1 Introduction

Boundary value problems for fractional differential equations arise from the study of models of viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc. (see [1, 2] and [3]). Therefore, they have received much attention.

The existence theory for initial value problems involving fractional derivatives has received considerable attention during recent decades, we mention, for example, [47] and [8]. However, quite recently, the theory of boundary value problems for fractional differential equations has received attention from many researchers. The attention drawn to the theory of the existence, multiplicity, and uniqueness of solutions to boundary value problems for fractional order differential equations is evident from the increased number of recent publications; see, for example, [9, 10] and [11], and the references therein.

Motivated by the above work, we investigate the existence and uniqueness of solution for a boundary value problem of fractional differential equation of the form

$$ \left \{ \textstyle\begin{array}{l} {}^{\mathrm{C}}D^{\alpha}u(t)=f(t,u(t),{}^{\mathrm{C}}D^{\beta}u(t)),\quad t\in J:=[0,1], \\ u(0)=\lambda_{1}u(\eta), \qquad u'(0)=0,\qquad u''(0)=0,\qquad \ldots, \\ u^{(m-2)}(0)=0 ,\qquad u(1)=\lambda_{2}u(\eta), \end{array}\displaystyle \right . $$
(1.1)

where \(\alpha\in(m-1,m]\), \(m\in\mathbb{N}\), \(m\geq2\), \(\beta>0\), \(\alpha -\beta\geq1\), \(0<\eta<1\) with \((\lambda_{2}-\lambda_{1})\eta ^{m-1}\neq(1-\lambda_{1})\), \(f:J\times\mathbb{R}\times\mathbb {R}\to\mathbb{R}\) is a given function satisfying some assumptions that will be specified later and \({}^{\mathrm{C}}D^{\alpha}\), \({}^{\mathrm{C}}D^{\beta}\) are the Caputo derivatives of orders α and β with the lower limit zero, respectively.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this paper. Let \(C(J,\mathbb{X})\) be the space of all continuous functions defined on J. Define the space \(\mathbb{X}=\{u(t)\mid u(t)\in C(J), {}^{\mathrm{C}}D^{\beta }u(t)\in C(J)\}\) endowed with the norm \({\|u\|_{\mathbb{X}}=\max_{t\in J}\|u(t)\| +\max_{t\in J}\|{}^{\mathrm{C}}D^{\beta}u(t)\|}\). It is clear that \((\mathbb {X},\|\cdot\|)\) is a Banach space [12].

For measurable functions \(m:J\rightarrow\mathbb{R}\), define the norm

$$\|m\|_{L^{p}(J)}=\left \{ \textstyle\begin{array}{l@{\quad}l} (\int_{J}|m(t)|^{p} \, dt)^{\frac{1}{p}},& 1\leq p< \infty, \\ \inf_{\mu(\bar{J})=0}\{\sup_{t\in J-\bar{J}}|m(t)|\}, &p=\infty, \end{array}\displaystyle \displaystyle \right . $$

where \(\mu(\bar{J})\) is the Lebesgue measure on \(\bar{J}\). Let \(L^{p}(J,\mathbb{R})\) be the Banach space of all Lebesgue measurable functions \(m:J\rightarrow\mathbb{R}\) with \(\|m\|_{L^{p}(J)}<\infty\).

We need some basic definitions and properties [13, 14] of fractional calculus which are used in this paper.

Definition 2.1

The Riemann-Liouville fractional integral of order q with the lower limit zero for a function \(h:[0,\infty)\rightarrow\mathbb{R}\) is defined by

$$I^{q}h(t)=\frac{1}{\Gamma(q)}\int_{0}^{t} \frac {h(s)}{(t-s)^{1-q}}\,ds,\quad t>0, q>0 $$

provided the right-hand side is point-wise defined on \([0,\infty)\), where \(\Gamma(\cdot)\) is the gamma function.

Definition 2.2

The Riemann-Liouville derivative of order q with the lower limit zero for a function \(h:[0,\infty)\rightarrow\mathbb{R}\) can be written as

$${}^{\mathrm{L}}D^{q}h(t)=\frac{1}{\Gamma(n-q)}\frac{d^{n}}{dt^{n}}\int _{0}^{t}\frac{h(s)}{(t-s)^{q+1-n}}\,ds,\quad t>0, n-1< q< n. $$

Definition 2.3

The Caputo derivative of order \(q>0\) for a function \(h:[0,\infty )\rightarrow\mathbb{R}\) can be written as

$${}^{\mathrm{C}}D^{q}h(t)= {}^{\mathrm{L}}D^{q} \Biggl[h(t)-\sum_{k=0}^{n-1} \frac {t^{k}}{k!}h^{(k)}(0) \Biggr],\quad t>0, n-1< q< n. $$

Lemma 2.1

  1. (i)

    If \(h\in C^{n}([0,\infty),\mathbb{R})\), then the Caputo derivative of order \(q>0\) for a function \(h:[0,\infty)\rightarrow \mathbb{R}\) can be written as

    $${}^{\mathrm{C}}D^{q}h(t)=\frac{1}{\Gamma(n-q)}\int_{0}^{t} \frac{ h^{(n)}(s)}{(t-s)^{q+1-n}}\,ds,\quad t>0, n-1< q< n. $$
  2. (ii)

    If \(x\in L(0,1)\), \(\rho>\sigma>0\), then

    $${}^{\mathrm{C}}D^{\sigma}I^{\rho}x(t)=I^{\rho-\sigma}x(t), \qquad I^{\rho}I^{\sigma }x(t)=I^{\rho+\sigma}x(t). $$
  3. (iii)

    If \(\rho>0\), \(k>0\), then

    $${}^{\mathrm{C}}D^{\rho}t^{k-1}=\frac{\Gamma(k)}{\Gamma(k-\rho)}t^{k-\rho-1}. $$
  4. (iv)

    If \(\rho>0\), C is a constant, then

    $${}^{\mathrm{C}}D^{\rho}C=0. $$

It is useful to mention that Definition 2.3 (generalization of the classical Caputo derivative), where the integrable function h can be discontinuous, is more general than that of the classical Caputo derivative described in (i) in the above lemma (see [15] and [16]).

Lemma 2.2

[17]

Let \(\alpha>0\), then the differential equation

$${}^{\mathrm{C}}D^{\alpha}h(t)=0 $$

has solutions \(h(t)=c_{0}+c_{1}t+c_{2}t^{2}+\cdots+c_{m-1}t^{m-1}\), \(c_{i}\in\mathbb{R}\), \(i=0,1,\ldots,m-1\), \(m=[\alpha]+1\).

Lemma 2.3

[17]

Let \(\alpha>0\), then

$$I^{\alpha} {}^{\mathrm{C}}D^{\alpha}h(t)=h(t)+c_{0}+c_{1}t+c_{2}t^{2}+ \cdots +c_{m-1}t^{m-1} $$

for some \(c_{i}\in\mathbb{R}\), \(i=0,1,\ldots,m-1\), \(m=-[-\alpha]\).

Now, let us recall the definition of a solution of the fractional boundary value problem (1.1).

Definition 2.4

A function \(u\in C(J,\mathbb{X})\) with its α-derivative existing on J is said to be a solution of the fractional boundary value problem (1.1) if u satisfies the equation \({}^{\mathrm{C}}D^{\alpha}u(t)=f(t,u(t),{}^{\mathrm{C}}D^{\beta}u(t))\) a.e. on J and the conditions \(u(0)=\lambda_{1}u(\eta), u'(0)=0, u''(0)=0, \ldots ,u^{(m-2)}(0)=0 ,u(1)=\lambda_{2}u(\eta)\).

