1 Introduction and main results

In this paper, we assume that the reader is familiar with the standard symbols and fundamental results of Nevanlinna theory [1]. In addition, we use notations \(\lambda (\frac{1}{f} )\) and \(\rho(f)\) to denote the exponent of convergence of the pole-sequence and the order of growth of meromorphic function \(f(z)\), respectively. We denote by \(S(r,f)\) any quantify satisfying \(S(r,f)=o(T(r,f))\) as \(r\rightarrow\infty\) outside of a possible exceptional set of finite logarithmic measure. We define the logarithmic measure of E to be

$$\operatorname{lm}(E)= \int_{E\cap(1,\infty)}\frac{dr}{r}. $$

A set \(E\subset(1,\infty)\) is said to have finite logarithmic measure if \(\operatorname{lm}(E)<\infty\). Further, we recall the definitions of the truncated exponent of convergence of the pole-sequence and the lower order in complex plane:

$$\overline{\lambda} \biggl(\frac{1}{f} \biggr)=\limsup_{r\to\infty} \frac {\log^{+}\overline{N}(r,f)}{\log r}, \qquad\mu(f)=\liminf_{r \to\infty}\frac{\log^{+}T(r,f)}{\log r}. $$

There has been a lot of work on the growth order of meromorphic solution to certain types of complex differential equations and complex difference equations (or complex functional equations); see [210]. Malmquist [8] investigated the existence of transcendental meromorphic solutions of a complex differential equation and obtained the following result.

Theorem A

[8]

Let

$$ \frac{df(z)}{dz}=R\bigl(z,f(z)\bigr)=\frac{P(z,f(z))}{Q(z,f(z))}= \frac{\sum_{i=0}^{p}a_{i}(z)f^{i}(z)}{\sum_{j=0}^{q}b_{j}(z)f^{j}(z)}, $$
(1.1)

where \(P(z,f(z))\) and \(Q(z,f(z))\) are relatively prime polynomials in \(f(z)\), the coefficients \(a_{i}(z)\) (\(i=0,\ldots,p\)) and \(b_{j}(z)\) (\(j=0,\ldots,q\)) are rational functions. If equation (1.1) admits a transcendental meromorphic solution, then \(q=0\) and \(p\leq2\).

Recently, Gundersen et al. [7] considered meromorphic solutions of a functional equation of the form

$$ f(qz)=R\bigl(z,f(z)\bigr)=\frac{\sum_{i=0}^{k}a_{i}(z)f^{i}(z)}{\sum_{j=0}^{l}b_{j}(z)f^{j}(z)}, $$
(1.2)

where the coefficients \(a_{i}(z)\) (\(i=0,\ldots,k\)) and \(b_{j}(z)\) (\(j=0,\ldots,l\)) are of growth \(S(r,f)\), and q (\(\vert q\vert > 1\)) is a constant. In fact, they obtained the following theorem.

Theorem B

([7]) Suppose that \(f(z)\) is a transcendental meromophic of equation (1.2) with \(\vert q\vert > 1\). Assuming that \(d:=\deg_{f}R(z,f(z))=\max\{k,l\}\geq1\), \(a_{k}(z)\not\equiv0\), \(b_{l}(z)\not\equiv0\), and that \(R(z,f(z))\) is irreducible in \(f(z)\). Then

$$\rho(f)=\frac{\log d}{\log q}. $$

In this paper, we continue to investigate the growth order of meromorphic solutions to certain types of complex q-difference differential equations and generalize Theorems A and B. Now, we state our results as follows.

Theorem 1.1

Suppose that \(f(z)\) is a solution of the equation

$$ \bigl(f'(qz)\bigr)^{n}=R\bigl(z,f(z)\bigr)= \frac{\sum_{i=0}^{k}a_{i}(z)f^{i}(z)}{\sum_{j=0}^{l}b_{j}(z)f^{j}(z)} $$
(1.3)

with meromorphic coefficients \(a_{i}(z)\) (\(i=0,\ldots,k\)) and \(b_{j}(z)\) (\(j=0,\ldots,l\)) of growth \(S(r,f)\) and a constant \(q\in\mathbb{C}\backslash\{0\}\), assuming that \(d:=\operatorname{deg}_{f}R(z,f(z))=\max\{k,l\}\geq1\), \(a_{k}(z)\not\equiv0\), \(b_{l}(z)\not\equiv0\), and that \(R(z,f(z))\) is irreducible in \(f(z)\). Then one of the following cases holds.

  1. (i)

    For \(\vert q\vert >1\), if \(f(z)\) is a transcendental meromorphic solution of equation (1.3) and \(d>2n\), then

    $$\frac{\log d-\log2n}{\log \vert q\vert }\leq\mu(f)\leq\rho(f). $$

    If \(f(z)\) is a transcendental entire solution of equation (1.3) and \(d>n\), then

    $$\frac{\log d-\log n}{\log \vert q\vert }\leq\mu(f)\leq\rho(f). $$
  2. (ii)

    For \(\vert q\vert <1\), if \(f(z)\) is a transcendental meromorphic solution of equation (1.3), then \(d\leq2n\), and

    $$\rho(f)\leq\frac{\log2n-\log d}{-\log \vert q\vert }. $$

    If \(f(z)\) is a transcendental entire solution of equation (1.3), then \(d\leq n\), and

    $$\rho(f)\leq\frac{\log n-\log d}{-\log \vert q\vert }. $$
  3. (iii)

    For \(\vert q\vert =1\), if \(f(z)\) is a transcendental meromorphic solution of equation (1.3), then \(d\leq2n\). Furthermore, if \(n< d\leq2n\), then \(\overline{\lambda} (\frac{1}{f} )=\lambda (\frac {1}{f} )=\rho(f)\). If \(f(z)\) is a transcendental entire solution of equation (1.3), then \(d\leq n\).

Example 1.1

The function \(f(z)=\frac{e^{z}+1}{e^{z}-1}\) is a solution to the q-difference differential equation

$$f'(3z)=-\frac{(f^{2}(z)-1)^{3}}{2(3f^{2}(z)+1)^{2}}, $$

where \(d=6\), \(n=1\), \(q=3\), so that \(d>2n\), \(\vert q\vert >1\). Then \(\frac{\log d-\log2n}{\log \vert q\vert }=1=\mu(f)=\rho(f)\).

Example 1.2

The function \(f(z)=\cos z\) is a solution to the q-difference differential equation

$$\bigl(f'(2z)\bigr)^{2}=-4f^{4}(z)+4f^{2}(z), $$

where \(d=4\), \(n=2\), \(q=2\), so that \(d>n\), \(\vert q\vert >1\). Then \(\frac{\log d-\log n}{\log \vert q\vert }=1=\mu(f)=\rho(f)\).

