligned} 0 = B^{T} \bigl(\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h} \bigr)^{T} A^{T} x = \sum^{n-1}_{k=0} \gamma_{k}(t-h-\tau) B^{T} \bigl(A^{T} \bigr)^{k} x = 0. \end{aligned}$$

By taking it into the first equation of (17)

$$\begin{aligned} 0 = C^{T} \bigl(\mathcal{E}^{A(t-2h-\tau)^{\alpha}}_{h} \bigr)^{T} x , \quad 0\leq\tau \leq t-h. \end{aligned}$$

By taking its Caputo derivative and letting \(\tau= t- 2h\), we get

$$\begin{aligned} 0 = C^{T} \bigl(\mathcal{E}^{A(t-3h-\tau)^{\alpha}}_{h} \bigr)^{T} A^{T} x. \end{aligned}$$

By performing repeatedly Caputo’s differentiation, we get

$$\begin{aligned} 0 = C^{T} A^{T} x, \quad \text{for }k = 0, 1, 2, 3, \ldots, n-1. \end{aligned}$$
(21)

Using (19) and (21) we get

$$\begin{aligned} x \in\bigcap^{n-1}_{i=0} \operatorname{ker} B^{T} \bigl(A^{T} \bigr)^{i} \bigcap ^{n-1}_{j=0} \operatorname{ker} C^{T} \bigl(A^{T} \bigr)^{j}. \end{aligned}$$

That is,

$$ \operatorname{ker} W(t) \subset\bigcap ^{n-1}_{i=0} \operatorname{ker} B^{T} \bigl(A^{T} \bigr)^{i} \bigcap^{n-1}_{j=0} \operatorname{ker} C^{T} \bigl(A^{T} \bigr)^{j}. $$
(22)

Conversely, suppose

$$\begin{aligned} x \in\bigcap^{n-1}_{i=0} \operatorname{ker} B^{T} \bigl(A^{T} \bigr)^{i} \bigcap ^{n-1}_{j=0} \operatorname{Ker} C^{T} \bigl(A^{T} \bigr)^{j}, \end{aligned}$$

then (19) and (21) hold.

For \(t-h \leq\tau< t\), from (17 and 20),

$$\begin{aligned} B^{T} \bigl(\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h} \bigr)^{T} A^{T} x = \sum^{n-1}_{k=0} \gamma_{k}(t-h-\tau) B^{T} \bigl(A^{T} \bigr)^{k} x = 0, \end{aligned}$$

for \(0 \leq\tau\leq t-h\),

$$\begin{aligned} \bigl(\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h}B + \mathcal{E}^{A(t-2h-\tau )^{\alpha}}_{h}C \bigr)^{T}x &= \sum^{n-1}_{k=0} \gamma_{k}(t-h-\tau) B^{T} \bigl(A^{T} \bigr)^{k} x \\ &\quad+\sum^{n-1}_{k=0}\gamma_{k}(t-2h- \tau) C^{T} \bigl(A^{T} \bigr)^{k} x\\& =0.\end{aligned} $$

Therefore, \(x \in\operatorname{ker} W(t)\), that is,

$$ \operatorname{Ker} W(t) \supset\bigcap ^{n-1}_{i=0} \operatorname{Ker} B^{T} \bigl(A^{T} \bigr)^{i} \bigcap^{n-1}_{j=0} \operatorname{Ker} C^{T} \bigl(A^{T} \bigr)^{j}. $$
(23)

From (22) and (23), it is proven that (16) holds, completing the proof of the lemma. □

Theorem 3.3

([18])

For system (3) the fractional differential control system with state and control delay is controllable iff

$$\operatorname{rank} \bigl[B, AB ,A^{2}B,\ldots, A^{n-1}B,C,AC,A^{2}C,A^{3}C, \ldots,A^{n-1}C \bigr] = n. $$

That is, in Theorem 3.3 the conditions are equivalent to \(\langle A|B,C \rangle= \mathcal{R}^{n}\).

By using Lemmas 2.8, 2.10, 3.2 we will prove Theorem 3.3.

Proof of Theorem 3.3

Firstly we show that \(R(0,0) = \langle A|B,C \rangle\).