To study the nonlinear problem (1.1), we first consider the associated linear problem

$$ \left \{ \textstyle\begin{array}{l} {}^{\mathrm{C}}D^{\alpha}u(t)=h(t),\quad t\in J, \\ u(0)=\lambda_{1}u(\eta),\qquad u'(0)=0,\qquad u''(0)=0, \qquad \ldots, \\ u^{(m-2)}(0)=0 ,\qquad u(1)=\lambda_{2}u(\eta), \end{array}\displaystyle \right . $$
(2.1)

where \(h\in C(J,\mathbb{R})\).

Lemma 2.4

A unique solution of equation (2.1) satisfies the following integral equation:

$$\begin{aligned} u(t) =&\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}h(s)\,ds+\frac{\lambda_{1}\eta^{m-1}+(1-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\int_{0}^{1} \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds \\ &{}-\frac{\lambda_{1}+(\lambda_{2}-\lambda_{1})t^{m-1}}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds. \end{aligned}$$
(2.2)

Proof

By Lemma 2.3, the general solution of (2.1) can be written as

$$ u(t)=\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}h(s)\,ds-c_{0}-c_{1}t-c_{2}t^{2}+ \cdots-c_{m-1}t^{m-1}, $$
(2.3)

where \(c_{0},c_{1},\ldots,c_{m-1}\in\mathbb{R}\) are arbitrary constants. In view of Lemma 2.1, we obtain

$$\begin{aligned}& u'(t)=\int_{0}^{t} \frac{(t-s)^{\alpha-2}}{\Gamma(\alpha -1)}h(s)\,ds-c_{1}-2c_{2}t+ \cdots-(m-1)c_{m-1}t^{m-2}, \\& u''(t)=\int_{0}^{t} \frac{(t-s)^{\alpha-3}}{\Gamma(\alpha -2)}h(s)\,ds-2c_{2}+\cdots-(m-1) (m-2)c_{m-1}t^{m-3},\qquad \ldots. \end{aligned}$$

From \(u'(0)=0, u''(0)=0, \ldots,u^{(m-2)}(0)=0\), it follows that \(c_{1}=c_{2}=\cdots=c_{m-2}=0\). Using \(u(0)=\lambda_{1}u(\eta)\) and \(u(1)=\lambda_{2}u(\eta)\), we get

$$(\lambda_{1}-1)c_{0}+\lambda_{1} \eta^{m-1}c_{m-1}=\lambda_{1}\int _{0}^{\eta}\frac{(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds $$

and

$$(\lambda_{2}-1)c_{0}+\bigl(\lambda_{2} \eta^{m-1}-1\bigr)c_{m-1}=\lambda _{2}\int _{0}^{\eta}\frac{(\eta-s)^{\alpha-1}}{\Gamma(\alpha )}h(s)\,ds-\int _{0}^{1}\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds, $$

respectively. Therefore, we get

$$\begin{aligned}& c_{0} = \frac{\lambda_{1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda _{1})\eta^{m-1}}\int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma (\alpha)}h(s)\,ds \\& \hphantom{c_{0} ={}}{}- \frac{\lambda_{1}\eta^{m-1}}{(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}h(s)\,ds, \\& c_{m-1} = \frac{\lambda_{2}-\lambda_{1}}{(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{\eta} \frac{(\eta-s)^{\alpha -1}}{\Gamma(\alpha)}h(s)\,ds \\& \hphantom{c_{m-1} ={}}{} + \frac{\lambda_{1}-1}{(\lambda_{1}-1)+(\lambda_{2}-\lambda _{1})\eta^{m-1}}\int_{0}^{1} \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds. \end{aligned}$$

Substituting the values of \(c_{0}\) and \(c_{m-1}\) in (2.3), we obtain the result. This completes the proof. □

As a consequence of Lemma 2.4, we have the following result which is useful in what follows.

Lemma 2.5

Let \(f:J\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}\) be a continuous function. A function \(u\in\mathbb{X}\) is a solution of the integral equation

$$\begin{aligned} u(t) =&\int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}f \bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \\ &{}+\frac{\lambda_{1}\eta^{m-1}+(1-\lambda_{1})t^{m-1}}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \\ &{}-\frac{\lambda_{1}+(\lambda_{2}-\lambda_{1})t^{m-1}}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \end{aligned}$$

if and only if u is a solution of the fractional boundary value problem (1.1).

Lemma 2.6

(Hölder’s inequality)

Assume that \(q,p\geq1\) and \(\frac{1}{q}+\frac{1}{p}=1\). If \(l\in L^{q}(J,\mathbb{R})\) and \(m\in L^{p}(J,\mathbb{R})\), then for \(1\leq p\leq\infty\), \(lm\in L^{1}(J,\mathbb{R})\) and \(\|lm\|_{L^{1}(J)}\leq\| l\|_{L^{q}(J)}\cdot\|m\|_{L^{p}(J)}\).

Lemma 2.7

(Bochner’s theorem)

A measurable function \(g:J\rightarrow\mathbb{R}\) is Bochner integrable if \(|g|\) is Lebesgue integrable.

Lemma 2.8

(Schaefer’s fixed point theorem)

Let \(F :C(J,\mathbb{X})\to C(J,\mathbb{X})\) be a completely continuous operator. If the set \(E(F)=\{u\in C(J,\mathbb{X}): u=\lambda Fu\textit{ for some }\lambda\in (0,1)\}\) is bounded, then F has at least a fixed point.

3 Main results

Before stating and proving the main results, we introduce the following hypotheses.

  1. (H1)

    \(f:J\times\mathbb{R}\times\mathbb{R}\rightarrow\mathbb {R}\) is Lebesgue measurable with respect to t on J.

  2. (H2)

    There exists a constant \(\alpha_{1}\in[0,\alpha)\) and a real-valued function \(m(t)\in L^{\frac{1}{\alpha_{1}}}(J,\mathbb{R}_{+})\) such that

    $$\bigl\vert f(t,u_{2},v_{2})-f(t,u_{1},v_{1}) \bigr\vert \leq m(t) \bigl(\vert u_{2}-u_{1}\vert +|v_{2}-v_{1}| \bigr) $$

    for each \(t\in J\) and all \(u_{i},v_{i}\in\mathbb{X}\), \(i=1,2\).

  3. (H3)

    There exists a constant \(\alpha_{2}\in[0,\alpha)\) and a real-valued function \(h(t)\in L^{\frac{1}{\alpha_{2}}}(J,\mathbb{R}_{+})\) such that

    $$\bigl\vert f(t,u,v)\bigr\vert \leq h(t) $$

    for each \(t\in J\) and all \(u,v\in\mathbb{X}\).

For brevity, let \(M=\|m\|_{L^{\frac{1}{\alpha_{1}}}(J,\mathbb{R}_{+})}\) and \(H=\|h\|_{L^{\frac{1}{\alpha_{2}}}(J,\mathbb{R}_{+})}\).

Our first result is based on the Banach contraction principle.

Theorem 3.1

Assume that (H1)-(H3) hold. If

$$ \Omega= M \biggl[\frac{(1+\Lambda_{1})}{\Gamma(\alpha)(\frac{\alpha -\alpha_{1}}{1-\alpha_{1}})^{1-\alpha_{1}}}+ \biggl(\frac{1}{\Gamma (\alpha-\beta)(\frac{\alpha-\beta-\alpha_{2}}{1-\alpha _{2}})^{1-\alpha_{2}}}+ \frac{\Lambda_{2}}{\Gamma(\alpha)(\frac{\alpha -\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggr) \biggr]< 1, $$
(3.1)

where

$$\begin{aligned}& \Lambda_{1} = \frac{2|\lambda_{1}|+|1-\lambda_{1}|+|\lambda _{2}-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|}, \\& \Lambda_{2} = \frac{(|1-\lambda_{1}|+|\lambda_{2}-\lambda _{1}|)\Gamma(m)}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|\Gamma(m-\beta)}, \end{aligned}$$

then the boundary value problem (1.1) has a unique solution.