Example 1.3

The function \(f(z)=\frac{e^{z}}{z+1}\) is a solution to the q-difference differential equation

$$\bigl(f'(z/3)\bigr)^{3}=\frac{27(z+1)z^{3}}{(z+3)^{6}}f(z), $$

where \(d=1\), \(n=3\), \(q=\frac{1}{3}\), so that \(d<2n\), \(\vert q\vert <1\). Then \(1=\rho(f)<\frac{\log2n-\log d}{-\log \vert q\vert }=1+\frac{\log2}{\log3}\).

Example 1.4

The function \(f(z)=e^{z^{2}}+1\) is a solution to the q-difference differential equation

$$\bigl(f'(z/2)\bigr)^{2}=z^{4}f(z)-z^{4}, $$

where \(d=1\), \(n=4\), \(q=\frac{1}{2}\), so that \(d< n\), \(\vert q\vert <1\). Then \(\rho(f)=2=\frac{\log n-\log d}{-\log \vert q\vert }\).

Example 1.5

The function \(f(z)=\frac{e^{z}+1}{z}\) is a solution to the q-difference differential equation

$$f'(-z)=-\frac{f(z)+1}{z^{2}f(z)-z}, $$

where \(d=1\), \(n=1\), \(q=-1\), so that \(n=d<2n\), \(\vert q\vert =1\).

Example 1.6

The function \(f(z)=e^{z}+1\) is a solution to the q-difference differential equation

$$f'(z)=f(z)-1, $$

where \(d=1\), \(n=1\), \(q=1\), so that \(d=n\), \(\vert q\vert =1\).

Theorem 1.2

Suppose that \(f(z)\) is a solution of the equation

$$ \bigl(f'(qz)\bigr)^{n}=R\bigl(z,f\bigl(p(z)\bigr)\bigr)= \frac{\sum_{i=0}^{k}a_{i}(z)f^{i}(p(z))}{\sum_{j=0}^{l}b_{j}(z)f^{j}(p(z))} $$
(1.4)

with meromorphic coefficients \(a_{i}(z)\) (\(i=0,\ldots,k\)) and \(b_{j}(z)\) (\(j=0,\ldots,l\)) of growth \(S(r,f)\), a constant \(q\in\mathbb{C}\backslash\{0\}\), and \(p(z)=c_{m}z^{m}+c_{m-1}z^{m-1}+\cdots+c_{0}\), where \(c_{m}\) (≠0), \(c_{m-1}\), … , \(c_{0}\) are complex constants, and m (≥2) is an integer. Assume that \(d:=\operatorname{deg}_{f}R(z,f(z))=\max\{k,l\}\geq1\), \(a_{k}(z)\not\equiv0\), \(b_{l}(z)\not\equiv0\), and that \(R(z,f(z))\) is irreducible in \(f(z)\). Then, if \(f(z)\) is a transcendental meromorphic solution of equation (1.4) and \(d\leq2n\), then

$$T\bigl(r,f(z)\bigr)=O\bigl((\log r)^{\alpha}\bigr), $$

where

$$\alpha=\frac{\log2n-\log d}{\log m}. $$

If \(f(z)\) is a transcendental entire solution of equation (1.4) and \(d\leq n\), then

$$T\bigl(r,f(z)\bigr)=O\bigl((\log r)^{\alpha}\bigr), $$

where

$$\alpha=\frac{\log n-\log d}{\log m}. $$

Theorem 1.3

Suppose that \(f(z)\) is a solution of equation

$$ \sum_{s=1}^{n}\alpha_{s}(z)f^{(\lambda_{s})}(q_{s}z)=R \bigl(z,f(z)\bigr)=\frac {\sum_{i=0}^{k}a_{i}(z)f^{i}(z)}{\sum_{j=0}^{l}b_{j}(z)f^{j}(z)} $$
(1.5)

with meromorphic coefficients \(\alpha_{s}(z)\) (\(s=1,\ldots,n\)), \(a_{i}(z)\) (\(i=0,\ldots,k\)), and \(b_{j}(z)\) (\(j=0,\ldots,l\)) of growth \(S(r,f)\), distinct constants \(q_{s}\) with \(\vert q_{s}\vert \geq1\), and finite nonnegative integers \(\lambda_{s}\). Suppose that \(a_{k}(z)\not \equiv0\), \(b_{l}(z)\not\equiv0\), and \(R(z,f(z))\) is irreducible in \(f(z)\). Denote

$$d:=\operatorname{deg}_{f}R\bigl(z,f(z)\bigr)=\max\{k,l\}\geq1;\qquad \lambda=\sum _{s=1}^{n}\lambda _{s};\qquad \vert q\vert = \max_{1\leq s\leq n}\bigl\{ \vert q_{s}\vert \bigr\} >1. $$

Then if \(f(z)\) is a transcendental meromorphic solution of equation (1.5) and \(d>\lambda+n\), then

$$\frac{\log d-\log(\lambda+n)}{\log \vert q\vert }\leq\mu(f)\leq\rho(f). $$

If \(f(z)\) is a transcendental entire solution of equation (1.5) and \(d>n\), then

$$\frac{\log d-\log n}{\log \vert q\vert }\leq\mu(f)\leq\rho(f). $$

Example 1.7

The function \(f(z)=\frac{1}{e^{z}+1}\) is a solution to the q-difference differential equation

$$f''(2z)=\frac{-f^{2}(z)(f(z)-1)^{2}(2f(z)-1)}{(2f^{2}(z)-2f(z)+1)^{3}}, $$

where \(d=6\), \(n=1\), \(\lambda=2\), so that \(d>\lambda+n=3\), \(\vert q\vert =2>1\). Then \(1=\frac{\log d-\log(\lambda+n)}{\log \vert q\vert }=\mu(f)=\rho(f)\).

Example 1.8

The function \(f(z)=e^{z}+1\) is a solution to the q-difference differential equation

$$f'(z)+f''(3z)=f^{3}(z)-3f^{2}(z)+4f(z)-2, $$

where \(d=3\), \(n=2\), so that \(d>n\), \(\vert q\vert =\max\{\vert q_{1}\vert , \vert q_{2}\vert \}=3>1\). Then \(1-\frac{\log2}{\log3}=\frac{\log d-\log n}{\log \vert q\vert }<\mu(f)=\rho(f)=1\).

