1 Introduction

The oscillation and distributions of zeros of solutions of first order delay differential and difference equations are studied widely in the literature; see [118] and the references therein. However, there are only a few papers considering the distribution of zeros of solutions of first order delay and advanced dynamic equations on time scales (see [8, 19]). In [12], Zhou considered the first order delay differential equation

$$ x^{\prime} ( t ) +p ( t ) x ( t-\tau ) =0,\quad\text{for }t\in [ t_{0},\infty ) , $$
(1.1)

where

$$ \int_{t-\tau}^{t}p ( s ) \,ds\geq\rho>\frac{1}{e}, \quad\text{and}\quad \rho < 1, $$
(1.2)

and established lower and upper bounds for the quotient \(x ( t-\tau ) /x ( t ) \). In particular the author proved that \(x ( t-\tau ) /x ( t ) \geq f_{n} ( \rho ) \) and \(x ( t-\tau ) /x ( t ) < g_{m} ( \rho ) \), where the sequences \(f_{n} ( \rho ) \) and \(g_{n} ( \rho ) \) are defined by

$$ \textstyle\begin{cases} f_{1} ( \rho ) =e^{\rho},\qquad f_{n+1} ( \rho ) =e^{\rho f_{n} ( \rho ) },& n=1,2,\ldots, \\ g_{1} ( \rho ) =\frac{2 ( 1-\rho ) }{\rho ^{2}},\qquad g_{m+1} ( \rho ) =\frac{2 ( 1-\rho ) g_{m}^{2} ( \rho ) }{g_{m}^{2} ( \rho ) \rho^{2}+2},& m=1,2,\ldots, \end{cases} $$

and using these sequences the author studied the distribution of zeros of solutions of (1.1). In [13], Zhang and Zhou considered the first order delay differential equation

$$ x^{\prime} ( t ) +p ( t ) x \bigl( \tau ( t ) \bigr) =0,\quad\text{for }t\in [ t_{0},\infty ) , $$
(1.3)

and studied the distribution of zeros of solutions using the two sequences \(f_{n} ( \rho ) \) and \(g_{m} ( \rho ) \) where

$$ \textstyle\begin{cases} f_{0} ( \rho ) =1,\qquad f_{n+1} ( \rho ) =e^{\rho f_{n} ( \rho ) },& n=0,1,2,\ldots, \\ g_{1} ( \rho ) =\frac{2 ( 1-\rho ) }{\rho ^{2}},\qquad g_{m+1} ( \rho ) =\frac{2 ( 1-\rho ) g_{m}^{2} ( \rho ) }{g_{m}^{2} ( \rho ) \rho^{2}+2},& m=1,2,\ldots,\end{cases} $$

and

$$ \int_{\tau ( t ) }^{t}p ( s ) \,ds\geq\rho>0, \quad\text{and}\quad 0< \rho< 1. $$
(1.4)

Zhang and Lian in [19] initiated the study of the distribution of zeros of dynamic equations on time scales and in particular, they considered the first order delay dynamic equation

$$ x^{\Delta} ( t ) +p ( t ) x \bigl( \tau ( t ) \bigr) =0,\quad\text{for }t\in [ t_{0},\infty ) _{\mathbb{T}}, $$
(1.5)

on a time scale \(\mathbb{T}\), where \(p\in\mathbf{C}_{\mathrm{rd}} ( \mathbb{T},\mathbb{R}^{+} ) \) is a non-negative rd-continuous function, \(\tau\in\mathbf{C}_{\mathrm{rd}} ( \mathbb{T},\mathbb{T} ) \) is strictly increasing, \(\tau ( t ) < t\) for \(t\in\mathbb{T}\) and \(\lim_{t\rightarrow\infty}\tau ( t ) =\infty\). In [19] the authors established lower and the upper bounds for the quotient \(x ( \tau ( t ) ) /x ( t ) \) using the sequences \(f_{n}\) and \(g_{m}\) where

$$ f_{0} ( \rho ) =1,\qquad f_{n} ( \rho ) =e^{ ( 1-\rho ) f_{n-1} ( \rho ) },\quad n=1,2,\ldots, $$
(1.6)

and

$$ \textstyle\begin{cases} g_{1} ( \rho ) =\frac{2\rho}{ ( 1-\rho ) ^{2}-2M ( 1-\rho ) },\text{ } \\ g_{m} ( \rho ) =\frac{2\rho}{ ( 1-\rho ) ^{2}-2M ( 1-\rho ) +\frac{2}{g_{m-1}^{2} ( \rho ) }},\quad m=2,3,\ldots,\end{cases} $$
(1.7)

and where \(M<(1-\rho)/2\) and \(0\leq\rho<1\) satisfies the condition

$$ \sup_{\lambda\in E} \biggl\{ \lambda\exp \biggl\{ \int_{\tau ( t ) }^{t}\zeta_{\mu ( s ) } \bigl( -\lambda p ( s ) \bigr) \Delta s \biggr\} \biggr\} \leq\rho, $$

where \(E= \{ \lambda:\lambda>0, 1-\lambda p ( t ) \mu ( t ) >0 \} \); \(\zeta_{\mu ( s ) }\) and \(\mu ( s ) \) will be defined later.

Motivated by these papers, we study the distribution of zeros of oscillatory solutions of the delay dynamic equation (1.5) on a time scale \(\mathbb{T}\) by considering new sequences \(f_{n}\) and \(g_{m}\). In the next section, we present some basic ideas on time scales. In Section 3, we establish lower and upper bounds for \(x ( \tau ( t ) ) /x ( t )\) and in Section 4, we study the distribution of zeros of solutions of (1.5).

2 Some preliminaries and lemmas

In this section, we present some preliminaries; see [20, 21]. A time scale \(\mathbb{T}\) is an arbitrary nonempty closed subset of the real numbers \(\mathbb{R}\). The forward and backward jump operators are defined by

$$ \sigma(t):=\inf \{ s\in\mathbb{T}: s>t \} ,\quad\text{and}\quad \rho(t):=\sup \{ s\in\mathbb{T}: s< t \}, $$

with \(\inf \emptyset=\sup \mathbb{T}\) and \(\sup \emptyset =\inf \mathbb{T}\). The graininess function μ on a time scale \(\mathbb{T}\) is defined by \(\mu ( t ) :=\sigma(t)-t\). For a function \(f:\mathbb{T\rightarrow R}\) the (delta) derivative is defined by

$$ f^{\Delta} ( t ) =\frac{f ( \sigma(t) ) -f ( t ) }{\sigma(t)-t}, $$

if f is continuous at t and t is right-scattered. If t is not right-scattered then the derivative is defined by

$$ f^{\Delta} ( t ) =\lim_{s\rightarrow t}\frac{f ( t ) -f ( s ) }{t-s}, $$

provided this limit exists. A function f is said to be Δ-differentiable if its Δ-derivative exists. A useful formula is \(f^{\sigma}=f ( \sigma ( t ) ) =f ( t ) +\mu ( t ) f^{\Delta} ( t ) \). We will make use of the following product and quotient rules for the derivative of the product fg and the quotient \(f/g\) (where \(gg^{\sigma}\neq0\), and here \(g^{\sigma }=g\circ\sigma\)) of two Δ-differentiable functions f and g:

$$ ( fg ) ^{\Delta}=f^{\Delta}g+f^{\sigma}g^{\Delta }=fg^{\Delta }+f^{\Delta}g^{\sigma}, \qquad \biggl( \frac{f}{g} \biggr) ^{\Delta }=\frac{f^{\Delta}g-fg^{\Delta}}{gg^{\sigma}}. $$

Let \(f:\mathbb{R\rightarrow R}\) be continuously differentiable and suppose \(g:\mathbb{T\rightarrow R}\) is delta differentiable. Then \(f\circ g:\mathbb{T\rightarrow R}\) is delta differentiable and the chain rule,

$$ ( f\circ g ) ^{\Delta} ( t ) = \biggl\{ \int_{0}^{1}f^{\prime} \bigl( g ( t ) +h\mu ( t ) g^{\Delta} ( t ) \bigr) \,dh \biggr\} g^{\Delta} ( t ) , $$
(2.1)

holds. A special case of (2.1) is

$$ \bigl[ x^{\lambda} ( t ) \bigr] ^{\Delta}=\lambda \int _{0}^{1} \bigl[ hx^{\sigma}+ ( 1-h ) x \bigr] ^{\lambda -1}x^{\Delta } ( t ) \,dh. $$