Proof

For each \(t\in J\), we have

$$\begin{aligned} \int_{0}^{t}\bigl\vert (t-s)^{\alpha-1}f \bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr) \bigr\vert \,ds \leq& \biggl(\int_{0}^{t}(t-s)^{\frac{\alpha-1}{1-\alpha _{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{t} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\ \leq& \biggl(\int_{0}^{t}(t-s)^{\frac{\alpha-1}{1-\alpha _{2}}} \,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\ \leq&\frac{H}{(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}}. \end{aligned}$$

Thus \(\vert (t-s)^{\alpha-1}f(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s))\vert \) is Lebesgue integrable with respect to \(s\in[0,t]\) for all \(t\in J\) and \(u\in C(J,\mathbb{X})\). Then \((t-s)^{\alpha-1}f(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s))\) is Bochner integrable with respect to \(s\in[0,t]\) for all \(t\in J\) due to Lemma 2.7.

In the same manner we can show that \((1-s)^{\alpha -1}f(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s))\) and \((\eta-s)^{\alpha-1}f(s,u(s), {}^{\mathrm{C}}D^{\beta}u(s))\) are also Bochner integrable with respect to \(s\in [0,t]\) for all \(t\in J\) due to Lemma 2.7.

Hence, the boundary value problem (1.1) is equivalent to the following integral equation:

$$\begin{aligned} u(t) =&\int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}f \bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \\ &{}+\frac{\lambda_{1}\eta^{m-1}+(1-\lambda_{1})t^{m-1}}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \\ &{}-\frac{\lambda_{1}+(\lambda_{2}-\lambda_{1})t^{m-1}}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s)\bigr)\,ds, \quad t\in J. \end{aligned}$$

Let

$$r\geq H \biggl[\frac{1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha)(\frac {\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}}+\frac{1}{\Gamma (\alpha-\beta)(\frac{\alpha-\beta-\alpha_{2}}{1-\alpha _{2}})^{1-\alpha_{2}}} \biggr]. $$

Now we define the operator F on \(B_{r}:=\{ u\in C(J,\mathbb{X}):\|u\| _{\mathbb{X}}\leq r\}\) as follows:

$$\begin{aligned} (Fu) (t) =&\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \\ &{}+\frac{\lambda_{1}\eta^{m-1}+(1-\lambda_{1})t^{m-1}}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s)\bigr)\,ds \\ &{}-\frac{\lambda_{1}+(\lambda_{2}-\lambda_{1})t^{m-1}}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \end{aligned}$$
(3.2)

for each \(t\in J\). Therefore, the existence of a solution of the fractional boundary value problem (1.1) is equivalent to the fact that the operator F has a fixed point in \(B_{r}\). We shall use the Banach contraction principle to prove that F has a fixed point. The proof is divided into two steps.

Step 1. \(Fu\in B_{r}\) for every \(u\in B_{r}\).

For every \(u\in B_{r}\) and \(\delta>0\), by (H3) and Hölder’s inequality, we get

$$\begin{aligned}& \bigl\vert (Fu) (t+\delta)-(Fu) (t)\bigr\vert \\& \quad \leq \biggl\vert \int_{t}^{t+\delta} \frac{(t+\delta-s)^{\alpha -1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \biggr\vert \\& \qquad {} + \biggl\vert \int_{0}^{t} \frac{((t+\delta-s)^{\alpha-1}-(t-s)^{\alpha -1})}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \biggr\vert \\& \qquad {} + \biggl\vert \frac{(1-\lambda_{1})((t+\delta)^{m-1}-t^{m-1})}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s)\bigr)\,ds \biggr\vert \\& \qquad {} + \biggl\vert \frac{(\lambda_{1}-\lambda_{2})((t+\delta )^{m-1}-t^{m-1})}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}} \int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma(\alpha )}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \biggr\vert \\& \quad \leq \int_{t}^{t+\delta}\frac{(t+\delta-s)^{\alpha-1}}{\Gamma (\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\& \qquad {} + \int_{0}^{t}\frac{((t+\delta-s)^{\alpha-1}-(t-s)^{\alpha -1})}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\& \qquad {} + \frac{|1-\lambda_{1}|((t+\delta)^{m-1}-t^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\& \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|((t+\delta )^{m-1}-t^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|} \int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma(\alpha )}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\& \quad \leq \int_{t}^{t+\delta}\frac{(t+\delta-s)^{\alpha-1}}{\Gamma (\alpha)}h(s) \,ds+\int_{0}^{t}\frac{((t+\delta-s)^{\alpha -1}-(t-s)^{\alpha-1})}{\Gamma(\alpha)}h(s)\,ds \end{aligned}$$
$$\begin{aligned}& \qquad {} + \frac{|1-\lambda_{1}|((t+\delta)^{m-1}-t^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds \\& \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|((t+\delta )^{m-1}-t^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|} \int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma(\alpha )}h(s)\,ds \\& \quad \leq \frac{1}{\Gamma(\alpha)} \biggl(\int_{t}^{t+\delta}(t+ \delta -s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int _{t}^{t+\delta}\bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {} + \frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{t} \bigl((t+\delta -s)^{\alpha-1}-(t-s)^{\alpha-1}\bigr)^{\frac{1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{t} \bigl(h(s)\bigr)^{\frac{1}{\alpha _{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {} + \frac{|1-\lambda_{1}|((t+\delta)^{m-1}-t^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma (\alpha)} \biggl(\int _{0}^{1}(1-s)^{\frac{\alpha-1}{1-\alpha _{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|((t+\delta )^{m-1}-t^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int _{0}^{\eta}(\eta -s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{\eta} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \quad \leq \frac{1}{\Gamma(\alpha)} \biggl(\int_{t}^{t+\delta}(t+ \delta -s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int _{t}^{t+\delta}\bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {} + \frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{t} \bigl((t+\delta-s)^{\frac {\alpha-1}{1-\alpha_{2}}}-(t-s)^{\frac{\alpha-1}{1-\alpha _{2}}}\bigr)\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{t} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {} + \frac{|1-\lambda_{1}|((t+\delta)^{m-1}-t^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma (\alpha)} \biggl(\int _{0}^{1}(1-s)^{\frac{\alpha-1}{1-\alpha _{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|((t+\delta )^{m-1}-t^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int _{0}^{\eta}(\eta -s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{\eta} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \quad \leq \frac{\|h\|_{L^{\frac{1}{\alpha_{2}}}(J,\mathbb{R}_{+})}}{\Gamma (\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggl[\delta^{\alpha-\alpha_{2}}+\bigl((t+ \delta)^{\frac{\alpha-\alpha _{2}}{1-\alpha_{2}}}-\delta^{\frac{\alpha-\alpha_{2}}{1-\alpha _{2}}}-t^{\frac{\alpha-\alpha_{2}}{1-\alpha_{2}}}\bigr)^{1-\alpha_{2}} \\& \qquad {} + \frac{|1-\lambda_{1}|((t+\delta)^{m-1}-t^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}+\frac{|\lambda _{1}-\lambda_{2}|((t+\delta)^{m-1}-t^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\eta^{\alpha-\alpha _{2}}\biggr] \\& \quad \leq \frac{H}{\Gamma(\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha _{2}})^{1-\alpha_{2}}} \biggl[\delta^{\alpha-\alpha_{2}}+\bigl((t+ \delta)^{\frac{\alpha-\alpha _{2}}{1-\alpha_{2}}}-\delta^{\frac{\alpha-\alpha_{2}}{1-\alpha _{2}}}-t^{\frac{\alpha-\alpha_{2}}{1-\alpha_{2}}}\bigr)^{1-\alpha_{2}} \\& \qquad {} + \frac{(|1-\lambda_{1}|+|\lambda_{1}-\lambda _{2}|)}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|}\bigl((t+\delta)^{m-1}-t^{m-1} \bigr)\biggr], \end{aligned}$$