Theorem 1.4

Suppose that \(f(z)\) is a solution of the equation

$$ \sum_{s=1}^{n}\alpha_{s}(z)f^{(\lambda_{s})}(q_{s}z)=R \bigl(z,f\bigl(p(z)\bigr)\bigr)=\frac {\sum_{i=0}^{k}a_{i}(z)f^{i}(p(z))}{\sum_{j=0}^{l}b_{j}(z)f^{j}(p(z))} $$
(1.6)

with meromorphic coefficients \(\alpha_{s}(z)\) (\(s=1,\ldots,n\)), \(a_{i}(z)\) (\(i=0,\ldots,k\)), and \(b_{j}(z)\) (\(j=0,\ldots,l\)) of growth \(S(r,f)\), distinct nonzero constants \(q_{s}\), finite nonnegative integers \(\lambda_{s}\), and \(p(z)=c_{m}z^{m}+c_{m-1}z^{m-1}+\cdots+c_{0}\), where \(c_{m}\) (≠0), \(c_{m-1}\), … , \(c_{0}\) are complex constants, and m (≥2) is an integer. Suppose that \(a_{k}(z)\not\equiv0\), \(b_{l}(z)\not\equiv0\), and \(R(z,f(z))\) is irreducible in \(f(z)\). Denote

$$d:=\operatorname{deg}_{f}R\bigl(z,f(z)\bigr)=\max\{k,l\}\geq1;\qquad \lambda=\sum _{s=1}^{n}\lambda _{s};\qquad \vert q\vert = \max_{1\leq s\leq n}\bigl\{ \vert q_{s}\vert \bigr\} >0. $$

Then if \(f(z)\) is a transcendental meromorphic solution of equation (1.6) and \(d\leq\lambda+n\), then

$$T\bigl(r,f(z)\bigr)=O\bigl((\log r)^{\alpha}\bigr), $$

where

$$\alpha=\frac{\log(\lambda+n)-\log d}{\log m}. $$

If \(f(z)\) is a transcendental entire solution of equation (1.6) and \(d\leq n\), then

$$T\bigl(r,f(z)\bigr)=O\bigl((\log r)^{\alpha}\bigr), $$

where

$$\alpha=\frac{\log n-\log d}{\log m}. $$

Beardon [3] studied entire solutions of the generalized function equation

$$ f(qz)=qf(z)f'(z), \quad f(0)=0, $$
(1.7)

where q is a nonzero complex number. First, we give some notations. The formal series \(\mathcal{O}\) and \(\mathcal{I}\) are defined by \(\mathcal{O}:=0+0z+0z^{2}+\cdots\) and \(\mathcal {I}:=0+1z+0z^{2}+0z^{3}+\cdots\) . We also introduce the sets \(\mathcal{K}_{p}=\{z:z^{p}=p+2\}\) (\(p=1,2,\ldots\)) and \(\mathcal{K}=\mathcal{K}_{1}\cup\mathcal{K}_{2}\cup\cdots\) . Clearly, \(\mathcal{K}_{p}\) contains exactly p points, which are equally spaced around the circle \(\vert z\vert =r_{p}\), where \(r_{p}=(p+2)^{\frac{1}{p}}>1\) and \(r_{p}\in\mathcal{K}_{p}\). Also, since \(x^{-1}\log(x+2)\) is decreasing when \(x>1\). we see that \(r_{1}=3>r_{2}=2>\cdots>1\) and \(r_{p}\to1\) as \(p\to\infty\). Based on these notations, Beardon obtained the following two main theorems.

Theorem C

[3]

Any transcendental solution of (1.7) is of the form

$$f(z)=z+z\bigl(bz^{p}+\cdots\bigr), $$

where p is a positive integer, \(b\neq0\), and \(q\in\mathcal{K}_{p}\). In particular, if \(q\notin\mathcal{K}\), then the only formal solutions of (1.7) are \(\mathcal{O}\) and \(\mathcal{I}\).

Theorem D

[3]

For each positive integer p, there is a unique real entire function

$$F_{p}=z\bigl(1+z^{p}+b_{2}z^{2p}+b_{3}z^{3p}+ \cdots\bigr) $$

that is a solution of (1.7) for each q in \(\mathcal{K}_{p}\). Further, if \(q\in\mathcal{K}_{p}\), then the only transcendental solutions of (1.7) are the linear conjugates of \(F_{p}\).

More recently, Zhang [10] investigated the growth of solutions of (1.7) and obtained the following theorem.

Theorem E

[10]

Suppose that \(f(z)\) is a transcendental solution of (1.7) for \(k\in\mathcal{K}\). Then the order of growth \(\rho(f)\leq\frac{\log2}{\log \vert q\vert }\).

In this paper, we generalize equation (1.7) and investigate the growth of solution of certain types of q-difference differential equations and obtain the following results.

Theorem 1.5

Let q be a complex constant satisfying \(\vert q\vert >1\). Suppose that \(f(z)\) is a solution to the equation

$$ \sum_{s=1}^{n}\alpha_{s}(z)f^{(\lambda_{s})}(z)= \frac {A(qz,f(qz))}{B(z,f(z))}, $$
(1.8)

where \(A(z,y)\) and \(B(z,y)\) are rational functions with meromorphic coefficients of growth \(S(r,f)\) such that \(A(z,y)\) and \(B(z,y)\) are irreducible in y. Denote

$$\lambda=\sum_{s=1}^{n}\lambda_{s};\qquad 1\leq a:=\deg_{f}A\leq\deg_{f}B=:b. $$

Then,

  1. (i)

    if \(f(z)\) is a transcendental meromorphic solution of equation (1.8), then

    $$\rho(f)\leq\frac{\log(b+\lambda+n)-\log a}{\log \vert q\vert }. $$

    Furthermore, if \(b>a+\lambda+n\), then

    $$\frac{\log(b-\lambda-n)-\log a}{\log \vert q\vert }\leq\mu(f)\leq\rho(f)\leq\frac {\log(b+\lambda+n)-\log a}{\log \vert q\vert }. $$
  2. (ii)

    If \(f(z)\) is a transcendental entire solution of equation (1.8), then

    $$\rho(f)\leq\frac{\log(b+n)-\log a}{\log \vert q\vert }. $$

    Furthermore, if \(b>a+n\), then

    $$\frac{\log(b-n)-\log a}{\log \vert q\vert }\leq\mu(f)\leq\rho(f)\leq\frac{\log (b+n)-\log a}{\log \vert q\vert }. $$

Example 1.9

The function \(f(z)=\tan z\) is a solution to the q-difference differential equation

$$f''(z)=\frac{f^{2}(2z)}{\frac{2f(z)}{f^{6}(z)-f^{4}(z)-f^{2}(z)+1}}, $$

where \(a=2\), \(b=6\), \(n=1\), \(q=2\), \(\lambda=2\), so that \(b>a+\lambda+n=5\). Then \(\frac{\log3}{\log2}-1=\frac{\log(b-\lambda-n)-\log a}{\log \vert q\vert }<\mu (f)=\rho(f)=1< \frac{\log(b+\lambda+n)-\log a}{\log \vert q\vert }=2\frac{\log3}{\log2}-1\).