Actually, let \(x \in R(0,0) \), from Lemma 2.6 and Eq. (20), we get

$$\begin{aligned}& x= \int^{t_{1} -h}_{0} \bigl(\mathcal{E}^{A(t_{1}-h-\tau)^{\alpha}}_{h}B +\mathcal {E}^{A(t_{1}-2h-\tau)^{\alpha}}_{h}C \bigr)u(\tau)\,d\tau \\& \phantom{x=}{}+ \int^{t_{1}}_{t_{1}-h}\mathcal{E}^{A(t_{1}-h-\tau)^{\alpha}}_{h}Bu( \tau )\,d\tau, \\& x = \int^{t_{1}}_{0}\mathcal{E}^{A(t_{1}-h-\tau)^{\alpha}}_{h}Bu( \tau)\,d\tau + \int^{t_{1} -h}_{0}\mathcal{E}^{A(t_{1}-2h-\tau)^{\alpha}}_{h}Cu( \tau)\,d\tau \\& \phantom{x}= \sum^{n-1}_{i=0} \int^{t_{1}}_{0}\gamma_{i}(t_{1}-h-s)A^{i}Bu(s)\,ds + \sum^{n-1}_{j=0} \int^{t_{1} -h}_{0}\gamma_{j}(t_{1}-2h-s)A^{j}Cu(s)\,ds, \end{aligned}$$

which implies \(x \in \langle A|B,C \rangle\).

Thus,

$$\begin{aligned} \langle A|B,C \rangle\supset R(0,0). \end{aligned}$$
(24)

On the other hand, we show \(\langle A|B,C \rangle\subset R(0,0)\). Let \(\hat{x} \in\langle A|B,C \rangle\), let \(x(t)\) be a solution of system (3) at \(t > 0\) from Lemma 2.6 we get

$$\begin{aligned} x(t) &= \int^{t-h}_{0} \bigl(\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h}B + \mathcal {E}^{A(t-2h-\tau)^{\alpha}}_{h}C \bigr)u(\tau)\,d\tau \\ &\quad+ \int^{t}_{t-h}\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h}Bu( \tau)\,d\tau.\end{aligned} $$

For \(x \in \langle A|B, C \rangle\) from Lemma 3.2 there exists \(z \in\mathcal{R}^{n}\), s.t.

$$\hat{x} = W(t)z. $$

Let

$$\begin{aligned} u(s)= \left \{ \textstyle\begin{array}{l@{\quad}l} (\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h}B + \mathcal{E}^{A(t-2h-\tau )^{\alpha}}_{h}C)^{T}z, & 0 \leq s \leq t-h, \\ B^{T}\mathcal{E}^{A(t-h-\tau)^{\alpha}}_{h} Z, & t-h \leq s < t,\\ 0, & -h \leq s \leq0. \end{array}\displaystyle \right . \end{aligned}$$

Then

$$\begin{aligned} & \int^{t}_{0}\mathcal{E}^{A(t-h-s)^{\alpha}}_{h}Bu(s)\,ds + \int ^{t}_{0}\mathcal{E}^{A(t-h-s)^{\alpha}}_{h}Cu(s-h)\,ds \\ &\quad= \int^{t-h}_{0} \bigl[ \bigl(\mathcal{E}^{A(t-h-s)^{\alpha}}_{h}B + \mathcal{E}^{A(t-2h-s)^{\alpha}}_{h}C \bigr)+ \bigl(\mathcal{E}^{A(t-h-s)^{\alpha}}_{h}B + \mathcal{E}^{A(t-2h-s)^{\alpha}}_{h}C \bigr) \bigr]^{T} z \,ds \\ &\qquad{}+ \int^{t}_{t-h} \bigl(\mathcal{E}^{A(t-h-s)^{\alpha}}_{h} \bigr)BB^{T} \bigl(\mathcal {E}^{A(t-h-s)^{\alpha}}_{h} \bigr) z \,ds \\ &\quad= W(t)z = \hat{x}. \end{aligned}$$

That is

$$\begin{aligned} R(0, 0) \supset\langle A|B, C \rangle. \end{aligned}$$
(25)

Using (24) and (25) we get

$$\begin{aligned} R(0,0) =& \langle A|B, C \rangle. \end{aligned}$$

Immediately we show the necessity of Theorem 3.3. Assuming that, for any \(x \in\mathcal{R}^{n}\), system (3) is controllable, by Definition 2.4, via the initial state \(\varphi=0\) and the initial control \(\psi= 0\), there occurs a control \(u(s)\) such that

$$ = \int^{t-h}_{0} \bigl(\mathcal{E}^{A(t-h-s)^{\alpha}}_{h}B + \mathcal {E}^{A(t-2h-s)^{\alpha}}_{h}C \bigr)u(s)\,ds + \int^{t}_{t-h} \bigl(\mathcal{E}^{A(t-h-s)^{\alpha}}_{h} \bigr)B u(s) \,ds. $$