and in view of Lemma 2.1, we have

$$\begin{aligned}& \bigl\vert {}^{\mathrm{C}}D^{\beta}(Fu) (t+\delta)- {}^{\mathrm{C}}D^{\beta}(Fu) (t)\bigr\vert \\& \quad \leq \int_{t}^{t+\delta}\frac{(t+\delta-s)^{\alpha-\beta -1}}{\Gamma(\alpha-\beta)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\& \qquad {} + \int_{0}^{t}\frac{((t+\delta-s)^{\alpha-\beta-1}-(t-s)^{\alpha -\beta-1})}{\Gamma(\alpha-\beta)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\ & \qquad {} + \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\ & \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s) \bigr)\bigr\vert \,ds\biggr] \\ & \qquad {}\times\frac{\Gamma(m)}{\Gamma(m-\beta-1)}\bigl((t+\delta)^{m-\beta -1}-(t)^{m-\beta-1} \bigr) \\ & \quad \leq \int_{t}^{t+\delta}\frac{(t+\delta-s)^{\alpha-\beta -1}}{\Gamma(\alpha-\beta)}h(s) \,ds+\int_{0}^{t}\frac{((t+\delta -s)^{\alpha-\beta-1}-(t-s)^{\alpha-\beta-1})}{\Gamma(\alpha-\beta )}h(s)\,ds \\ & \qquad {} + \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}h(s)\,ds \\ & \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds\biggr] \\ & \qquad {}\times\frac{\Gamma (m)}{\Gamma(m-\beta-1)}\bigl((t+\delta)^{m-\beta-1}-(t)^{m-\beta-1} \bigr) \\ & \quad \leq \frac{1}{\Gamma(\alpha-\beta)} \biggl(\int_{t}^{t+\delta }(t+ \delta-s)^{\frac{\alpha-\beta-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int _{t}^{t+\delta}\bigl(h(s)\bigr)^{\frac{1}{\alpha _{2}}}\,ds \biggr)^{\alpha_{2}} \\ & \qquad {} + \frac{1}{\Gamma(\alpha-\beta)} \biggl(\int_{0}^{t} \bigl((t+\delta -s)^{\alpha-\beta-1}-(t-s)^{\alpha-\beta-1}\bigr)^{\frac{1}{1-\alpha _{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{t} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\ & \qquad {} + \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \biggl(\int_{0}^{1}(1-s)^{\frac{\alpha -1}{1-\alpha_{2}}} \,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\ & \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \biggl(\int_{0}^{\eta }( \eta-s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha _{2}} \biggl(\int_{0}^{\eta} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}}\biggr] \\ & \qquad {}\times\frac{\Gamma(m)((t+\delta)^{m-\beta-1}-(t)^{m-\beta -1})}{\Gamma(m-\beta-1)\Gamma(\alpha)} \\ & \quad \leq \frac{1}{\Gamma(\alpha-\beta)} \biggl(\int_{t}^{t+\delta }(t+ \delta-s)^{\frac{\alpha-\beta-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int _{t}^{t+\delta}\bigl(h(s)\bigr)^{\frac{1}{\alpha _{2}}}\,ds \biggr)^{\alpha_{2}} \\ & \qquad {} + \frac{1}{\Gamma(\alpha-\beta)} \biggl(\int_{0}^{t} \bigl((t+\delta -s)^{\frac{\alpha-\beta-1}{1-\alpha_{2}}}-(t-s)^{\frac{\alpha-\beta -1}{1-\alpha_{2}}}\bigr)\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{t} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\ & \qquad {} + \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \biggl(\int_{0}^{1}(1-s)^{\frac{\alpha -1}{1-\alpha_{2}}} \,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\ & \qquad {} + \frac{|\lambda_{1}-\lambda_{2}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \biggl(\int_{0}^{\eta }( \eta-s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha _{2}} \biggl(\int_{0}^{\eta} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}}\biggr] \\ & \qquad {}\times\frac{\Gamma(m)((t+\delta)^{m-\beta-1}-(t)^{m-\beta -1})}{\Gamma(m-\beta-1)\Gamma(\alpha)} \\ & \quad \leq H\biggl[\frac{\delta^{\alpha-\beta-\alpha_{2}}}{\Gamma (\alpha-\beta)(\frac{\alpha-\beta-\alpha_{2}}{1-\alpha _{2}})^{1-\alpha_{2}}}+\frac{((t+\delta)^{\frac{\alpha-\beta-\alpha _{2}}{1-\alpha_{2}}}-\delta^{\frac{\alpha-\beta-\alpha_{2}}{1-\alpha _{2}}}-t^{\frac{\alpha-\beta-\alpha_{2}}{1-\alpha_{2}}})^{1-\alpha _{2}}}{\Gamma(\alpha-\beta)(\frac{\alpha-\beta-\alpha_{2}}{1-\alpha _{2}})^{1-\alpha_{2}}} \\ & \qquad {} + \frac{|1-\lambda_{1}|+|\lambda_{1}-\lambda _{2}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\frac {\Gamma(m)((t+\delta)^{m-\beta-1}-(t)^{m-\beta-1})}{\Gamma(m-\beta -1)\Gamma(\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha _{2}}}\biggr]. \end{aligned}$$

Hence, we get

$$\begin{aligned}& \bigl\Vert (Fu) (t+\delta)-(Fu) (t)\bigr\Vert _{\mathbb{X}} \\& \quad \leq \frac{H}{\Gamma (\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggl[\delta^{\alpha-\alpha_{2}}+\bigl((t+ \delta)^{\frac{\alpha-\alpha _{2}}{1-\alpha_{2}}}-\delta^{\frac{\alpha-\alpha_{2}}{1-\alpha _{2}}}-t^{\frac{\alpha-\alpha_{2}}{1-\alpha_{2}}}\bigr)^{1-\alpha_{2}} \\& \qquad {} + \frac{(|1-\lambda_{1}|+|\lambda_{1}-\lambda _{2}|)}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|}\bigl((t+\delta)^{m-1}-t^{m-1} \bigr)\biggr] \\& \qquad {} + H\biggl[\frac{\delta^{\alpha-\beta-\alpha_{2}}+((t+\delta )^{\frac{\alpha-\beta-\alpha_{2}}{1-\alpha_{2}}}-\delta^{\frac {\alpha-\beta-\alpha_{2}}{1-\alpha_{2}}}-t^{\frac{\alpha-\beta -\alpha_{2}}{1-\alpha_{2}}})^{1-\alpha_{2}}}{\Gamma(\alpha-\beta)(\frac {\alpha-\beta-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \\& \qquad {} + \frac{|1-\lambda_{1}|+|\lambda_{1}-\lambda_{2}|}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\frac{\Gamma (m)((t+\delta)^{m-\beta-1}-(t)^{m-\beta-1})}{\Gamma(m-\beta -1)\Gamma(\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha _{2}}}\biggr]. \end{aligned}$$