Example 1.10

The function \(f(z)=ze^{z}\) is a solution to the q-difference differential equation

$$f'(z)+f''(z)=\frac{f^{2}(3z)+f(3z)}{\frac{9f^{5}(z)}{(2z+3)z^{3}}+\frac {3f^{2}(z)}{(2z+3)z}}, $$

where \(a=2\), \(b=5\), \(n=2\), \(q=3\), so that \(b>a+n=4\). Then \(1-\frac{\log2}{\log3}=\frac{\log(b-n)-\log a}{\log \vert q\vert }<\mu(f)=\rho(f)=1< \frac{\log(b+n)-\log a}{\log \vert q\vert }=\frac{\log7-\log2}{\log3}\).

Theorem 1.6

Let q be a complex constant satisfying \(\vert q\vert >1\). Suppose that \(f(z)\) is a solution to the equation

$$ \bigl(f'(z)\bigr)^{n}=\frac{A(qz,f(qz))}{B(z,f(z))}, $$
(1.9)

where \(A(z,y)\) and \(B(z,y)\) are rational functions with meromorphic coefficients of growth \(S(r,f)\) such that \(A(z,y)\) and \(B(z,y)\) are irreducible in y. Denote \(1\leq a:=\deg_{f}A\leq\deg_{f}B=:b\). Then,

  1. (i)

    if \(f(z)\) is a transcendental meromorphic solution of equation (1.9), then

    $$\rho(f)\leq\frac{\log(b+2n)-\log a}{\log \vert q\vert }. $$

    Furthermore, if \(b>a+2n\), then

    $$\frac{\log(b-2n)-\log a}{\log \vert q\vert }\leq\mu(f)\leq\rho(f)\leq\frac{\log (b+2n)-\log a}{\log \vert q\vert }. $$
  2. (ii)

    If \(f(z)\) is a transcendental entire solution of equation (1.9), then

    $$\rho(f)\leq\frac{\log(b+n)-\log a}{\log \vert q\vert }. $$

    Furthermore, if \(b>a+n\), then

    $$\frac{\log(b-n)-\log a}{\log \vert q\vert }\leq\mu(f)\leq\rho(f)\leq\frac{\log (b+n)-\log a}{\log \vert q\vert }. $$

Example 1.11

The function \(f(z)=\tan z\) is a solution to the q-difference differential equation

$$\bigl(f'(z)\bigr)^{2}=\frac{f(2z)+1}{\frac {f^{2}(z)-2f(z)-1}{f^{6}(z)+f^{4}(z)-f^{2}(z)-1}}, $$

where \(a=1\), \(b=6\), \(n=2\), \(q=2\), so that \(b>a+2n=5\). Then \(1=\frac{\log(b-2n)-\log a}{\log \vert q\vert }=\mu(f)=\rho(f)< \frac{\log(b+2n)-\log a}{\log \vert q\vert }=1+\frac{\log5}{\log2}\).

Example 1.12

The function \(f(z)=ze^{z}\) is a solution to the q-difference differential equation

$$\bigl(f'(z)\bigr)^{2}=\frac{f^{2}(4z)+f(4z)}{\frac {16f^{6}(z)}{(z+1)^{2}z^{4}}+\frac{4f^{2}(z)}{z(z+1)^{2}}}, $$

where \(a=2\), \(b=6\), \(n=2\), \(q=4\), so that \(b>a+n=4\). Then \(\frac{1}{2}=\frac{\log(b-n)-\log a}{\log \vert q\vert }<\mu(f)=\rho(f)= \frac{\log(b+n)-\log a}{\log \vert q\vert }=1\).

2 Some lemmas

Lemma 2.1

See [4], Lemma 4

Let \(f(z)\) be a transcendental meromorphic function, and \(p(z)=a_{k}z^{k}+a_{k-1}z^{k-1}+\cdots+a_{1}z+a_{0}\) (\(a_{k}\neq0\)) be a nonconstant polynomial of degree k. Given \(0<\delta<\vert a_{k}\vert \), let \(\lambda=\vert a_{k}\vert +\delta\) and \(\mu=\vert a_{k}\vert -\delta\), then, for any given \(\varepsilon>0\),

$$(1-\varepsilon)T\bigl(\mu r^{k},f(z)\bigr)\leq T\bigl(r,f\bigl(p(z) \bigr)\bigr)\leq(1+\varepsilon )T\bigl(\lambda r^{k},f(z)\bigr) $$

for sufficiently large r.

Lemma 2.2

See [7], Lemma 3.1

Let \(\Phi:(1,\infty)\to(0,\infty)\) be an increasing function, and let \(f(z)\) be a nonconstant meromorphic function. If for some real constant \(\alpha\in(0,1)\), there exist real constants \(K_{1}>0\) and \(K_{2}\geq1\) such that

$$T\bigl(r,f(z)\bigr)\leq K_{1}\Phi(r)+K_{2}T\bigl(\alpha r,f(z)\bigr)+S(\alpha r,f), $$

then

$$\rho(f)\leq\frac{\log K_{2}}{-\log\alpha}+\limsup_{r\to\infty}\frac {\log\Phi(r)}{\log r}. $$

Lemma 2.3

See [9], Lemma 2.2

Let \(\Phi:(r_{0},\infty)\to(1,\infty)\), where \(r_{0}\geq1\), be an increasing function. If for some real constant \(\alpha>1\), there exists a real number \(K>1\) such that \(\Phi(\alpha r)>K\Phi(r)\), then

$$\liminf_{r\to\infty}\frac{\log\Phi(r)}{\log r}\geq\frac{\log K}{\log \alpha}. $$

Lemma 2.4

See [5], Lemma 3

Let \(\Psi(r)\) be a function of r (\(r\geq r_{0}\)), positive and bounded in every finite interval. Suppose that \(\Psi(\mu r^{m})\leq A\Psi (r)+B(r\geq r_{0})\), where μ (>0), m (>1), A (≥1), and B are constants. Then \(\Psi(r)=O((\log r)^{\alpha})\) with \(\alpha=\frac{\log A}{\log m}\), unless \(A=1\) and \(B>0\); and if \(A=1\) and \(B>0\), then, for any \(\varepsilon>0\), \(\Psi(r)=O((\log r)^{\varepsilon})\).