For \(s, t\in\mathbb{T}\), a function \(F:\mathbb{T\rightarrow R}\) is called an antiderivative of \(f :\mathbb{T\rightarrow R}\) provided \(F^{\Delta }=f(t)\) holds for all \(t\in\mathbb{T}\). In this case we define the integral of f by \(\int_{s}^{t}f(\tau)\Delta\tau=F(t)-F(s)\). For \(a, b\in \mathbb{T}\), and a Δ-differentiable function f, the Cauchy integral of \(f^{\Delta}\) is defined by \(\int_{a}^{b}f^{\Delta}(\tau )\Delta\tau=f(b)-f(a)\). The integration by parts formula reads

$$ \int_{a}^{b}f ( t ) g^{\Delta} ( t ) \Delta t= \bigl[ f ( t ) g ( t ) \bigr] _{a}^{b}- \int _{a}^{b}f^{\Delta } ( t ) g^{\sigma} ( t ) \Delta t, $$

and infinite integrals are defined as

$$ \int_{a}^{\infty}f ( t ) \Delta t=\lim _{b\rightarrow \infty } \int_{a}^{b}f ( t ) \Delta t. $$

A function p: \(\mathbb{T\rightarrow R}\) is called regressive if \(1+\mu ( t ) p ( t ) \neq0\) for \(t\in\mathbb{T}\). A function \(p:\mathbb{T\rightarrow R}\) is called positively regressive (we write \(p\in\mathcal{R}^{+}\)) if it is rd-continuous function and satisfies \(1+\mu ( t ) p ( t ) >0\) for all \(t\in \mathbb{T}\). Hilger in [20] showed that for \(p ( t ) \) rd-continuous and regressive, the solution of the initial value problem

$$ y^{\Delta} ( t ) =p ( t ) y ( t ) ,\quad y ( t_{0} ) =1, $$

is given by the generalized exponential function \(e_{p} ( t,t_{0} ) \), which is defined by

$$ e_{p} ( t,t_{0} ) =\exp \biggl\{ \int_{t_{0}}^{t}\zeta _{\mu ( s ) } \bigl( p ( s ) \bigr) \Delta s \biggr\} , $$

where \(t_{0}\), \(t\in\mathbb{T}\), and the cylinder transformation \(\zeta _{h} ( z ) \) is defined by

$$ \zeta_{h} ( z ) = \textstyle\begin{cases} \frac{\log ( 1+hz ) }{h}, & \text{if }h\neq0, \\ z, &\text{if }h=0,\end{cases} $$

where \(z\in\mathbb{R}\) and \(h\in\mathbb{R}^{+}\).

The next lemma can be found in [11].

Lemma 2.1

Assume \(t_{0}\), \(t\in\mathbb{T}\).

(i) For a non-negative φ with \(-\varphi\in\mathcal{R}^{+}\), we have the following inequality:

$$ 1- \int_{t_{0}}^{t}\varphi ( s ) \Delta s\leq e_{-\varphi }(t,t_{0})\leq\exp \biggl\{ - \int_{t_{0}}^{t}\varphi(s)\Delta s \biggr\} . $$
(2.2)

(ii) If φ is rd-continuous and non-negative, then

$$ 1+ \int_{t_{0}}^{t}\varphi ( s ) \Delta s\leq e_{\varphi }(t,t_{0})\leq\exp \biggl\{ \int_{t_{0}}^{t}\varphi(s)\Delta s \biggr\} . $$
(2.3)

Lemma 2.2

Assume that \(\mathbb{T}\) is a time scale with \(t_{0}\in \mathbb{T} \). If \(f ( t ) >0\) on \([ t_{0},\infty ) _{\mathbb{T}}\), then

$$ \bigl[ \ln f ( t ) \bigr] ^{\Delta}\leq\frac{f^{\Delta } ( t ) }{f ( t ) },\quad\textit{for }t\in [ t_{0},\infty ) _{\mathbb{T}}. $$

Proof

Fix t. We consider two cases: (i) \(f^{\Delta} ( t ) \leq0\) and (ii) \(f^{\Delta} ( t ) \geq0\).

In the first case, we see that

$$ h\mu ( t ) f^{\Delta} ( t ) +f ( t ) \leq f ( t ). $$

Now recall \(f ( \sigma ( t ) ) =f ( t ) +\mu ( t ) f^{\Delta} ( t )\) so \(h\mu ( t ) f^{\Delta} ( t ) +f ( t )=h f ( \sigma ( t ) )+(1-h) f ( t )>0\) and as a result

$$\frac{1}{h\mu ( t ) f^{\Delta} ( t ) +f ( t )} \geq \frac{1}{f ( t )}. $$

Apply the chain rule (2.1), and we get (note \(f^{\Delta } ( t ) \leq0\))

$$ \bigl[ \ln f ( t ) \bigr] ^{\Delta}= \biggl\{ \int _{0}^{1}\frac{1}{h\mu ( t ) f^{\Delta} ( t ) +f ( t ) }\,dh \biggr\} f^{\Delta} ( t ) \leq\frac{f^{\Delta} ( t ) }{f ( t ) }. $$

In the second case, we see that

$$ h\mu ( t ) f^{\Delta} ( t ) +f ( t ) \geq f ( t ) . $$

Applying the chain rule (2.1), we get

$$ \bigl[ \ln f ( t ) \bigr] ^{\Delta}= \biggl\{ \int _{0}^{1}\frac{1}{h\mu ( t ) f^{\Delta} ( t ) +f ( t ) }\,dh \biggr\} f^{\Delta} ( t ) \leq\frac{f^{\Delta} ( t ) }{f ( t ) }. $$

Thus, we deduce in both cases that

$$ \bigl[ \ln f ( t ) \bigr] ^{\Delta}\leq\frac{f^{\Delta } ( t ) }{f ( t ) }. $$

The proof is complete. □

Lemma 2.3

Assume that \(\mathbb{T}\) is a time scale with \(t_{0}\in \mathbb{T} \). If \(f(t)>0\) and \(f^{\Delta} ( t ) \geq0\) for \(t\in [ t_{0},\infty ) _{\mathbb{T}}\), then for \(\alpha>0\)

$$ \bigl[ e^{-\alpha f ( t ) } \bigr] ^{\Delta}\geq-\alpha e^{-\alpha f ( t ) }f^{\Delta} ( t ) . $$

Proof

Since \(f ( t ) >0\) and \(f^{\Delta} ( t ) \geq0\) for \(t\in [ t_{0},\infty ) _{\mathbb{T}}\), we have for \(h\in ( 0,1 ) \)

$$ f ( t ) \leq h\mu ( t ) f^{\Delta} ( t ) +f ( t ) . $$
(2.4)

Applying the chain rule (2.1) and using (2.4), we see that

$$ \bigl[ e^{-\alpha f ( t ) } \bigr] ^{\Delta}= \biggl\{ -\alpha \int_{0}^{1}e^{-\alpha ( f ( t ) +h\mu ( t ) f^{\Delta} ( t ) ) }\,dh \biggr\} f^{\Delta} ( t ) \geq-\alpha e^{-\alpha f ( t ) }f^{\Delta} ( t ) . $$

The proof is complete. □

3 Lower and upper bounds for \(x ( \tau (t ) ) /x ( t ) \)

In this section, we establish lower and upper bounds for \(x ( \tau ( t ) ) /x ( t ) \) where \(x(t)\) is a solution of equation (1.5). We use the notation \(\tau ^{0} ( t ) =t\) and inductively define the iterates of \(\tau ^{-i} ( t ) \) by

$$ \tau^{-i} ( t ) =\bigl(\tau^{-1}\circ\tau^{- ( i-1 ) }\bigr) ( t ) ,\quad\text{for }i=1, 2,\ldots , $$

where \(\tau^{-1} ( t ) \) is the inverse function of \(\tau ( t )\). From the definition it is clear that

$$ \tau ( t ) < t< \tau^{-1} ( t ) < \cdots< \tau ^{- ( n-1 ) } ( t ) < \tau^{- n } ( t ) < \cdots . $$