It is obvious that the right-hand side of the above inequality tends to zero as \(\delta\to0\). Therefore, F is continuous on J. Moreover, for \(u\in B_{r}\) and all \(t\in J\), we get

$$\begin{aligned}& \bigl\vert (Fu) (t)\bigr\vert \\ & \quad \leq \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}_{t}u(s) \bigr)\bigr\vert \,ds \\& \qquad {}+\biggl\vert \frac{\lambda_{1}\eta^{m-1}+(1-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \int_{0}^{1} \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha )}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}_{t}u(s) \bigr)\bigr\vert \,ds \\& \qquad {}+\biggl\vert \frac{\lambda_{1}+(\lambda_{2}-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma (\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}_{t}u(s) \bigr)\bigr\vert \,ds \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds + \frac{|\lambda_{1}\eta^{m-1}|+|(1-\lambda_{1})t^{m-1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds \\& \qquad {}+\frac{|\lambda_{1}|+|(\lambda_{2}-\lambda _{1})t^{m-1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|} \int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma(\alpha )}h(s)\,ds \\& \quad \leq \frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{t}(t-s)^{\frac {\alpha-1}{1-\alpha_{2}}} \,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{t} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {}+\frac{|\lambda_{1}||\eta^{m-1}|+|1-\lambda _{1}||t^{m-1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{1}(1-s)^{\frac {\alpha-1}{1-\alpha_{2}}} \,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {}+\frac{|\lambda_{1}|+|\lambda_{2}-\lambda _{1}||t^{m-1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{\eta}( \eta -s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int _{0}^{\eta}\bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \quad \leq \frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{t}(t-s)^{\frac {\alpha-1}{1-\alpha_{2}}} \,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {}+\frac{|\lambda_{1}|+|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{1}(1-s)^{\frac{\alpha-1}{1-\alpha_{2}}} \,ds \biggr)^{1-\alpha _{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha _{2}} \\& \qquad {}+\frac{|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma (\alpha)} \biggl(\int_{0}^{\eta}( \eta-s)^{\frac{\alpha-1}{1-\alpha _{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}} \\& \quad \leq \frac{\|h\|_{L^{\frac{1}{\alpha_{2}}}(J,\mathbb{R}_{+})}}{\Gamma (\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggl(t^{\alpha-\alpha_{2}}+\frac{|\lambda_{1}|+|1-\lambda _{1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}+ \frac {(|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|)\eta^{\alpha-\alpha _{2}}}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \biggr) \\& \quad \leq \frac{H}{\Gamma(\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha _{2}})^{1-\alpha_{2}}} \biggl(1+\frac{2|\lambda_{1}|+|1-\lambda _{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \biggr)=\frac{H(1+\Lambda_{1})}{\Gamma (\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}}. \end{aligned}$$

In view of Lemma 2.1, we have

$$\begin{aligned}& \bigl|{}^{\mathrm{C}}D^{\beta}(Fu) (t)\bigr| \\& \quad \leq \int_{0}^{t} \frac{(t-s)^{\alpha-\beta -1}}{\Gamma(\alpha-\beta)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\& \qquad {}+\biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\& \qquad {}+\frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s) \bigr)\bigr\vert \,ds\biggr] {}^{\mathrm{C}}D^{\beta}t^{m-1} \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-\beta-1}}{\Gamma(\alpha -\beta)}h(s)\,ds+ \biggl[\frac{|1-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds \\& \qquad {}+\frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}h(s)\,ds\biggr]\frac{\Gamma (m)t^{m-\beta-1}}{\Gamma{(m-\beta)}} \\& \quad \leq \frac{1}{\Gamma(\alpha-\beta)} \biggl(\int_{0}^{t}(t-s)^{\frac{\alpha-\beta-1}{1-\alpha_{2}}} \,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac{1}{\alpha _{2}}}\,ds \biggr)^{\alpha_{2}} \\& \qquad {}+\biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int _{0}^{1}(1-s)^{\frac{\alpha-1}{1-\alpha_{2}}}\,ds \biggr)^{1-\alpha _{2}} \biggl(\int_{0}^{1} \bigl(h(s)\bigr)^{\frac{1}{\alpha_{2}}}\,ds \biggr)^{\alpha _{2}} \\& \qquad {}+\frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma (\alpha)} \biggl(\int_{0}^{\eta}( \eta-s)^{\frac{\alpha-1}{1-\alpha _{2}}}\,ds \biggr)^{1-\alpha_{2}} \biggl(\int_{0}^{\eta} \bigl(h(s)\bigr)^{\frac {1}{\alpha_{2}}}\,ds \biggr)^{\alpha_{2}}\biggr] \\& \qquad {}\times \frac{\Gamma (m)t^{m-\beta-1}}{\Gamma(m-\beta)} \\& \quad \leq H \biggl[\frac{1}{\Gamma(\alpha-\beta)(\frac{\alpha-\beta -\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}}+\frac{(|1-\lambda _{1}|+|\lambda_{2}-\lambda_{1}|)\Gamma(m)}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|\Gamma(m-\beta)\Gamma (\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggr] \\& \quad = H \biggl(\frac{1}{\Gamma(\alpha-\beta)(\frac{\alpha-\beta -\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}}+\frac{\Lambda_{2}}{\Gamma (\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggr). \end{aligned}$$

Therefore,

$$\|Fu\|_{\mathbb{X}}\leq H \biggl(\frac{1}{\Gamma(\alpha-\beta )(\frac{\alpha-\beta-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}}+\frac {1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha)(\frac{\alpha-\alpha _{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggr)\leq r. $$

Notice that \((Fu)(t)\) and \({}^{\mathrm{C}}D^{\beta}(Fu)(t)\) are continuous on J. Thus, we can conclude that for all \(u\in B_{r}\), \(Fu\in B_{r}\), i.e., \(F:B_{r}\rightarrow B_{r}\).

Step 2. F is a contraction mapping on \(B_{r}\).

For \(u,v\in B_{r}\) and any \(t\in J\), using (H2) and Hölder’s inequality, we get