The following lemma is proved by Bergweiler et al. [2], p. 2.

Lemma 2.5

$$T\bigl(r,f(qz)\bigr)=T\bigl(\vert q\vert r,f(z)\bigr)+O(1),\qquad \overline{N} \bigl(r,f(qz)\bigr)=\overline {N}\bigl(\vert q\vert r,f(z)\bigr)+O(1) $$

for any meromorphic function \(f(z)\) and any nonzero constant q.

3 Proof of Theorems 1.1-1.2

Proof of Theorem 1.1

If \(\vert q\vert >1\) and \(f(z)\) is a transcendental meromorphic solution of (1.3), then by applying the Valiron-Mohon’ko identity (see [11], Theorem 2.2.5), Lemma 2.5, and [1], Theorem 3.1, it follows from (1.3) that

$$\begin{aligned} T\bigl(r,R\bigl(z,f(z)\bigr)\bigr) =& T \biggl(r,\frac{\sum_{i=0}^{k}a_{i}(z)f^{i}(z)}{\sum_{j=0}^{l}b_{j}(z)f^{j}(z)} \biggr) \\ =& d T\bigl(r,f(z)\bigr)+S(r,f) \\ = & T\bigl(r,\bigl(f'(q z)\bigr)^{n}\bigr) \\ \leq& n\bigl[T\bigl(r,f(q z)\bigr)+\overline{N}\bigl(r,f(q z)\bigr)+S \bigl(r,f(q z)\bigr)\bigr] \\ = & n\bigl[T\bigl(\vert q\vert r,f(z)\bigr)+\overline{N}\bigl(\vert q \vert r,f(z)\bigr)+S\bigl(\vert q\vert r,f(z)\bigr)\bigr] \\ \leq& 2nT\bigl(\vert q\vert r,f(z)\bigr)+S\bigl(\vert q\vert r,f(z) \bigr), \end{aligned}$$

that is,

$$ d T\bigl(r,f(z)\bigr)+S(r,f)\leq2nT\bigl(\vert q\vert r,f(z)\bigr)+S\bigl( \vert q\vert r,f(z)\bigr). $$
(3.1)

By (3.1), for any small \(\varepsilon>0\),

$$ d(1-\varepsilon)T\bigl(r,f(z)\bigr)\leq2n(1+\varepsilon)T\bigl(\vert q\vert r,f(z)\bigr) $$
(3.2)

for sufficiently large \(r\notin E\), where \(\operatorname{lm}(E)<\infty\). By an application of [6], Lemma 5, with \(\beta>1\) and (3.2) we see that

$$ d(1-\varepsilon)T\bigl(r,f(z)\bigr)\leq2n(1+\varepsilon)T\bigl(\beta \vert q \vert r,f(z)\bigr) $$
(3.3)

for all \(r\geq r_{0}\). If \(d\leq2n\), then since \(\beta \vert q\vert >1\), estimate (3.3) is trivial. So we only have to consider the case where \(d>2n\). Then \(\frac {d(1-\varepsilon)}{2n(1+\varepsilon)}>1\). It follows from Lemmas 2.3 and (3.3) that

$$\mu(f)=\liminf_{r\to\infty}\frac{\log^{+}T(r,f)}{\log r}\geq\frac{\log (d(1-\varepsilon))-\log(2n(1+\varepsilon))}{\log\beta \vert q\vert }. $$

As \(\varepsilon\to0^{+}\) and \(\beta\to1^{+}\), we have

$$\rho(f)\geq\mu(f)\geq\frac{\log d-\log2n}{\log \vert q\vert }. $$

If \(\vert q\vert >1\) and \(f(z)\) is a transcendental entire solution of (1.3), then similarly to (3.1), for any small \(\varepsilon>0\), we have

$$ d(1-\varepsilon)T\bigl(r,f(z)\bigr)\leq n(1+\varepsilon)T\bigl(\vert q\vert r,f(z)\bigr) $$
(3.4)

for sufficiently large \(r\notin E\), where \(\operatorname{lm}(E)<\infty\). If \(d>n\), similarly to the previous argument, we conclude that

$$\rho(f)\geq\mu(f)\geq\frac{\log d-\log n}{\log \vert q\vert }. $$

If \(\vert q\vert <1\) and \(f(z)\) is a transcendental meromorphic solution of (1.3), then applying [6], Lemma 5, and (3.2), we obtain that there exists \(\alpha>1\) such that

$$ \alpha \vert q\vert < 1 \quad \mbox{and} \quad d(1-\varepsilon)T\bigl(r,f(z)\bigr) \leq 2n(1+\varepsilon)T\bigl(\alpha \vert q\vert r,f(z)\bigr) $$
(3.5)

for all \(r\geq r_{0}\). Since \(\alpha \vert q\vert <1\), if \(d>2n\), then \(\frac {2n(1+\varepsilon)}{d(1-\varepsilon)}<1\), a contradiction to (3.5). Thus, we have \(d\leq2n\). Then \(\frac {2n(1+\varepsilon)}{d(1-\varepsilon)}>1\), and from Lemma 2.2 we have that

$$\rho(f)\leq\frac{\log(2n(1+\varepsilon))-\log(d(1-\varepsilon))}{-\log \alpha \vert q\vert }. $$

As \(\varepsilon\to0^{+}\) and \(\alpha\to1^{+}\), we have

$$\rho(f)\leq\frac{\log2n-\log d}{-\log \vert q\vert }. $$

If \(\vert q\vert <1\) and \(f(z)\) is a transcendental entire solution of (1.3), then similarly to the previous argument, we have

$$d\leq n \quad\mbox{and} \quad\rho(f)\leq\frac{\log n-\log d}{-\log \vert q\vert }. $$

If \(\vert q\vert =1\) and \(f(z)\) is a transcendental meromorphic solution of (1.3), then by the proof of (3.1) we conclude that

$$\begin{aligned} d T\bigl(r,f(z)\bigr)+S(r,f) \leq& n\bigl[T\bigl(r,f(z)\bigr)+\overline{N} \bigl(r,f(z)\bigr)+S(r,f)\bigr] \\ \leq& 2nT\bigl(r,f(z)\bigr)+S(r,f). \end{aligned}$$