To find the lower bound for \(x ( \tau ( t ) ) /x ( t ) \) we define for \(0<\rho<1\) a sequence \(f_{n} ( \rho ) \) by

$$ \textstyle\begin{cases} f_{0} ( \rho ) =1,\qquad f_{1} ( \rho ) =1/\rho , \\ f_{n+2} ( \rho ) =\frac{f_{n} ( \rho ) }{f_{n} ( \rho ) +1-e^{ ( 1-\rho ) f_{n} ( \rho ) }}, &n=0,1,2,3,\ldots. \end{cases} $$
(3.1)

We note some properties of \(f_{n} ( \rho )\) for the reader’s interest (see [9] or use an elementary argument using \(\frac{x}{x+1-e^{(1-\rho)x} }\)). For \(0<1-\rho\leq1/e\), we have

$$ 1\leq f_{n} ( \rho ) \leq f_{n+2} ( \rho ) \leq e,\quad n=0,1,2,\ldots, $$

so there exists a function \(f ( \rho ) \) such

$$ \lim_{n\rightarrow\infty}f_{n} ( \rho ) =f ( \rho ) , \quad 1\leq f ( \rho ) \leq e, $$

where \(f ( \rho ) \) satisfies

$$ f ( \rho ) =e^{ ( 1-\rho ) f ( \rho ) }. $$
(3.2)

If \(( 1-\rho ) >1/e\), then either \(f_{n} ( \rho ) \) is nondecreasing and \(\lim_{n\rightarrow\infty}f_{n} ( \rho ) =+\infty\) or \(f_{n} ( \rho ) \) is negative or \(f_{n} ( \rho ) \) is ∞ after a finite numbers of terms.

Theorem 3.1

Assume that \(\mathbb{T}\) is a time scale and \(t^{\prime}\), \(t_{0}\), \(t_{1} \in\mathbb{T}\), \(t_{0}\geq t^{\prime}\), \(t_{1}\geq\tau^{-3} ( t_{0} ) \), \(x(t)\) is a solution of (1.5) on \([t^{\prime},\infty)_{\mathbb{T}}\), \(x(t)\) is positive on \([ t_{0},t_{1} ] _{\mathbb{T}}\) and there exists \(\rho\in(0,1)\) with \(\infty>f_{n} ( \rho )> 0 \) for \(n\in\{2,3,\ldots\}\) and

$$ \sup_{\lambda\in E} \biggl\{ \lambda\exp \biggl\{ \int_{\tau ( t ) }^{t}\zeta_{\mu ( s ) } \bigl( -\lambda p ( s ) \bigr) \Delta s \biggr\} \biggr\} \leq\rho\quad\textit{for } t \in \bigl[ \tau^{-3} ( t_{0} ) ,t_{1} \bigr] _{\mathbb{T}}; $$
(3.3)

here \(E= \{ \lambda:\lambda >0, 1-\lambda p ( t ) \mu ( t ) >0\textit{ for }t\in [ \tau^{-2} ( t_{0} ) ,t_{1} ] _{\mathbb{T}} \}\). Then for \(n\geq0\) when \(\tau^{- ( 2+n )} ( t_{0} ) \leq t_{1}\) we have

$$ \frac{x ( \tau ( t ) ) }{x ( t ) }\geq f_{n} ( \rho ) ,\quad\textit{for }t\in \bigl[ \tau^{- ( 2+n ) } ( t_{0} ) ,t_{1} \bigr]_{\mathbb{T}} , $$

where \(f_{n} ( \rho ) \) is defined in (3.1).

Proof

From (1.5), we see that

$$ x^{\Delta} ( t ) =-p ( t ) x \bigl( \tau ( t ) \bigr) \leq0,\quad\text{for }t \in \bigl[ \tau^{-1} ( t_{0} ) ,t_{1} \bigr] _{\mathbb{T}}, $$
(3.4)

so since \(x ( t ) \) is nonincreasing on \([ \tau ^{-1} ( t_{0} ) , t_{1} ] _{\mathbb{T}}\) we have

$$ \frac{x ( \tau ( t ) ) }{x ( t ) }\geq1,\quad\text{for }t\in \bigl[ \tau^{-2} ( t_{0} ) ,t_{1} \bigr] _{\mathbb{T}}. $$
(3.5)

Note (3.5) and the fact that x is positive on \([ t_{0},t_{1} ] _{\mathbb{T}}\), so for \(t\in [ \tau ^{-2} ( t_{0} ) , t_{1} ] _{\mathbb{T}}\) we have (note \(x ( \sigma ( t ) )>0\) since \(\sigma(t) \geq t \geq\tau^{-2} ( t_{0} ) >t_{0}\))

$$\begin{aligned} 0 =&-\mu ( t ) \bigl[ x^{\Delta} ( t ) +p ( t ) x \bigl( \tau ( t ) \bigr) \bigr] \\ =&x ( t ) -x \bigl( \sigma ( t ) \bigr) -\mu ( t ) p ( t ) x \bigl( \tau ( t ) \bigr) \\ < &x ( t ) -\mu ( t ) p ( t ) x ( t ) \\ =& \bigl[ 1-\mu ( t ) p ( t ) \bigr] x ( t ) . \end{aligned}$$

Hence \(1-\mu ( t ) p ( t ) >0\) for \(t\in [ \tau^{-2} ( t_{0} ) ,t_{1} ] _{\mathbb{T}}\) so \(-p\in\mathcal{R}^{+}\) on the interval \([ \tau ^{-2} ( t_{0} ) ,t_{1} ] _{\mathbb{T}}\). Using Lemma 2.1 (with the time scale \([ \tau^{-2} ( t_{0} ) ,t_{1} ] _{\mathbb{T}}\)) and (3.3), we have for \(t\in [ \tau^{-3} ( t_{0} ) ,t_{1} ] _{\mathbb{T}}\) (note \(\tau(t) \in [ \tau^{-2} ( t_{0} ) ,t_{1} ] _{\mathbb{T}}\))

$$\begin{aligned} \int_{\tau ( t ) }^{t}p ( s ) \Delta s \geq &1-\exp \biggl\{ \int_{\tau ( t ) }^{t}\zeta_{\mu ( s ) } \bigl( -p ( s ) \bigr) \Delta s \biggr\} \\ \geq&1-\sup_{\lambda\in E} \biggl\{ \lambda\exp \biggl\{ \int _{\tau ( t ) }^{t}\zeta_{\mu ( s ) } \bigl( -\lambda p ( s ) \bigr) \Delta s \biggr\} \biggr\} \\ \geq&1-\rho. \end{aligned}$$
(3.6)

Integrating (1.5) from \(\tau ( t ) \) to t, we get

$$ x \bigl( \tau ( t ) \bigr) =x ( t ) + \int _{\tau ( t ) }^{t}p ( s ) x \bigl( \tau ( s ) \bigr) \Delta s, $$
(3.7)

and hence, for \(t\in [ \tau^{-3} ( t_{0} ) ,t_{1} ] _{\mathbb{T}}\), we get

$$x \bigl( \tau ( t ) \bigr) =x ( t ) + \int _{\tau ( t ) }^{t}p ( s ) x \bigl( \tau ( s ) \bigr) \Delta s \geq x ( t ) +x \bigl( \tau ( t ) \bigr) \int_{\tau ( t ) }^{t}p ( s ) \Delta s\geq x ( t ) +x \bigl( \tau ( t ) \bigr) ( 1-\rho ) , $$

so

$$ \frac{x ( \tau ( t ) ) }{x ( t ) }\geq\frac{1}{\rho}=f_{1} ( \rho ) >0,\quad\text{for }t\in \bigl[ \tau ^{-3} ( t_{0} ) ,t_{1} \bigr] . $$