Using Eq. (20) we get \(x \in\langle A|B, C \rangle\). That is, \(\mathcal{R}^{n} \subset \langle A|B, C \rangle\). Thus \(\mathcal{R}^{n} = \langle A|B, C \rangle\), and the conditions of Theorem 3.3 are satisfied. At last, we show the sufficiency. Suppose the conditions of Theorem 3.3 are satisfied, then \(\mathcal{R}^{n} = \langle A|B, C \rangle\). For any \(\overline{x} \in\mathcal{R}^{n} \) and any initial state φ and initial control ψ, let

$$\begin{aligned} k =& \overline{x} - \mathcal{E}^{A t^{\alpha}}_{h}\varphi(-h) - \int ^{0}_{-h}\mathcal{E}^{A(t-h-s)^{\alpha}}_{h} \varphi'(s)\,ds \\ &{}- \int ^{t-h}_{0} \bigl(\mathcal{E}^{A(t-h-s)^{\alpha}}_{h}B +\mathcal {E}^{A(t-2h-s)^{\alpha}}_{h}C \bigr)\psi(0)\,ds \\ &{}- \int^{t}_{t-h}\mathcal{E}^{A(t-h-s)^{\alpha}}_{h}B \psi(0)\,ds - \int ^{0}_{-h}\mathcal{E}^{A(t-2h-s)^{\alpha}}_{h}C \psi(s)\,ds. \end{aligned}$$

For \(k \in\mathcal{R}^{n} = \langle A|B, C \rangle\), that is, \(k \in R(0,0)\), there exists a control \(u^{*}(s)\) such that

$$\begin{aligned} k =& \int^{t-h}_{0} \bigl(\mathcal{E}^{A(t-h-s)^{\alpha}}_{h}B +\mathcal {E}^{A(t-2h-s)^{\alpha}}_{h}C \bigr)u^{*}(s)\,ds \\ &{}+ \int^{t}_{t-h}\mathcal{E}^{A(t-h-s)^{\alpha}}_{h}B u^{*}(s)\,ds + \int ^{0}_{-h}\mathcal{E}^{A(t-2h-s)^{\alpha}}_{h}C \psi(s)\,ds. \end{aligned}$$

Let \(u(s) = u^{*}(s) + \psi(0)\) then we have

$$\begin{aligned} \overline{x} =&\mathcal{E}^{A t^{\alpha}}_{h}\varphi(-h) + \int ^{0}_{-h}\mathcal{E}^{A(t-h-s)^{\alpha}}_{h} \varphi'(s)\,ds \\ &{}+ \int^{t-h}_{0} \bigl(\mathcal{E}^{A(t-h-s)^{\alpha}}_{h}B+ \mathcal {E}^{A(t-2h-s)^{\alpha}}_{h}C \bigr)u(s)\,ds \\ &{}+ \int^{t}_{t-h}\mathcal{E}^{A(t-h-s)^{\alpha}}_{h}B u(s)\,ds+ \int ^{0}_{-h}\mathcal{E}^{A(t-2h-s)^{\alpha}}_{h}C \psi(s)\,ds. \end{aligned}$$

So the fractional control system (3) with state and control delay is controllable. Sufficiency is proved. This completes the result of Theorem 3.3. □

4 Example

Now, we will apply the conditions which we obtained in the previous section for a fractional differential system with state and control delay;

$${}^{c}D^{\alpha}_{0^{+}}x(t)=Ax(t-h)+Bu(t)+Cu(t-h), $$

\(\alpha= 0.5\), \(h=1\), where

$$\begin{gathered}A=\left ( \textstyle\begin{array}{c@{\quad}c} 3 & 0 \\ 0 & 4 \end{array}\displaystyle \right ),\quad\quad B=\left ( \textstyle\begin{array}{c} 5 \\ 0 \end{array}\displaystyle \right ),\qquad C=\left ( \textstyle\begin{array}{c} 0 \\ 3 \end{array}\displaystyle \right ),\qquad \\ {}^{c}D^{0.5}_{0^{+}}x(t)=\left ( \textstyle\begin{array}{c@{\quad}c} 3 & 0 \\ 0 & 4 \end{array}\displaystyle \right )x(t-1)+\left ( \textstyle\begin{array}{c} 5 \\ 0 \end{array}\displaystyle \right )u(t)+\left ( \textstyle\begin{array}{c} 0 \\ 3 \end{array}\displaystyle \right )u(t-1),\end{gathered} $$

where \(x \in\mathcal{R}^{n} \) by simple calculations shows that

$$(B AB C AC) =\left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c} 2 & 15 & 0 & 0 \\ 0 & 0 & 3 & 12 \end{array}\displaystyle \right ) $$

and \(\operatorname{rank}(B AB C AC) = 2\).