From this inequality we have \(d\leq2n\). If \(n< d\leq2n\), then

$$\begin{aligned} \frac{d-n}{n}T\bigl(r,f(z)\bigr)+S(r,f) \leq& \overline{N}\bigl(r,f(z) \bigr)+S(r,f) \\ \leq& N\bigl(r,f(z)\bigr)+S(r,f) \\ \leq& T\bigl(r,f(z)\bigr)+S(r,f), \end{aligned}$$

that is, \(\overline{\lambda} (\frac{1}{f} )=\lambda (\frac {1}{f} )=\rho(f)\). If \(\vert q\vert =1\) and \(f(z)\) is a transcendental entire solution of (1.3), then we similarly obtain that \(d\leq n\). This completes the proof of Theorem 1.1. □

Proof of Theorem 1.2

If \(f(z)\) is a transcendental meromorphic solution of (1.4), then by the Valiron-Mohon’ko identity ([11], Theorem 2.2.5), Lemma 2.5, and [1], Theorem 3.1, it follows from (1.4) that

$$\begin{aligned} T\bigl(r,R\bigl(z,f\bigl(p(z)\bigr)\bigr)\bigr) =& T \biggl(r,\frac{\sum_{i=0}^{k}a_{i}(z)f^{i}(p(z))}{\sum_{j=0}^{l}b_{j}(z)f^{j}(p(z))} \biggr) \\ =& d T\bigl(r,f\bigl(p(z)\bigr)\bigr)+S\bigl(r,f\bigl(p(z)\bigr)\bigr) \\ = & T\bigl(r,\bigl(f'(q z)\bigr)^{n}\bigr) \\ \leq& n\bigl[T\bigl(r,f(q z)\bigr)+\overline{N}\bigl(r,f(q z)\bigr)+S \bigl(r,f(q z)\bigr)\bigr] \\ = & n\bigl[T\bigl(\vert q\vert r,f(z)\bigr)+\overline{N}\bigl(\vert q \vert r,f(z)\bigr)+S\bigl(\vert q\vert r,f(z)\bigr)\bigr] \\ \leq& 2nT\bigl(\vert q\vert r,f(z)\bigr)+S\bigl(\vert q\vert r,f(z) \bigr), \end{aligned}$$

that is,

$$ d T\bigl(r,f\bigl(p(z)\bigr)\bigr)+S\bigl(r,f\bigl(p(z)\bigr)\bigr)\leq2nT\bigl( \vert q\vert r,f(z)\bigr)+S\bigl(\vert q\vert r,f(z)\bigr). $$
(3.6)

By Lemma 2.1, for given \(0<\delta<\vert c_{m}\vert \) and \(\mu =\vert c_{m}\vert -\delta\) and for any small \(\varepsilon>0\),

$$ d(1-\varepsilon)T\bigl(\mu r^{m},f(z)\bigr)\leq2n(1+\varepsilon)T \bigl(\vert q\vert r,f(z)\bigr) $$
(3.7)

for sufficiently large \(r\notin E\), where \(\operatorname{lm}(E)<\infty\). An application of [6], Lemma 5, with \(\beta>1\) and (3.7) yields

$$d(1-\varepsilon)T\bigl(\mu r^{m},f(z)\bigr)\leq2n(1+\varepsilon)T \bigl(\beta \vert q\vert r,f(z)\bigr) $$

for \(r\geq r_{0}\). Put \(R=\beta \vert q\vert r\). Then the last inequality can be rewritten as

$$ T \biggl(\frac{\mu R^{m}}{\beta^{m}\vert q\vert ^{m}},f(z) \biggr)\leq \frac{2n(1+\varepsilon)}{d(1-\varepsilon)}T\bigl(R,f(z) \bigr). $$
(3.8)

If \(d\leq2n\), then \(\frac{2n(1+\varepsilon)}{d(1-\varepsilon)}\geq1\). Since \(\frac{\mu}{\beta^{m}\vert q\vert ^{m}}>0\), \(m\geq2\), by Lemma 2.4 we get that

$$T\bigl(r,f(z)\bigr)=O\bigl((\log r)^{\alpha}\bigr), $$

where

$$\begin{aligned} \alpha =& \frac{\log(2n(1+\varepsilon))-\log(d(1-\varepsilon))}{\log m} \\ =& \frac{\log2n-\log d}{\log m}+\frac{\log(1+\varepsilon)-\log (1-\varepsilon)}{\log m} \\ \rightarrow& \frac{\log2n-\log d}{\log m}\quad (\varepsilon\rightarrow0). \end{aligned}$$

If \(f(z)\) is a transcendental entire solution of (1.4) and \(d\leq n\), then we similarly have

$$T\bigl(r,f(z)\bigr)=O\bigl((\log r)^{\alpha}\bigr), $$

where

$$\alpha=\frac{\log n-\log d}{\log m}. $$

This completes the proof of Theorem 1.2. □

4 Proof of Theorems 1.3-1.4

Proof of Theorem 1.3

If \(f(z)\) is a transcendental meromorphic solution of (1.5), then by applying the Valiron-Mohon’ko identity ([11], Theorem 2.2.5), Lemma 2.5, and [1], Theorem 3.1, it follows from (1.5), \(\vert q_{s}\vert >1\), and \(\vert q\vert =\max_{1\leq s\leq n}\{\vert q_{s}\vert \}>1\) that

$$\begin{aligned} T\bigl(r,R\bigl(z,f(z)\bigr)\bigr) =& T \biggl(r,\frac{\sum_{i=0}^{k}a_{i}(z)f^{i}(z)}{\sum_{j=0}^{l}b_{j}(z)f^{j}(z)} \biggr) \\ =& d T\bigl(r,f(z)\bigr)+S(r,f) \\ =& T \Biggl(r,\sum_{s=1}^{n} \alpha_{s}(z)f^{(\lambda_{s})}(q_{s}z) \Biggr) \\ \leq& \sum_{s=1}^{n}T\bigl(r,f^{(\lambda_{s})}(q_{s}z) \bigr)+S(r,f) \\ \leq& \sum_{s=1}^{n}\bigl[T \bigl(r,f(q_{s}z)\bigr)+\lambda_{s}\overline {N} \bigl(r,f(q_{s}z)\bigr)+S\bigl(r,f(q_{s}z)\bigr) \bigr]+S(r,f) \\ =& \sum_{s=1}^{n}\bigl[T\bigl(\vert q_{s}\vert r,f(z)\bigr)+\lambda_{s}\overline {N}\bigl( \vert q_{s}\vert r,f(z)\bigr)+S\bigl(\vert q_{s} \vert r,f(z)\bigr)\bigr]+S(r,f) \\ \leq& \sum_{s=1}^{n}\bigl[(1+\lambda _{s})T\bigl(\vert q_{s}\vert r,f(z)\bigr)+S\bigl( \vert q_{s}\vert r,f(z)\bigr)\bigr]+S(r,f) \\ \leq& \sum_{s=1}^{n}(1+ \lambda_{s})T\bigl(\vert q\vert r,f(z)\bigr)+S\bigl(\vert q \vert r,f(z)\bigr)+S(r,f) \\ =& (\lambda+n)T\bigl(\vert q\vert r,f(z)\bigr)+S\bigl(\vert q\vert r,f(z)\bigr)+S(r,f), \end{aligned}$$