When \(\tau^{-4} ( t_{0} ) \leq t_{1}\), note, for \(t\in [ \tau^{-4} ( t_{0} ) ,t_{1} ] _{\mathbb{T}}\) and \(\tau(t) \leq s\leq t\), that

$$ \int_{\tau ( s ) }^{\tau ( t ) }\frac {x^{\Delta } ( \xi ) }{x ( \xi ) }\Delta\xi+ \int_{\tau ( s ) }^{\tau ( t ) }p ( \xi ) \frac{x ( \tau ( \xi ) ) }{x ( \xi ) }\Delta \xi=0, $$
(3.8)

so from Lemma 2.2 we have

$$ \int_{\tau ( s ) }^{\tau ( t ) } \bigl[ \ln x ( \xi ) \bigr] ^{\Delta}\Delta\xi+ \int_{\tau ( s ) }^{\tau ( t ) }p ( \xi ) \frac {x ( \tau ( \xi ) ) }{x ( \xi ) }\Delta\xi \leq0, $$
(3.9)

which implies that

$$ \frac{x ( \tau ( s ) ) }{x ( \tau ( t ) ) }\geq\exp \biggl\{ \int_{\tau ( s ) }^{\tau ( t ) }p ( \xi ) \frac{x ( \tau ( \xi ) ) }{x ( \xi ) }\Delta\xi \biggr\} , $$

and so using (3.5), we have (note \(\xi\in [ \tau ^{-2} ( t_{0} ) ,t_{1} ] _{ \mathbb{T}}\) since \(\tau(t) \leq s \leq t\) and \(t\in [ \tau^{-4} ( t_{0} ) ,t_{1} ] _{\mathbb{T}}\))

$$ \frac{x ( \tau ( s ) ) }{x ( \tau ( t ) ) }\geq\exp \biggl\{ f_{0} ( \rho ) \int_{\tau ( s ) }^{\tau ( t ) }p ( \xi ) \Delta\xi \biggr\} ; $$
(3.10)

we write \(f_{0} ( \rho )\) (which is of course 1 here) to indicate the general procedure. Now applying Lemma 2.3 and using (3.6), (3.7) and (3.10), we get (here \(t\in [ \tau^{-4} ( t_{0} ) ,t_{1} ] _{\mathbb{T}}\))

$$\begin{aligned} x \bigl( \tau ( t ) \bigr) =&x ( t ) + \int _{\tau ( t ) }^{t}p ( s ) x \bigl( \tau ( s ) \bigr) \Delta s \\ \geq&x ( t ) +x \bigl( \tau ( t ) \bigr) \int_{\tau ( t ) }^{t}p ( s ) \exp \biggl\{ f_{0} ( \rho ) \int_{\tau ( s ) }^{\tau ( t ) }p ( \xi ) \Delta\xi \biggr\} \Delta s \\ =&x ( t ) +x \bigl( \tau ( t ) \bigr) \int _{\tau ( t ) }^{t}p ( s ) \exp \biggl\{ f_{0} ( \rho ) \biggl( \int_{\tau ( s ) }^{s}p ( \xi ) \Delta\xi- \int_{\tau ( t ) }^{s}p ( \xi ) \Delta\xi \biggr) \biggr\} \Delta s \\ \geq&x ( t ) +x \bigl( \tau ( t ) \bigr) e^{ ( 1-\rho ) f_{0} ( \rho ) } \int_{\tau ( t ) }^{t}p ( s ) \exp \biggl\{ -f_{0} ( \rho ) \int_{\tau ( t ) }^{s}p ( \xi ) \Delta\xi \biggr\} \Delta s \\ \geq&x ( t ) +x \bigl( \tau ( t ) \bigr) e^{ ( 1-\rho ) f_{0} ( \rho ) } \int_{\tau ( t ) }^{t}\frac{- [ \exp \{ -f_{0} ( \rho ) \int_{\tau ( t ) }^{s}p ( \xi ) \Delta\xi \} ] ^{\Delta}}{f_{0} ( \rho ) }\Delta s \\ =&x ( t ) +x \bigl( \tau ( t ) \bigr) e^{ ( 1-\rho ) f_{0} ( \rho ) } \biggl[ \frac{1-\exp \{ -f_{0} ( \rho ) \int_{\tau ( t ) }^{t}p ( \xi ) \Delta\xi \} }{f_{0} ( \rho ) } \biggr] \Delta s \\ \geq&x ( t ) +x \bigl( \tau ( t ) \bigr) \biggl( \frac{e^{ ( 1-\rho ) f_{0} ( \rho ) }-1}{f_{0} ( \rho ) } \biggr) . \end{aligned}$$

Thus, for \(t\in [ \tau^{-4} ( t_{0} ) ,t_{1} ] _{\mathbb{T}}\), we get

$$ \frac{x ( \tau ( t ) ) }{x ( t ) }\geq\frac{f_{0} ( \rho ) }{f_{0} ( \rho ) +1-e^{ ( 1-\rho ) f_{0} ( \rho ) }}=f_{2} ( \rho ) >0. $$

Repeating the above procedure, when \(\tau^{- ( 2+n ) } ( t_{0} ) \leq t_{1}\) we get for \(t\in [ \tau ^{- ( 2+n ) } ( t_{0} ) ,t_{1} ] _{\mathbb{T}}\)

$$ \frac{x ( \tau ( t ) ) }{x ( t ) }\geq\frac{f_{n-2} ( \rho ) }{f_{n-2} ( \rho ) +1-e^{ ( 1-\rho ) f_{n-2} ( \rho ) }}=f_{n} ( \rho ) >0. $$

The proof is complete. □

Remark 3.1

From the proof of Theorem 3.1 notice in the statement of Theorem 3.1 we could replace \(\infty>f_{n} ( \rho )> 0 \) for \(n\in\{2,3, \ldots\}\) with \(\infty>f_{n} ( \rho )> 0 \) for \(n\in\{2,3,\ldots, N-2\}\) if \(\tau^{- ( 2+N ) } ( t_{0} )< t_{1} < \tau^{- ( 3+N ) } ( t_{0} )\) or \(\infty>f_{n} ( \rho )> 0 \) for \(n\in \{2,3,\ldots, N-3\}\) if \(\tau^{- ( 2+N ) } ( t_{0} )=t_{1} < \tau^{- ( 3+N ) } ( t_{0} )\).

To establish the upper bound for \(x ( \tau ( t ) ) /x ( t ) \), we define a sequence \(g_{m} ( \rho ) \) by

$$ \textstyle\begin{cases} g_{1} ( \rho ) :=\frac{2\rho}{ ( 1-\rho ) ^{2}-2M ( 1-\rho ) }, \\ g_{m+1} ( \rho ) :=\frac{2 ( \rho-\frac {1}{g_{m} ( \rho ) } ) }{ [ ( 1-\rho ) ^{2}-2M ( 1-\rho ) ] },\end{cases} $$
(3.11)

where \(0\leq\rho<1\), \(m=1,2,3,\ldots\) , and \(0\leq M<(1-\rho)/2\).

We note some properties of \(g_{m} ( \rho )\) for the reader’s interest. Note \(g_{m+1} ( \rho ) < g_{m} ( \rho )\), for \(m=1,2,3,\ldots\) , and trivially

$$ g_{1} ( \rho ) >\frac{\rho}{ ( 1-\rho ) ^{2}-2M ( 1-\rho ) }. $$

More generally when \(0<1-\rho\leq1/e\) using an induction argument (i.e. assuming \(g_{m} ( \rho )>\frac{\rho }{ ( 1-\rho ) ^{2}-2M ( 1-\rho ) }\)) then

$$\begin{aligned} g_{m+1} ( \rho ) =&\frac{2 ( \rho g_{m} ( \rho ) -1 ) }{g_{m} ( \rho ) [ ( 1-\rho ) ^{2}-2M ( 1-\rho ) ] } \\ >&\frac{2\rho}{ ( 1-\rho ) ^{2}-2M ( 1-\rho ) }-\frac{2}{\rho}>\frac{\rho}{ ( 1-\rho ) ^{2}-2M ( 1-\rho ) }; \end{aligned}$$

thus \(g_{k} ( \rho )>\frac{\rho}{ ( 1-\rho ) ^{2}-2M ( 1-\rho ) }\) where \(k=1,3,\ldots\) . Then there exists a function \(g ( \rho ) \) with

$$ \lim_{m\rightarrow\infty}g_{m} ( \rho ) =g ( \rho ) =\frac{2}{\rho-\sqrt{2 ( 2M-1 ) -4 ( M-1 ) \rho -\rho^{2}}}. $$

for \(0<1-\rho\leq1/e\) (note \(2 ( 2M-1 ) -4 ( M-1 ) \rho-\rho^{2}>0\) if \(0<1-\rho\leq1/e\)).