$$\begin{aligned}& \bigl\vert (Fu) (t)-(Fv) (t)\bigr\vert \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)-f \bigl(s,v(s),{}^{\mathrm{C}}D^{\beta}v(s)\bigr)\bigr\vert \,ds \\& \qquad {} + \biggl\vert \frac{\lambda_{1}\eta^{m-1}+(1-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \\& \qquad {}\times\int _{0}^{1}\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha )}\bigl\vert f \bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)-f\bigl(s,v(s),{}^{\mathrm{C}}D^{\beta }v(s) \bigr)\bigr\vert \,ds \\& \qquad {} + \biggl\vert \frac{\lambda_{1}+(\lambda_{2}-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \\& \qquad {}\times\int _{0}^{\eta}\frac{(\eta-s)^{\alpha-1}}{\Gamma (\alpha)}\bigl\vert f \bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)-f\bigl(s,v(s),{}^{\mathrm{C}}D^{\beta }v(s) \bigr)\bigr\vert \,ds \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}m(s) \bigl(\bigl\vert u(s)-v(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s)-{}^{\mathrm{C}}D^{\beta}v(s) \bigr\vert \bigr)\,ds \\& \qquad {} + \frac{|\lambda_{1}\eta^{m-1}|+|(1-\lambda _{1})t^{m-1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|} \\& \qquad {}\times\int_{0}^{1} \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha )}m(s) \bigl(\bigl\vert u(s)-v(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s)-{}^{\mathrm{C}}D^{\beta}v(s)\bigr\vert \bigr)\,ds \\& \qquad {} + \frac{|\lambda_{1}+|(\lambda_{2}-\lambda_{1})t^{m-1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \\& \qquad {}\times\int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}m(s) \bigl(\bigl\vert u(s)-v(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta }u(s)-{}^{\mathrm{C}}D^{\beta}v(s)\bigr\vert \bigr)\,ds \\& \quad \leq \biggl[\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}m(s)\,ds +\frac{|\lambda_{1}|+|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}m(s)\,ds \\& \qquad {}+\frac{|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}m(s)\,ds \biggr]\|u-v\|_{\mathbb {X}} \\& \quad \leq \biggl[\frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{t}(t-s)^{\frac{\alpha-1}{1-\alpha_{1}}} \,ds \biggr)^{1-\alpha _{1}} \biggl(\int_{0}^{1} \bigl(m(s)\bigr)^{\frac{1}{\alpha_{1}}}\,ds \biggr)^{\alpha _{1}} \\& \qquad {}+ \frac{|\lambda_{1}|+|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int_{0}^{1}(1-s)^{\frac{\alpha-1}{1-\alpha_{1}}} \,ds \biggr)^{1-\alpha _{1}} \biggl(\int_{0}^{1} \bigl(m(s)\bigr)^{\frac{1}{\alpha_{1}}}\,ds \biggr)^{\alpha _{1}} \\& \qquad {}+ \frac{|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma (\alpha)} \biggl(\int_{0}^{\eta}( \eta-s)^{\frac{\alpha-1}{1-\alpha _{1}}}\,ds \biggr)^{1-\alpha_{1}} \biggl(\int_{0}^{\eta} \bigl(m(s)\bigr)^{\frac {1}{\alpha_{1}}}\,ds \biggr)^{\alpha_{1}}\biggr] \\& \qquad {}\times\|u-v \|_{\mathbb{X}} \\& \quad \leq \frac{\|m\|_{L^{\frac{1}{\alpha_{1}}}(J,\mathbb{R}_{+})}}{\Gamma (\alpha)(\frac{\alpha-\alpha_{1}}{1-\alpha_{1}})^{1-\alpha_{1}}} \biggl[t^{\alpha-\alpha_{1}}+\frac{|\lambda_{1}|+|1-\lambda _{1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}+ \frac {(|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|)\eta^{\alpha-\alpha _{1}}}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \biggr] \\& \qquad {}\times\|u-v\|_{\mathbb{X}} \\& \quad \leq \frac{M}{\Gamma(\alpha)(\frac{\alpha-\alpha_{1}}{1-\alpha _{1}})^{1-\alpha_{1}}} \biggl[1+\frac{2|\lambda_{1}|+|1-\lambda _{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \biggr]\|u-v \|_{\mathbb{X}} \\& \quad = \frac{M(1+\Lambda_{1})}{\Gamma(\alpha)(\frac{\alpha-\alpha _{1}}{1-\alpha_{1}})^{1-\alpha_{1}}}\|u-v\|_{\mathbb{X}}. \end{aligned}$$

Similarly, we can get

$$\begin{aligned}& \bigl\vert {}^{\mathrm{C}}D^{\beta}(Fu) (t)-{}^{\mathrm{C}}D^{\beta}(Fv) (t)\bigr\vert \\& \quad \leq\int_{0}^{t}\frac {(t-s)^{\alpha-\beta-1}}{\Gamma(\alpha-\beta)} \bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)-f \bigl(s,v(s),{}^{\mathrm{C}}D^{\beta}v(s)\bigr)\bigr\vert \,ds \\& \qquad {}+ \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \\& \qquad {}\times \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s) \bigr)-f\bigl(s,v(s),{}^{\mathrm{C}}D^{\beta}v(s)\bigr)\bigr\vert \,ds \\& \qquad {}+ \frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \\& \qquad {}\times\int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s) \bigr)-f\bigl(s,v(s),{}^{\mathrm{C}}D^{\beta}v(s)\bigr)\bigr\vert \,ds \biggr] \frac{\Gamma(m)t^{m-\beta-1}}{\Gamma{(m-\beta)}} \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-\beta-1}}{\Gamma(\alpha -\beta)}m(s) \bigl(\bigl\vert u(s)-v(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s)-{}^{\mathrm{C}}D^{\beta}v(s) \bigr\vert \bigr)\,ds \\& \qquad {}+ \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \\& \qquad {}\times\int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}m(s) \bigl(\bigl\vert u(s)-v(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s)-{}^{\mathrm{C}}D^{\beta }v(s)\bigr\vert \bigr)\,ds \\& \qquad {}+ \frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \\& \qquad {}\times\int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}m(s) \bigl(\bigl\vert u(s)-v(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta }u(s)-{}^{\mathrm{C}}D^{\beta}v(s)\bigr\vert \bigr)\,ds\biggr] \frac{\Gamma(m)t^{m-\beta-1}}{\Gamma{(m-\beta)}} \\& \quad \leq \frac{1}{\Gamma(\alpha-\beta)} \biggl(\int_{0}^{t}(t-s)^{\frac{\alpha-\beta-1}{1-\alpha_{1}}} \,ds \biggr)^{1-\alpha_{1}} \biggl(\int_{0}^{t} \bigl(m(s)\bigr)^{\frac{1}{\alpha _{1}}}\,ds \biggr)^{\alpha_{1}}\|u-v\|_{\mathbb{X}} \\& \qquad {}+ \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma(\alpha)} \biggl(\int _{0}^{1}(1-s)^{\frac{\alpha-1}{1-\alpha_{1}}}\,ds \biggr)^{1-\alpha _{1}} \biggl(\int_{0}^{1} \bigl(m(s)\bigr)^{\frac{1}{\alpha_{1}}}\,ds \biggr)^{\alpha _{1}} \\& \qquad {}+ \frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|}\frac{1}{\Gamma (\alpha)} \biggl(\int_{0}^{\eta}( \eta-s)^{\frac{\alpha-1}{1-\alpha _{1}}}\,ds \biggr)^{1-\alpha_{1}} \biggl(\int_{0}^{\eta} \bigl(m(s)\bigr)^{\frac {1}{\alpha_{1}}}\,ds \biggr)^{\alpha_{1}}\biggr] \\& \qquad {}\times\frac{\Gamma(m)}{\Gamma {(m-\beta)}}\|u-v\|_{\mathbb{X}} \\& \quad \leq \biggl[\frac{1}{\Gamma(\alpha-\beta)(\frac{\alpha-\beta -\alpha_{1}}{1-\alpha_{1}})^{1-\alpha_{1}}}+\frac{(|1-\lambda _{1}|+|\lambda_{2}-\lambda_{1}|)\Gamma(m)}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|\Gamma(m-\beta)\Gamma (\alpha)(\frac{\alpha-\alpha_{1}}{1-\alpha_{1}})^{1-\alpha_{1}}} \biggr] \\& \qquad {}\times M\|u-v \|_{\mathbb{X}} \\& \quad = \biggl(\frac{1}{\Gamma(\alpha-\beta)(\frac{\alpha-\beta -\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}}+\frac{\Lambda_{2}}{\Gamma (\alpha)(\frac{\alpha-\alpha_{2}}{1-\alpha_{2}})^{1-\alpha_{2}}} \biggr)M\|u-v \|_{\mathbb{X}}. \end{aligned}$$

So we obtain \(\|Fu-Fv\|_{\mathbb{X}}\leq\Omega\|u-v\|_{\mathbb {X}}\). Thus, F is a contraction due to condition (3.1). By the Banach contraction principle, we can deduce that F has a unique fixed point which is just the unique solution of the fractional boundary value problem (1.1). □

Our second result is based on the well-known Schaefer’s fixed point theorem. We make the following assumptions:

  1. (H4)

    \(f:J\times\mathbb{R}\times\mathbb{R}\rightarrow\mathbb {R}\) is continuous.