that is,

$$ d T\bigl(r,f(z)\bigr)+S(r,f)\leq(\lambda+n)T\bigl(\vert q\vert r,f(z) \bigr)+S\bigl(\vert q\vert r,f(z)\bigr) $$
(4.1)

for sufficiently large \(r\notin E\), where \(\operatorname{lm}(E)<\infty\). By using (4.1) and [6], Lemma 5, with \(\beta>1\), for any given \(\varepsilon>0\), we have

$$ d(1-\varepsilon)T\bigl(r,f(z)\bigr)\leq(\lambda+n) (1+\varepsilon)T\bigl(\beta \vert q\vert r,f(z)\bigr) $$
(4.2)

for all \(r\geq r_{0}\). Since \(\beta \vert q\vert >1\), if \(d\leq\lambda+n\), then estimate (4.2) is trivial. So we only have to consider the case where \(d>\lambda+n\). Then \(\frac {d(1-\varepsilon)}{(\lambda+n)(1+\varepsilon)}>1\). It follows from Lemma 2.3 and (4.2) that

$$\mu(f)=\liminf_{r\to\infty}\frac{\log^{+}T(r,f)}{\log r}\geq \frac{\log(d(1-\varepsilon))-\log((\lambda+n)(1+\varepsilon))}{\log\beta \vert q\vert }. $$

As \(\varepsilon\to0^{+}\) and \(\beta\to1^{+}\), we have

$$\rho(f)\geq\mu(f)\geq\frac{\log d-\log(\lambda+n)}{\log \vert q\vert }. $$

Similarly, if \(f(z)\) is a transcendental entire solution of (1.5) and \(d>n\), we have

$$\rho(f)\geq\mu(f)\geq\frac{\log d-\log n}{\log \vert q\vert }. $$

This completes the proof of Theorem 1.3. □

Proof of Theorem 1.4

If \(f(z)\) is a transcendental meromorphic solution of (1.6), similarly to (4.1), by applying the Valiron-Mohon’ko identity ([11], Theorem 2.2.5), Lemma 2.5, and [1], Theorem 3.1, it follows from (1.6) and \(\vert q\vert =\max_{1\leq s\leq n}\{\vert q_{s}\vert \}>0\) that

$$ d T\bigl(r,f\bigl(p(z)\bigr)\bigr)+S\bigl(r,f\bigl(p(z)\bigr)\bigr)\leq(\lambda +n)T\bigl(\vert q\vert r,f(z)\bigr)+S\bigl(\vert q\vert r,f(z) \bigr). $$
(4.3)

By Lemma 2.1, for given \(0<\delta<\vert c_{m}\vert \) and \(\mu =\vert c_{m}\vert -\delta\) and for any small \(\varepsilon>0\),

$$ d(1-\varepsilon)T\bigl(\mu r^{m},f(z)\bigr)\leq(\lambda+n) (1+ \varepsilon )T\bigl(\vert q\vert r,f(z)\bigr) $$
(4.4)

for sufficiently large \(r\notin E\), where \(\operatorname{lm}(E)<\infty\). An application of [6], Lemma 5, with \(\beta>1\) and (4.4) yields

$$ d(1-\varepsilon)T\bigl(\mu r^{m},f(z)\bigr)\leq(\lambda+n) (1+ \varepsilon)T\bigl(\beta \vert q\vert r,f(z)\bigr) $$
(4.5)

for \(r\geq r_{0}\). Set \(R=\beta \vert q\vert r\). Then (4.5) can be rewritten as

$$ T \biggl(\frac{\mu R^{m}}{\beta^{m}\vert q\vert ^{m}},f(z) \biggr)\leq \frac{(\lambda+n)(1+\varepsilon)}{d(1-\varepsilon)}T\bigl(R,f(z) \bigr). $$
(4.6)

If \(d\leq\lambda+n\), then \(\frac{(\lambda+n)(1+\varepsilon )}{d(1-\varepsilon)}\geq1\). Since \(\frac{\mu}{\beta^{m}\vert q\vert ^{m}}>0\), \(m\geq2\), from Lemma 2.4 we get that

$$T\bigl(r,f(z)\bigr)=O\bigl((\log r)^{\alpha}\bigr), $$

where

$$\begin{aligned} \alpha =& \frac{\log((\lambda+n)(1+\varepsilon))-\log(d(1-\varepsilon ))}{\log m} \\ =& \frac{\log(\lambda+n)-\log d}{\log m}+\frac{\log(1+\varepsilon)-\log (1-\varepsilon)}{\log m} \\ \rightarrow& \frac{\log(\lambda+n)-\log d}{\log m}\quad (\varepsilon \rightarrow0). \end{aligned}$$

If \(f(z)\) is a transcendental entire solution of (1.6) and \(d\leq n\), we similarly have

$$T\bigl(r,f(z)\bigr)=O\bigl((\log r)^{\alpha}\bigr), $$

where

$$\alpha=\frac{\log n-\log d}{\log m}. $$

This completes the proof of Theorem 1.4. □

5 Proof of Theorems 1.5-1.6

Proof of Theorem 1.5

If \(f(z)\) is a transcendental meromorphic solution of (1.8), by applying the Valiron-Mohon’ko identity ([11], Theorem 2.2.5), Lemma 2.5, and [1], Theorem 3.1, it follows from (1.8) that