Theorem 3.2

Assume that \(\mathbb{T}\) is a time scale and \(t^{\prime }, t_{0} \in\mathbb{T}\), \(t_{0}\geq t^{\prime}\), \(x(t)\) is a solution of (1.5) on \([t^{\prime},\infty)_{\mathbb{T}}\), there exists a positive integer \(N \geq4\) such that \(x ( t ) \) is positive on \([ t_{0},\tau^{-N} ( t_{0} ) ] _{\mathbb{T}}\) and there exists \(\rho\in(0,1)\) with \(g_{m} ( \rho )> 0 \) for \(m\in\{2,3,\ldots, N-3\}\) and

$$ \sup_{\lambda\in E} \biggl\{ \lambda\exp \biggl\{ \int_{\tau ( t ) }^{t}\zeta_{\mu ( s ) } \bigl( -\lambda p ( s ) \bigr) \Delta s \biggr\} \biggr\} \leq\rho\quad\textit{for } t \in \bigl[ \tau^{-3} ( t_{0} ) , \tau ^{-N} ( t_{0} ) \bigr] _{\mathbb{T}}, $$
(3.12)

where \(E= \{ \lambda:\lambda >0,1-\lambda p ( t ) \mu ( t ) >0\textit{ for }t\in [ \tau^{-2} ( t_{0} ) , \tau^{-N} ( t_{0} ) ] _{\mathbb{T}} \}\) and

$$ M=\sup_{s\in [ \tau^{-3} ( t_{0} ),\tau^{-N} ( t_{0} ) ] _{\mathbb{T}}}p ( s ) \mu ( s ) < \frac{1-\rho}{2}. $$

Then for \(m\in\{1,\ldots,N-3\}\) we have

$$ \frac{x ( \tau ( t ) ) }{x ( t ) }< g_{m} ( \rho ) ,\quad\textit{for }t\in \bigl[ \tau ^{-3} ( t_{0} ),\tau^{- ( N-m ) } ( t_{0} ) \bigr] _{\mathbb{T}}, $$

where \(g_{m} ( \rho ) \) is defined in (3.11).

Proof

From (1.5), we see that

$$ x^{\Delta} ( t ) \leq0,\quad\text{for }t\in \bigl[ \tau ^{-1} ( t_{0} ),\tau^{-N} ( t_{0} ) \bigr] _{\mathbb{T}}, $$
(3.13)

and as in Theorem 3.1 notice \(1-\mu ( t ) p ( t ) >0\) for \(t\in [ \tau^{-2} ( t_{0} ) , \tau ^{-N} ( t_{0} ) ] _{\mathbb{T}}\) so \(-p\in \mathcal{R}^{+}\) on the interval \([ \tau^{-2} ( t_{0} ) , \tau^{-N} ( t_{0} ) ] _{\mathbb{T}}\). From Lemma 2.1 (with the time scale \([ \tau^{-2} ( t_{0} ) , \tau^{-N} ( t_{0} ) ] _{\mathbb{T}}\)) and (3.12), we have for \(t\in [ \tau^{-3} ( t_{0} ) , \tau^{-(N-1)} ( t_{0} ) ]_{\mathbb{T}}\) (note \(\tau^{-1}(t) \leq\tau^{-N} ( t_{0} )\))

$$ \int_{\tau ( t ) }^{t}p ( s ) \Delta s\geq 1-\rho\quad\text{and}\quad \int_{t}^{\tau^{-1} ( t ) }p ( s ) \Delta s\geq1-\rho. $$
(3.14)

Let \(t\in [ \tau^{-3} ( t_{0} ) , \tau ^{-(N-1)} ( t_{0} ) ] _{\mathbb{T}}\) and consider

$$ G ( r ) := \int_{t}^{r}p ( s ) \Delta s-1+\rho ,\quad\text{for }r \in \bigl[ t,\tau^{-1} ( t ) \bigr] _{\mathbb{T}}. $$

Note \(G: [ t,\tau^{-1} ( t ) ] \rightarrow \mathbb{R}\) is nondecreasing, \(G ( t ) =-1+\rho<0\), and

$$ G \bigl( \tau^{-1} ( t ) \bigr) = \int_{t}^{\tau ^{-1} ( t ) }p ( s ) \Delta s-1+\rho\geq1-\rho-1+ \rho=0. $$

If \(G ( \tau^{-1} ( t ) ) =0\), then

$$ \int_{t}^{\tau^{-1} ( t ) }p ( s ) \Delta s=G \bigl( \tau^{-1} ( t ) \bigr) +1-\rho=1-\rho, $$

whereas if \(G ( \tau^{-1} ( t ) ) >0\) then \(G ( t ) <0<G ( \tau^{-1} ( t ) )\).

In either case (from the intermediate value theorem [20]) there exists \(t^{\ast}\in [ t,\tau^{-1} ( t ) ] _{ \mathbb{T}}\) with \(\sigma ( t^{\ast} ) \in [ t,\tau ^{-1} ( t ) ] _{ \mathbb{T}}\) such that \(G(t^{\ast }) G(\sigma ( t^{\ast} )) \leq0\) and so

$$ \int_{t}^{t^{\ast}}p ( s ) \Delta s\leq1-\rho\quad\text{and}\quad \int_{t}^{\sigma ( t^{\ast} ) }p ( s ) \Delta s\geq1-\rho. $$
(3.15)

Integrating both sides of (1.5) from t to \(\sigma ( t^{\ast} ) \), for \(t\in [ \tau^{-3} ( t_{0} ),\tau^{- ( N-1 ) } ( t_{0} ) ] _{\mathbb{T}}\), we have

$$ x ( t ) =x \bigl( \sigma \bigl( t^{\ast} \bigr) \bigr) + \int_{t}^{\sigma ( t^{\ast} ) }p ( s ) x \bigl( \tau ( s ) \bigr) \Delta s. $$
(3.16)

Fix \(t\in [ \tau^{-3} ( t_{0} ) , \tau ^{-(N-1)} ( t_{0} ) ] _{\mathbb{T}}\). Let \(s\in \mathbb{T}\) be such that \(t\leq s\leq\sigma ( t^{\ast} ) \leq\tau^{-1} ( t )\) (here \(t^{\ast}\) is as described above, and note \(\tau ( t ) \leq\tau ( s ) \leq t\)) and integrating (1.5) from \(\tau ( s ) \) to t yields

$$ x \bigl( \tau ( s ) \bigr) =x ( t ) + \int _{\tau ( s ) }^{t}p ( u ) x \bigl( \tau ( u ) \bigr) \Delta u, $$

and this together with x being nonincreasing on \([ \tau ^{-1} ( t_{0} ),\tau^{-N} ( t_{0} ) ] _{\mathbb{T}}\) and (3.14) will give

$$\begin{aligned} x \bigl( \tau ( s ) \bigr) \geq&x ( t ) +x \bigl( \tau ( t ) \bigr) \int_{\tau ( s ) }^{t}p ( u ) \Delta u \\ =&x ( t ) +x \bigl( \tau ( t ) \bigr) \biggl\{ \int_{\tau ( s ) }^{s}p ( u ) \Delta u- \int_{t}^{s}p ( u ) \Delta u \biggr\} \\ \geq&x ( t ) +x \bigl( \tau ( t ) \bigr) \biggl\{ 1-\rho- \int_{t}^{s}p ( u ) \Delta u \biggr\} , \end{aligned}$$
(3.17)

so from (3.15), (3.16) and (3.17), we obtain

$$\begin{aligned} x ( t ) =&x \bigl( \sigma \bigl( t^{\ast} \bigr) \bigr) + \int_{t}^{\sigma ( t^{\ast} ) }p ( s ) x \bigl( \tau ( s ) \bigr) \Delta s \\ \geq&x \bigl( \sigma \bigl( t^{\ast} \bigr) \bigr) + \int _{t}^{\sigma ( t^{\ast} ) }p ( s ) \biggl\{ x ( t ) +x \bigl( \tau ( t ) \bigr) \biggl\{ 1-\rho- \int_{t}^{s}p ( u ) \Delta u \biggr\} \biggr\} \Delta s \\ \geq&x \bigl( \sigma \bigl( t^{\ast} \bigr) \bigr) + ( 1-\rho ) x ( t ) + ( 1-\rho ) ^{2}x \bigl( \tau ( t ) \bigr) \\ &{}-x \bigl( \tau ( t ) \bigr) \biggl\{ \int_{t}^{t^{\ast }}p ( s ) \biggl\{ \int_{t}^{s}p ( u ) \Delta u \biggr\} \Delta s \\ &{} + \int_{t^{\ast}}^{\sigma ( t^{\ast} ) }p ( s ) \biggl\{ \int_{t}^{s}p ( u ) \Delta u \biggr\} \Delta s \biggr\} . \end{aligned}$$
(3.18)