  2. (H5)

    There exists a constant \(L>0\) such that

    $$\bigl\Vert f(t,u,v)\bigr\Vert \leq L\bigl(1+\vert u\vert +|v|\bigr) $$

    for each \(t\in J\) and all \(u,v\in\mathbb{X}\), with

    $$L \biggl(\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{1+\Lambda _{1}+\Lambda_{2}}{\Gamma(\alpha+1)} \biggr)\neq1. $$

Theorem 3.2

Assume that (H4) and (H5) hold and there exists a constant \(M^{*}>0\) such that

$$M^{*}\geq\frac{L (\frac{1}{\Gamma(\alpha-\beta+1)}+\frac {1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha+1)} )}{1-L (\frac {1}{\Gamma(\alpha-\beta+1)}+\frac{1+\Lambda_{1}+\Lambda_{2}}{\Gamma (\alpha+1)} )}. $$

Then the fractional boundary value problem (1.1) has at least one solution on J.

Proof

Transform the fractional boundary value problem (1.1) into a fixed point problem. Consider the operator \(F: C(J,\mathbb{X})\to C(J,\mathbb{X})\) defined as (3.2). It is obvious that F is well defined due to (H4).

For the sake of convenience, we subdivide the proof into several steps.

Step 1. F is continuous.

Let \(\{u_{n}\}\) be a sequence such that \(u_{n}\to u\) in \(C(J,\mathbb{X})\). Then, for each \(t\in J\), we have

$$\begin{aligned}& \bigl\vert (Fu_{n}) (t)-(Fu) (t)\bigr\vert \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \bigl\vert f\bigl(s,u_{n}(s),{}^{\mathrm{C}}D^{\beta}u_{n}(s) \bigr)-f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr) \bigr\vert \,ds \\& \qquad {}+ \biggl\vert \frac{\lambda_{1}\eta^{m-1}+(1-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \\& \qquad {}\times\int _{0}^{1}\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha )}\bigl\vert f \bigl(s,u_{n}(s),{}^{\mathrm{C}}D^{\beta}u_{n}(s) \bigr)-f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s)\bigr)\bigr\vert \,ds \\& \qquad {}+ \biggl\vert \frac{\lambda_{1}+(\lambda_{2}-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \\& \qquad {}\times \int _{0}^{\eta}\frac{(\eta-s)^{\alpha-1}}{\Gamma (\alpha)}\bigl\vert f \bigl(s,u_{n}(s),{}^{\mathrm{C}}D^{\beta}u_{n}(s) \bigr)-f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s)\bigr)\bigr\vert \,ds \\& \quad \leq \biggl[\int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )} \,ds+\frac{|\lambda_{1}|+|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}\,ds \\& \qquad {}+ \frac{|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\,ds\biggr] \\& \qquad {}\times\sup_{t\in J} \bigl\vert f \bigl(s,u_{n}(t),{}^{\mathrm{C}}D^{\beta}u_{n}(t) \bigr)-f\bigl(s,u(t),{}^{\mathrm{C}}D^{\beta}u(t)\bigr)\bigr\vert \\& \quad \leq \biggl(\frac{1+\Lambda_{1}}{\Gamma(\alpha+1)} \biggr)\sup_{t\in J}\bigl\vert f\bigl(s,u_{n}(t),{}^{\mathrm{C}}D^{\beta}u_{n}(t) \bigr)-f\bigl(s,u(t),{}^{\mathrm{C}}D^{\beta }u(t)\bigr)\bigr\vert . \end{aligned}$$

Also, we can get

$$\begin{aligned}& \bigl\vert {}^{\mathrm{C}}D^{\beta}(Fu_{n}) (t)-{}^{\mathrm{C}}D^{\beta}(Fu) (t)\bigr\vert \\& \quad \leq\int_{0}^{t}\frac{(t-s)^{\alpha-\beta-1}}{\Gamma(\alpha-\beta)} \bigl\vert f\bigl(s,u_{n}(s),{}^{\mathrm{C}}D^{\beta}u_{n}(s) \bigr)-f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\& \qquad {}+ \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \\& \qquad {}\times\int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u_{n}(s),{}^{\mathrm{C}}D^{\beta }u_{n}(s) \bigr)-f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\& \qquad {}+ \frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \\& \qquad {}\times\int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u_{n}(s),{}^{\mathrm{C}}D^{\beta }u_{n}(s) \bigr)-f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \biggr] \frac{\Gamma(m)t^{m-\beta-1}}{\Gamma{(m-\beta)}} \\& \quad \leq \biggl[\int_{0}^{t} \frac{(t-s)^{\alpha-\beta-1}}{\Gamma (\alpha-\beta)}\,ds+\frac{\Gamma(m)}{\Gamma{(m-\beta)}}\biggl(\frac {|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}|} \int _{0}^{1}\frac{(1-s)^{\alpha-1}}{\Gamma(\alpha )}\,ds \\& \qquad {}+ \frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\,ds\biggr)\biggr] \\& \qquad {}\times\sup_{t\in J}\bigl\vert f \bigl(s,u_{n}(t),{}^{\mathrm{C}}D^{\beta}u_{n}(t) \bigr)-f\bigl(s,u(t),{}^{\mathrm{C}}D^{\beta }u(t)\bigr)\bigr\vert \\& \quad \leq \biggl(\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{\Lambda _{2}}{\Gamma(\alpha+1)} \biggr)\sup _{t\in J} \bigl\vert f\bigl(s,u_{n}(t),{}^{\mathrm{C}}D^{\beta}u_{n}(t) \bigr)-f\bigl(s,u(t),{}^{\mathrm{C}}D^{\beta}u(t)\bigr)\bigr\vert . \end{aligned}$$

Thus, we get

$$\begin{aligned}& \bigl\Vert (Fu_{n}) (t)-(Fu) (t)\bigr\Vert _{\mathbb{X}} \\& \quad \leq \biggl(\frac{1}{\Gamma(\alpha -\beta+1)}+\frac{1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha+1)} \biggr) {\sup_{t\in J}} \bigl\vert f\bigl(s,u_{n}(t),{}^{\mathrm{C}}D^{\beta }u_{n}(t) \bigr)-f\bigl(s,u(t),{}^{\mathrm{C}}D^{\beta}u(t)\bigr)\bigr\vert . \end{aligned}$$

Since f is continuous, then \(\|(Fu_{n})(t)-(Fu)(t)\|_{\mathbb{X}}\to 0\) as \(n\to\infty\).

Step 2. F maps bounded sets into bounded sets in \(C(J,\mathbb{X})\).

Indeed, it is enough to show that for any \(r'>0\), there exists \(l>0\) such that for each \(u\in B_{r'}=\{u\in C(J,\mathbb{X}):\|u\|_{\mathbb{X}}< r'\}\), we have \(\|Fu\|_{\mathbb{X}}\leq l\).

Then, for each \(t\in J\) and (H5), we have

$$\begin{aligned} \bigl\vert (Fu) (t)\bigr\vert \leq&\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\ &{}+\biggl\vert \frac{\lambda_{1}\eta^{m-1}+(1-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \int_{0}^{1} \frac{(1-s)^{\alpha-1}}{\Gamma(\alpha )}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\ &{}+\biggl\vert \frac{\lambda_{1}+(\lambda_{2}-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\biggr\vert \int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma (\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\ \leq&\int_{0}^{t}\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha )}L\bigl(1+ \bigl\vert u(s)\bigr\vert +\bigl|{}^{\mathrm{C}}D^{\beta}u(s)\bigr|\bigr)\,ds \\ &{}+\frac{|\lambda_{1}|+|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s)\bigr\vert \bigr)\,ds \\ &{}+\frac{|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta }u(s)\bigr\vert \bigr)\,ds \\ \leq&\frac{L(1+\Lambda_{1})}{\Gamma(\alpha+1)}\bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr). \end{aligned}$$