$$\begin{aligned} T\bigl(r,A\bigl(q z,f(q z)\bigr)\bigr) =& a T\bigl(r,f(q z)\bigr)+S\bigl(r,f(q z)\bigr) \\ =& a T\bigl(\vert q\vert r,f(z)\bigr)+S\bigl(\vert q\vert r,f(z)\bigr) \\ =& T \Biggl(r,B\bigl(z,f(z)\bigr)\sum_{s=1}^{n} \alpha_{s}(z)f^{(\lambda _{s})}(z) \Biggr) \\ \leq& T(r,B\bigl(z,f(z)\bigr)+T \Biggl(r,\sum_{s=1}^{n}f^{(\lambda_{s})}(z) \Biggr)+S(r,f) \\ \leq& b T\bigl(r,f(z)\bigr)+\sum_{s=1}^{n} \bigl[T\bigl(r,f(z)\bigr)+\lambda_{s}\overline {N}\bigl(r,f(z) \bigr)+S(r,f)\bigr]+S(r,f) \\ \leq& b T\bigl(r,f(z)\bigr)+\sum_{s=1}^{n}(1+ \lambda_{s})T\bigl(r,f(z)\bigr)+S(r,f) \\ =& b T\bigl(r,f(z)\bigr)+(\lambda+n)T\bigl(r,f(z)\bigr)+S(r,f) \\ =& (b+\lambda+n)T\bigl(r,f(z)\bigr)+S(r,f), \end{aligned}$$

that is,

$$a T\bigl(\vert q\vert r,f(z)\bigr)+S\bigl(\vert q\vert r,f(z)\bigr) \leq(b+\lambda+n)T\bigl(r,f(z)\bigr)+S(r,f), $$

that is,

$$ a T\bigl(r,f(z)\bigr)+S(r,f)\leq(b+\lambda+n)T \biggl(\frac{r}{\vert q\vert },f(z) \biggr)+S \biggl(\frac{r}{\vert q\vert },f \biggr) $$
(5.1)

for sufficiently large \(r\notin E\), where \(\operatorname{lm}(E)<\infty\). By using [6], Lemma 5, and \(\frac{1}{\vert q\vert }<1\), from (5.1) we obtain that there exists \(\beta>1\) such that

$$\frac{\beta}{ \vert q\vert }< 1 \quad\mbox{and} \quad a(1-\varepsilon )T\bigl(r,f(z)\bigr) \leq(b+\lambda+n) (1+\varepsilon)T \biggl(\frac{\beta r}{\vert q\vert },f(z) \biggr) $$

for all \(r\geq r_{0}\). Since \(1\leq a\leq b\), then \(\frac{(b+\lambda+n)(1+\varepsilon )}{a(1-\varepsilon)}\geq1\), and from Lemma 2.2 we get that

$$\rho(f)\leq\frac{\log((b+\lambda+n)(1+\varepsilon))-\log (a(1-\varepsilon))}{-\log\frac{\beta}{ \vert q\vert }}. $$

As \(\varepsilon\to0^{+}\) and \(\beta\to1^{+}\), we have

$$\rho(f)\leq\frac{\log(b+\lambda+n)-\log a}{\log \vert q\vert }. $$

On the other hand, by applying the Valiron-Mohon’ko identity ([11], Theorem 2.2.5), Lemma 2.5, and [1], Theorem 3.1, it follows from (1.8) that

$$\begin{aligned} T\bigl(r,B\bigl(z,f(z)\bigr)\bigr) =& b T\bigl(r,f(z)\bigr)+S(r,f) \\ =& T \biggl(r,\frac{A(q z,f(q z))}{\sum_{s=1}^{n}\alpha_{s}(z)f^{(\lambda _{s})}(z)} \biggr) \\ \leq& T\bigl(r,A\bigl(q z,f(q z)\bigr)\bigr)+T \Biggl(r,\sum _{s=1}^{n}\alpha _{s}(z)f^{(\lambda_{s})}(z) \Biggr)+O(1) \\ \leq& a T\bigl(r,f(q z)\bigr)+T \Biggl(r,\sum_{s=1}^{n}f^{(\lambda_{s})}(z) \Biggr)+S\bigl(r,f(q z)\bigr)+S(r,f) \\ \leq& a T\bigl(\vert q\vert r,f(z)\bigr)+\sum_{s=1}^{n} \bigl[T\bigl(r,f(z)\bigr)+\lambda_{s}\overline {N}\bigl(r,f(z) \bigr)+S(r,f)\bigr]+S\bigl(\vert q\vert r,f\bigr) \\ \leq& a T\bigl(\vert q\vert r,f(z)\bigr)+\sum_{s=1}^{n}(1+ \lambda _{s})T\bigl(r,f(z)\bigr)+S\bigl(\vert q\vert r,f \bigr)+S(r,f) \\ \leq& a T\bigl(\vert q\vert r,f(z)\bigr)+(\lambda+n)T\bigl(r,f(z)\bigr)+S \bigl(\vert q\vert r,f\bigr)+S(r,f), \end{aligned}$$

that is,

$$b T\bigl(r,f(z)\bigr)+S(r,f)\leq a T\bigl(\vert q\vert r,f(z)\bigr)+( \lambda+n)T\bigl(r,f(z)\bigr)+S\bigl(\vert q\vert r,f\bigr). $$

If \(b>a+\lambda+n\), then for any given \(\varepsilon>0\), this inequality can be rewritten as

$$ (b-\lambda-n) (1-\varepsilon)T\bigl(r,f(z)\bigr)\leq a(1+\varepsilon )T\bigl( \vert q\vert r,f(z)\bigr) $$
(5.2)

for sufficiently large \(r\notin E\), where \(\operatorname{lm}(E)<\infty\). By using [6], Lemma 5, with \(\beta>1\) from (5.2) we have that

$$ (b-\lambda-n) (1-\varepsilon)T\bigl(r,f(z)\bigr)\leq a(1+\varepsilon)T \bigl( \beta \vert q\vert r,f(z) \bigr) $$
(5.3)

for all \(r\geq r_{0}\). Since \(\beta \vert q\vert >1\), \(\frac{(b-\lambda-n)(1-\varepsilon)}{a(1+\varepsilon)}>1\), and it follows from Lemma 2.3 and (5.3) that

$$\mu(f)=\liminf_{r\to\infty}\frac{\log^{+}T(r,f)}{\log r}\geq \frac{\log((b-\lambda-n)(1-\varepsilon))-\log(a(1+\varepsilon))}{\log \beta \vert q\vert }. $$

As \(\varepsilon\to0^{+}\) and \(\beta\to1^{+}\), we have

$$\rho(f)\geq\mu(f)\geq\frac{\log(b-\lambda-n)-\log a}{\log \vert q\vert }. $$

Similarly, if \(f(z)\) is a transcendental entire solution of (1.8) and \(b>a+n\), we have

$$\frac{\log(b-n)-\log a}{\log \vert q\vert }\leq\mu(f)\leq\rho(f)\leq\frac{\log (b+n)-\log a}{\log \vert q\vert }. $$

This completes the proof of Theorem 1.5. □

Proof of Theorem 1.6

Using the same method as in the proof of Theorem 1.5, the conclusion of Theorem 1.6 follows immediately. We omit the proof here. □