Let \(F ( s )=\int_{t}^{s}p ( u ) \Delta u\), and note

$$\begin{aligned} \bigl[ F^{2} ( s ) \bigr] ^{\Delta} =&2 \int _{0}^{1} \bigl[ hF^{\sigma} ( s ) + ( 1-h ) F ( s ) \bigr] F^{\Delta} ( s ) \,dh \\ =&2 \int_{0}^{1} \bigl[ hF^{\sigma} ( s ) + ( 1-h ) F ( s ) \bigr] p ( s ) \,dh \\ \geq&2F ( s ) p ( s ) . \end{aligned}$$

Hence,

$$\begin{aligned} \int_{t}^{t^{\ast}}p ( s ) \biggl\{ \int_{t}^{s}p ( u ) \Delta u \biggr\} \Delta s =& \int_{t}^{t^{\ast}}p ( s ) F ( s ) \Delta s\leq \frac{1}{2}F^{2} \bigl( t^{\ast} \bigr) \\ =&\frac{1}{2} \biggl( \int_{t}^{t^{\ast}}p ( u ) \Delta u \biggr) ^{2} \leq\frac{ ( 1-\rho ) ^{2}}{2}, \end{aligned}$$
(3.19)

and so we obtain

$$\begin{aligned} &{\int_{t}^{t^{\ast}}p ( s ) \Delta s \int_{t}^{s}p ( u ) \Delta u+ \int_{t^{\ast}}^{\sigma ( t^{\ast} ) }p ( s ) \Delta s \int_{t}^{s}p ( u ) \Delta u} \\ &{\quad \leq\frac{ ( 1-\rho ) ^{2}}{2}+\mu \bigl( t^{\ast} \bigr) p \bigl( t^{\ast} \bigr) \int _{t}^{t^{\ast }}p ( u ) \Delta u} \\ &{\quad \leq\frac{ ( 1-\rho ) ^{2}}{2}+ ( 1-\rho ) M.} \end{aligned}$$
(3.20)

Note \(\sigma ( t^{\ast} ) \in [ t,\tau^{-1} ( t ) ] _{\mathbb{T}}\), \(t\in [ \tau^{-3} ( t_{0} ),\tau^{- ( N-1 ) } ( t_{0} ) ] _{\mathbb{T}}\), and x is positive on \([ t_{0},\tau ^{-N} ( t_{0} ) ] _{\mathbb{T}}\) (so \(x ( \sigma ( t^{\ast} ) ) >0\)). Thus from (3.18) and (3.20), we obtain

$$\begin{aligned} x ( t ) \geq&x \bigl( \sigma \bigl( t^{\ast} \bigr) \bigr) + ( 1-\rho ) x ( t ) \\ &{}+ ( 1-\rho ) ^{2}x \bigl( \tau ( t ) \bigr) - \biggl[ \frac{ ( 1-\rho ) ^{2}}{2}+ ( 1-\rho ) M \biggr] x \bigl( \tau ( t ) \bigr) \\ =&x \bigl( \sigma \bigl( t^{\ast} \bigr) \bigr) + ( 1-\rho ) x ( t ) \\ &{} + \biggl[ \frac{ ( 1-\rho ) ^{2}}{2}- ( 1-\rho ) M \biggr] x \bigl( \tau ( t ) \bigr) , \end{aligned}$$
(3.21)

and so we have

$$ \frac{x ( \tau ( t ) ) }{x ( t ) }< \frac{2\rho}{ ( 1-\rho ) ^{2}-2M ( 1-\rho ) }=g_{1} ( \rho ) ,\quad\text{for }t \in \bigl[ \tau ^{-3} ( t_{0} ),\tau^{- ( N-1 ) } ( t_{0} ) \bigr] _{\mathbb{T}}. $$
(3.22)

Fix \(t\in [ \tau^{-3} ( t_{0} ),\tau^{- ( N-2 ) } ( t_{0} ) ] _{\mathbb{T}}\) and with \(t^{\ast}\) as described above we have \(t\leq\sigma ( t^{\ast } ) \leq\tau^{-1} ( t ) \leq\tau^{- ( N-1 ) } ( t_{0} ) \), so from (3.22) we have

$$ x \bigl( \sigma \bigl( t^{\ast} \bigr) \bigr) >\frac {1}{g_{1} ( \rho ) }x \bigl( \tau \bigl( \sigma \bigl( t^{\ast} \bigr) \bigr) \bigr), $$

and since x is nonincreasing on \([ \tau^{-1} ( t_{0} ),\tau^{-N} ( t_{0} ) ] _{\mathbb{T}}\) and \(\tau ( \sigma ( t^{\ast} ) ) \leq t\leq \tau^{- ( N-1 ) } ( t_{0} ) \) we have

$$ x \bigl( \sigma \bigl( t^{\ast} \bigr) \bigr) >\frac {1}{g_{1} ( \rho ) }x \bigl( \tau \bigl( \sigma \bigl( t^{\ast} \bigr) \bigr) \bigr) \geq \frac{1}{g_{1} ( \rho ) }x ( t ) . $$
(3.23)

Substituting (3.23) into (3.21), we obtain for \(t\in [ \tau^{-3} ( t_{0} ),\tau^{- ( N-2 ) } ( t_{0} ) ] _{\mathbb{T}}\) that

$$ x ( t ) >\frac{1}{g_{1} ( \rho ) }x ( t ) + ( 1-\rho ) x ( t ) + \biggl[ \frac{ ( 1-\rho ) ^{2}}{2}- ( 1-\rho ) M \biggr] x \bigl( \tau ( t ) \bigr) , $$

and so we have

$$ \frac{x ( \tau ( t ) ) }{x ( t ) }< \frac{2 ( \rho-\frac{1}{g_{1} ( \rho ) } ) }{ ( 1-\rho ) ^{2}-2M ( 1-\rho ) }:=g_{2} ( \rho ) . $$

Repeating the above procedure, we obtain for \(t\in [ \tau ^{-3} ( t_{0} ),\tau ^{- ( N-m ) } ( t_{0} ) ] _{\mathbb{T}}\)

$$ \frac{x ( \tau ( t ) ) }{x ( t ) }< \frac{2 ( \rho-\frac{1}{g_{m-1} ( \rho ) } ) }{ ( 1-\rho ) ^{2}-2M ( 1-\rho ) }:=g_{m} ( \rho ) . $$

The proof is complete. □

4 Distributions of zeros of solutions

In this section, we study the distribution of zeros of solutions of (1.5) using the lower and upper bounds for \(x ( \tau ( t ) ) /x ( t ) \) in Section 3.

Theorem 4.1

Assume that \(\mathbb{T}\) is a time scale and \(t^{\prime }, t_{0}\in\mathbb{T}\), \(t_{0}\geq t^{\prime}\), \(x(t)\) is a solution of (1.5) on \([t^{\prime},\infty)_{\mathbb{T}}\), and there exist \(\rho\in(0,1)\) and \(n_{0}, m_{0} \in \{1,2,\ldots\}\) with \(f_{n_{0}} (\rho ) \geq g_{m_{0}} ( \rho )\), and with

$$N=2+\min_{n\geq1, m\geq1} \bigl\{ n+m: f_{n} (\rho ) \geq g_{m} ( \rho ) \bigr\} =2+n^{\star }+m^{\star} $$

assume \(\infty>f_{k} ( \rho )> 0\), \(g_{k} ( \rho )> 0\) for \(n\in\{2,3,\ldots, N-3\}\) and

$$\sup_{\lambda\in E} \biggl\{ \lambda\exp \biggl\{ \int_{\tau ( t ) }^{t}\zeta_{\mu ( s ) } \bigl( -\lambda p ( s ) \bigr) \Delta s \biggr\} \biggr\} \leq\rho\quad\textit{for } t \in \bigl[ \tau^{-3} ( t_{0} ) , \tau ^{-N} ( t_{0} ) \bigr] _{\mathbb{T}}, $$

where \(E= \{ \lambda:\lambda >0, 1-\lambda p ( t ) \mu ( t ) >0\textit{ for }t\in [ \tau^{-2} ( t_{0} ) , \tau ^{-N} ( t_{0} ) ] _{\mathbb{T}} \}\) and

$$ M=\sup_{s\in [ \tau^{-3} ( t_{0} ),\tau^{-N} ( t_{0} ) ] _{\mathbb{T}}}p ( s ) \mu ( s ) < \frac{1-\rho}{2}. $$

Then every solution of (1.5) cannot be totally positive or totally negative on \([ t_{0},\tau^{-N} ( t_{0} ) ] _{\mathbb{T}}\).

Proof

Note

$$ f_{n^{\star}} (\rho ) \geq g_{m^{\star}} ( \rho ). $$
(4.1)

Without loss of generality assume x is positive on \([ t_{0},\tau^{-N} ( t_{0} ) ] _{\mathbb{T}}\). From Theorem 3.1 we have

$$\frac{x ( \tau ( t ) ) }{x ( t ) }\geq f_{n^{\star}} ( \rho ) ,\quad\text{for }t\in \bigl[ \tau ^{- ( 2+n^{\star} ) } ( t_{0} ) , \tau ^{-N} ( t_{0} ) \bigr]_{\mathbb{T}} $$

and from Theorem 3.2 we have (note \(m^{\star}=N-(2+n^{\star}) \leq N-3\))

$$\frac{x ( \tau ( t ) ) }{x ( t ) }< g_{m^{\star}} ( \rho ) ,\quad\text{for }t\in \bigl[ \tau^{-3} ( t_{0} ),\tau^{- ( N-m^{\star} ) } ( t_{0} ) \bigr] _{\mathbb{T}}. $$

Note since \(N=2+n^{\star}+m^{\star}\) we have (take \(t=\tau^{- ( N-m^{\star} ) } ( t_{0} )\))

$$f_{n^{\star}} ( \rho ) \leq\frac{x ( \tau^{- ( 1+n^{\star} ) } ( t_{0} ) ) }{x ( \tau ^{- ( 2+n^{\star} ) } ( t_{0} ) ) }< g_{m^{\star}} ( \rho ), $$

which contradicts (4.1). The proof is complete. □

Theorem 4.2

Assume that \(\mathbb{T}\) is a time scale and \(t^{\prime }, t_{0}\in\mathbb{T}\), \(t_{0}\geq t^{\prime}\), \(x(t)\) is a solution of (1.5) on \([t^{\prime},\infty)_{\mathbb{T}}\), and there exist \(\rho\in(0,1)\) and a positive integer \(N\geq4\) and \(m_{0} \in\{1,2,\ldots,N-3\}\) with

$$\int_{\tau ( t_{m_{0}} ) }^{t_{m_{0}}}p ( s ) \Delta s>1-\frac{1}{g_{m_{0}} ( \rho ) } \quad\textit{where } t_{m_{0}}=\tau^{- ( N-m_{0} ) } ( t_{0} ), $$

and with

$$m^{\star}=\min_{m \in\{1,\ldots,N-3\}} \biggl\{ m: \int_{\tau ( t_{m} ) }^{t_{m}}p ( s ) \Delta s>1-\frac{1}{g_{m} ( \rho ) } \biggr\} \quad \textit{where } t_{m}=\tau^{- ( N-m ) } ( t_{0} ) $$

assume \(\infty>f_{k} ( \rho )> 0\), \(g_{k} ( \rho )> 0\) for \(n\in\{2,3,\ldots, N-3\}\) and

$$\sup_{\lambda\in E} \biggl\{ \lambda\exp \biggl\{ \int_{\tau ( t ) }^{t}\zeta_{\mu ( s ) } \bigl( -\lambda p ( s ) \bigr) \Delta s \biggr\} \biggr\} \leq\rho\quad\textit{for } t \in \bigl[ \tau^{-3} ( t_{0} ) , \tau ^{-N} ( t_{0} ) \bigr] _{\mathbb{T}}, $$

where \(E= \{ \lambda:\lambda >0, 1-\lambda p ( t ) \mu ( t ) >0\textit{ for }t\in [ \tau^{-2} ( t_{0} ) , \tau ^{-N} ( t_{0} ) ] _{\mathbb{T}} \}\) and

$$ M=\sup_{s\in [ \tau^{-3} ( t_{0} ),\tau^{-N} ( t_{0} ) ] _{\mathbb{T}}}p ( s ) \mu ( s ) < \frac{1-\rho}{2}. $$

Then every solution of (1.5) cannot be totally positive or totally negative on \([ t_{0},\tau^{-N} ( t_{0} ) ] _{\mathbb{T}}\).

Proof

Note

$$ \int_{\tau ( t_{m^{\star}} ) }^{t_{m^{\star}}}p ( s ) \Delta s>1-\frac{1}{g_{m^{\star}} ( \rho ) }\quad\hbox{where } t_{m^{\star}}=\tau^{- ( N-m^{\star} ) } ( t_{0} ). $$
(4.2)

Without loss of generality assume x is positive on \([ t_{0},\tau^{-N} ( t_{0} ) ] _{\mathbb{T}}\). From Theorem 3.2, we have

$$\frac{x ( \tau ( t ) ) }{x ( t ) }< g_{m^{\star}} ( \rho ) ,\quad\text{for }t\in \bigl[ \tau^{-3} ( t_{0} ),\tau^{- ( N-m^{\star} ) } ( t_{0} ) \bigr] _{\mathbb{T}}, $$

so in particular

$$ \frac{x ( \tau ( t_{m^{\star}} ) ) }{x ( t_{m^{\star}} ) }< g_{m^{\star}} ( \rho ). $$
(4.3)

Integrating (1.5) from \(\tau ( t_{m^{\star}} ) \) to \(t_{m^{\star}}\), we obtain

$$ x \bigl( \tau ( t_{m^{\star}} ) \bigr) -x ( t_{m^{\star}} ) = \int_{\tau ( t_{m^{\star}} ) }^{t_{m^{\star}}}p ( s ) x \bigl( \tau ( s ) \bigr) \Delta s\geq x \bigl( \tau ( t_{m^{\star}} ) \bigr) \int_{\tau ( t_{m^{\star}} ) }^{t_{m^{\star}}}p ( s ) \Delta s, $$

and this together with (4.3) gives

$$ \int_{\tau ( t_{m^{\star}} ) }^{t_{m^{\star}}}p ( s ) \Delta s\leq1-\frac{x ( t_{m^{\star}} ) }{x ( \tau ( t_{m^{\star}} ) ) }\leq1-\frac{1}{g_{m^{\star}} ( \rho ) }, $$

which contradicts (4.2). The proof is complete. □

Theorem 4.3

Assume that \(\mathbb{T}\) is a time scale and \(t^{\prime }, t_{0}\in\mathbb{T}\), \(t_{0}\geq t^{\prime}\), \(x(t)\) is a solution of (1.5) on \([t^{\prime},\infty)_{\mathbb{T}}\), and there exist \(\rho\in(0,1)\), a constant L and \(n_{0}, m_{0} \in\{1,2,\ldots\}\) with

$$\frac{1+\ln f_{n_{0}-1} ( \rho ) }{f_{n_{0}-1} ( \rho ) }-\frac {1}{g_{m_{0}} ( \rho ) } < L $$

and with

$$N=2 + \min_{n\geq1, m\geq1} \biggl\{ n+m: L > \biggl( \frac{1+\ln f_{n-1} ( \rho ) }{f_{n-1} ( \rho ) }- \frac{1}{ g_{m} ( \rho ) } \biggr) \biggr\} =2+n^{\star}+m^{\star}, $$

assume \(\infty>f_{k} ( \rho )> 0\), \(g_{k} ( \rho )> 0\) for \(n\in\{2,3,\ldots, N-3\}\) and

$$\sup_{\lambda\in E} \biggl\{ \lambda\exp \biggl\{ \int_{\tau ( t ) }^{t}\zeta_{\mu ( s ) } \bigl( -\lambda p ( s ) \bigr) \Delta s \biggr\} \biggr\} \leq\rho\quad\textit{for } t \in \bigl[ \tau^{-3} ( t_{0} ) , \tau ^{-N} ( t_{0} ) \bigr] _{\mathbb{T}}, $$

where \(E= \{ \lambda:\lambda >0, 1-\lambda p ( t ) \mu ( t ) >0\textit{ for } t\in [ \tau^{-2} ( t_{0} ) , \tau ^{-N} ( t_{0} ) ] _{\mathbb{T}} \}\) and

$$ M=\sup_{s\in [ \tau^{-3} ( t_{0} ),\tau^{-N} ( t_{0} ) ] _{\mathbb{T}}}p ( s ) \mu ( s ) < \frac{1-\rho}{2}. $$

Suppose \(f_{n^{\star}-1} ( \rho ) \geq1\), \(f_{n^{\ast }} ( \rho )> f_{n^{\ast}-1} ( \rho )\) and for \(t^{\ast}\in [ \tau ( t_{1} ) ,t_{1} ] _{\mathbb{T}}\) (here \(t_{1}=\tau^{- ( N-m^{\star} ) } ( t_{0} )\)) that

$$ \int_{\tau ( t_{1} ) }^{t^{\ast}}p ( s ) \Delta s+ \int_{\sigma ( t^{\ast} ) }^{t_{1}}p ( s ) \Delta s \geq L. $$
(4.4)

Then every solution of (1.5) cannot be totally positive or totally negative on \([ t_{0},\tau^{-N} ( t_{0} ) ] _{\mathbb{T}}\).

Proof

Note

$$ L> \biggl( \frac{1+\ln f_{n^{\ast}-1} ( \rho ) }{f_{n^{\ast }-1} ( \rho ) }-\frac{1}{g_{m^{\ast}} ( \rho ) } \biggr). $$
(4.5)

Without loss of generality assume x is positive on \([ t_{0},\tau^{-N} ( t_{0} ) ] _{\mathbb{T}}\). From Theorem 3.1, we have

$$\begin{aligned} &{\frac{x ( \tau ( t ) ) }{x ( t ) }\geq f_{n^{\ast}} ( \rho ) ,\quad t\in \bigl[ \tau ^{- ( 2+n^{\star} ) } ( t_{0} ) , \tau ^{-N} ( t_{0} ) \bigr]_{\mathbb{T}},} \end{aligned}$$
(4.6)
$$\begin{aligned} &{\frac{x ( \tau ( t ) ) }{x ( t ) }\geq f_{n^{\ast}-1} ( \rho ) ,\quad t\in \bigl[ \tau ^{- ( 1+n^{\star} ) } ( t_{0} ) , \tau ^{-N} ( t_{0} ) \bigr]_{\mathbb{T}},} \end{aligned}$$
(4.7)

and from Theorem 3.2, we have

$$ \frac{x ( \tau ( t ) ) }{x ( t ) }< g_{m^{\ast}} ( \rho ) ,\quad t\in \bigl[ \tau^{-3} (t_{0} ),\tau^{-(N-m^{\ast})} ( t_{0} ) \bigr] _{\mathbb{T}}, $$

so in particular (with \(t_{1}=\tau^{- ( N-m^{\star} ) } ( t_{0} )=\tau^{- ( 2+n^{\star} ) } ( t_{0} ) \)) we have

$$ \frac{x ( \tau ( t_{1} ) ) }{x ( t_{1} ) }< g_{m^{\ast}} ( \rho ) . $$
(4.8)

From (4.6) and \(f_{n^{\ast}} ( \rho )> f_{n^{\ast }-1} ( \rho )\) we have

$$ \frac{x ( \tau ( t_{1} ) ) }{x ( t_{1} ) }>f_{n^{\ast}-1} ( \rho ) . $$

Now since x is nonincreasing on \([ \tau^{-1}( t_{0}),\tau ^{-N } ( t_{0} ) ] _{\mathbb{T}}\) and \(f_{n^{\star}-1} ( \rho ) \geq1\) (and trivially note \(\frac{x ( \tau ( t_{1} ) ) }{ x (\tau ( t_{1} ) ) }=1\)) there exists a \(t^{\ast}\in [ \tau ( t_{1} ) ,t_{1} ] _{\mathbb{T}}\) with

$$ \frac{x ( \tau ( t_{1} ) ) }{x ( t^{\ast } ) }\leq f_{n^{\ast}-1} ( \rho )\quad\text{and}\quad \frac{x ( \tau ( t_{1} ) ) }{x ( \sigma ( t^{\ast} ) ) }\geq f_{n^{\ast}-1} ( \rho ) . $$
(4.9)

Integrating (1.5) from \(\sigma ( t^{\ast} ) \) to \(t_{1}\), we obtain

$$ x \bigl( \sigma \bigl( t^{\ast} \bigr) \bigr) -x ( t_{1} ) = \int_{\sigma ( t^{\ast} ) }^{t_{1}}p ( s ) x \bigl( \tau ( s ) \bigr) \Delta s\geq x \bigl( \tau ( t_{1} ) \bigr) \int_{\sigma ( t^{\ast} ) }^{t_{1}}p ( s ) \Delta s, $$

which implies

$$ \int_{\sigma ( t^{\ast} ) }^{t_{1}}p ( s ) \Delta s\leq \biggl( \frac{x ( \sigma ( t^{\ast} ) ) }{x ( \tau ( t_{1} ) ) }-\frac{x ( t_{1} ) }{x ( \tau ( t_{1} ) ) } \biggr) . $$
(4.10)

From (4.8), (4.9) and (4.10), we obtain

$$ \int_{\sigma ( t^{\ast} ) }^{t_{1}}p ( s ) \Delta s\leq \biggl( \frac{1}{f_{n^{\ast}-1} ( \rho ) }-\frac {1}{g_{m^{\ast }} ( \rho ) } \biggr) . $$
(4.11)

Divide (1.5) by x and integrate from \(\tau ( t_{1} ) \) to \(t^{\ast}\), and we get

$$ \int_{\tau ( t_{1} ) }^{t^{\ast}}\frac{x^{\Delta} ( s ) }{x ( s ) }\Delta s=- \int_{\tau ( t_{1} ) }^{t^{\ast }}p ( s ) \frac{x ( \tau ( s ) ) }{x ( s ) }\Delta s \leq-f_{n^{\ast}-1} ( \rho ) \int _{\tau ( t_{1} ) }^{t^{\ast}}p ( s ) \Delta s, $$

which implies

$$ \int_{\tau ( t_{1} ) }^{t^{\ast}}p ( s ) \Delta s\leq-\frac{1}{f_{n^{\ast}-1} ( \rho ) } \int_{\tau ( t_{1} ) }^{t^{\ast}}\frac{x^{\Delta} ( s ) }{x ( s ) }\Delta s. $$
(4.12)

From (4.9), (4.12) and Lemma 2.2, we obtain

$$\begin{aligned} \int_{\tau ( t_{1} ) }^{t^{\ast}}p ( s ) \Delta s \leq &- \frac{1}{f_{n^{\ast}-1} ( \rho ) } \int_{\tau ( t_{1} ) }^{t^{\ast}} \bigl[ \ln x ( s ) \bigr] ^{\Delta }\Delta s=\frac{1}{f_{n^{\ast}-1} ( \rho ) }\ln \biggl( \frac{x ( \tau ( t_{1} ) ) }{x ( t^{\ast} ) } \biggr) \\ \leq&\frac{\ln f_{n^{\ast}-1} ( \rho ) }{f_{n^{\ast }-1} ( \rho ) }, \end{aligned}$$
(4.13)

and from (4.5), (4.11) and (4.13) we have

$$ \int_{\tau ( t_{1} ) }^{t^{\ast}}p ( s ) \Delta s+ \int_{\sigma ( t^{\ast} ) }^{t_{1}}p ( s ) \Delta s\leq \biggl( \frac{1+\ln f_{n^{\ast}-1} ( \rho ) }{f_{n^{\ast }-1} ( \rho ) }-\frac{1}{g_{m^{\ast}} ( \rho ) } \biggr) < L, $$

which contradicts (4.4). The proof is complete. □

Remark 4.1

When \(\mathbb{T=R}\) equation (1.5) is the delay differential equation

$$ x^{\prime} ( t ) +p ( t ) x \bigl( \tau ( t ) \bigr) =0, \quad t\in \mathbb{R}. $$

Theorem 3.1 and Theorem 3.2 are related to the results in [9], Lemma 2.1 and Lemma 2.2, and Theorem 4.3 is motivated from results in [13], Theorem 3.