Also, we can get

$$\begin{aligned}& \bigl\vert \bigl({}^{\mathrm{C}}D^{\beta}Fu\bigr) (t)\bigr\vert \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-\beta -1}}{\Gamma(\alpha-\beta)}\bigl\vert f \bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr) \bigr\vert \,ds \\& \qquad {}+\biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr) \bigr\vert \,ds \\& \qquad {}+\frac{|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s) \bigr)\bigr\vert \,ds\biggr]\frac{\Gamma(m)t^{m-\beta-1}}{\Gamma {(m-\beta)}} \\& \quad \leq \int_{0}^{t}\frac{(t-s)^{\alpha-\beta-1}}{\Gamma(\alpha -\beta)}L\bigl(1+ \bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s) \bigr\vert \bigr)\,ds \\& \qquad {}+\biggl[\frac{|\lambda_{1}|+|1-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta }u(s)\bigr\vert \bigr)\,ds \\& \qquad {}+\frac{|\lambda_{1}|+|\lambda_{2}-\lambda_{1}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta }u(s)\bigr\vert \bigr)\,ds\biggr] \frac{\Gamma(m)}{\Gamma{(m-\beta)}} \\& \quad \leq L \biggl(\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{\Lambda _{2}}{\Gamma(\alpha+1)} \biggr) \bigl(1+\Vert u \Vert _{\mathbb{X}}\bigr). \end{aligned}$$

Hence, we get

$$\bigl\Vert (Fu) (t)\bigr\Vert _{\mathbb{X}}\leq L \biggl( \frac{1}{\Gamma(\alpha-\beta +1)}+\frac{1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha+1)} \biggr) \bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr):=l. $$

Step 3. F maps bounded sets into equicontinuous sets of \(C(J,\mathbb{X})\).

For \(u\in B_{r'}\) and \(t_{1},t_{2}\in J\) such that \(t_{1}< t_{2}\). Then, using (H5), we have

$$\begin{aligned}& \bigl\vert (Fu) (t_{2})-(Fu) (t_{1})\bigr\vert \\& \quad \leq \biggl\vert \int_{t_{1}}^{t_{2}} \frac{(t_{2}-s)^{\alpha-1}}{\Gamma (\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \biggr\vert \\& \qquad {}+ \biggl\vert \int_{0}^{t_{1}} \frac{((t_{2}-s)^{\alpha -1}-(t_{1}-s)^{\alpha-1})}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s)\bigr)\,ds \biggr\vert \\& \qquad {}+ \biggl\vert \frac{(1-\lambda_{1})(t_{2}^{m-1}-t_{1}^{m-1})}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s)\bigr)\,ds \biggr\vert \\& \qquad {}+ \biggl\vert \frac{(\lambda_{1}-\lambda _{2})(t_{2}^{m-1}-t_{1}^{m-1})}{(\lambda_{1}-1)+(\lambda_{2}-\lambda _{1})\eta^{m-1}} \int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma (\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \biggr\vert \\& \quad \leq \int_{t_{1}}^{t_{2}}\frac{(t_{2}-s)^{\alpha-1}}{\Gamma (\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\& \qquad {} + \int_{0}^{t_{1}}\frac{((t_{2}-s)^{\alpha-1}-(t_{1}-s)^{\alpha -1})}{\Gamma(\alpha)} \bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\& \qquad {} + \frac{|(1-\lambda_{1})(t_{2}^{m-1}-t_{1}^{m-1})|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\& \qquad {}+ \frac{|(\lambda_{1}-\lambda _{2})(t_{2}^{m-1}-t_{1}^{m-1})|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac{(\eta -s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\& \quad \leq \int_{t_{1}}^{t_{2}}\frac{(t_{2}-s)^{\alpha-1}}{\Gamma (\alpha)}L \bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s) \bigr\vert \bigr)\,ds \\& \qquad {} + \int_{0}^{t_{1}}\frac{((t_{2}-s)^{\alpha-1}-(t_{1}-s)^{\alpha -1})}{\Gamma(\alpha)}L \bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s) \bigr\vert \bigr)\,ds \\& \qquad {}+ \frac{|1-\lambda_{1}|(t_{2}^{m-1}-t_{1}^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta }u(s)\bigr\vert \bigr)\,ds \\& \qquad {} + \frac{|\lambda_{1}-\lambda _{2}|(t_{2}^{m-1}-t_{1}^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda _{1})\eta^{m-1}|} \int_{0}^{\eta} \frac{(\eta-s)^{\alpha -1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s)\bigr\vert \bigr)\,ds \\& \quad \leq \biggl[\int_{t_{1}}^{t_{2}}(t_{2}-s)^{\alpha-1} \,ds+\int_{0}^{t_{1}}\bigl((t_{2}-s)^{\alpha-1}-(t_{1}-s)^{\alpha-1} \bigr)\,ds \\ & \qquad {} + \frac{|1-\lambda_{1}|(t_{2}^{m-1}-t_{1}^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1}(1-s)^{\alpha-1} \,ds \\ & \qquad {} + \frac{|\lambda_{1}-\lambda _{2}|(t_{2}^{m-1}-t_{1}^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda _{1})\eta^{m-1}|} \int_{0}^{\eta}( \eta-s)^{\alpha-1}\,ds\biggr]\frac{L}{\Gamma(\alpha)}\bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr) \\ & \quad = \biggl[(t_{2}-t_{1})^{\alpha}+ \bigl(t_{1}^{\alpha}-t_{2}^{\alpha } \bigr)-(t_{2}-t_{1})^{\alpha}+\frac{|1-\lambda _{1}|(t_{2}^{m-1}-t_{1}^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda _{1})\eta^{m-1}|} \\ & \qquad {} + \frac{|\lambda_{1}-\lambda _{2}|(t_{2}^{m-1}-t_{1}^{m-1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda _{1})\eta^{m-1}|}\eta^{\alpha}\biggr]\frac{L}{\Gamma(\alpha +1)} \bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr) \\ & \quad \leq \biggl[\bigl(t_{1}^{\alpha}-t_{2}^{\alpha} \bigr)+\frac{(|1-\lambda _{1}|+|\lambda_{1}-\lambda_{2}|)(t_{2}^{m-1}-t_{1}^{m-1})}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \biggr]\frac {L}{\Gamma(\alpha+1)}\bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr). \end{aligned}$$

Also, we can get

$$\begin{aligned}& \bigl\vert {}^{\mathrm{C}}D^{\beta}(Fu) (t_{2})-{}^{\mathrm{C}}D^{\beta}(Fu) (t_{1})\bigr\vert \\ & \quad \leq \int_{t_{1}}^{t_{2}}\frac{(t_{2}-s)^{\alpha-\beta -1}}{\Gamma(\alpha-\beta)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\ & \qquad {}+ \int_{0}^{t_{1}}\frac{((t_{2}-s)^{\alpha-\beta -1}-(t_{1}-s)^{\alpha-\beta-1})}{\Gamma(\alpha-\beta )}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\bigr\vert \,ds \\ & \qquad {}+ \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s) \bigr)\bigr\vert \,ds \\ & \qquad {}+ \frac{|\lambda_{1}-\lambda_{2}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}\bigl\vert f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta }u(s) \bigr)\bigr\vert \,ds\biggr] \\ & \qquad {}\times\frac{\Gamma(m)(t_{2}^{m-\beta-1}-t_{1}^{m-\beta -1})}{\Gamma{(m-\beta)}} \\ & \quad \leq \int_{t_{1}}^{t_{2}}\frac{(t_{2}-s)^{\alpha-\beta -1}}{\Gamma(\alpha-\beta)}L \bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s) \bigr\vert \bigr)\,ds \\ & \qquad {}+ \int_{0}^{t_{1}}\frac{((t_{2}-s)^{\alpha-\beta -1}-(t_{1}-s)^{\alpha-\beta-1})}{\Gamma(\alpha-\beta )}L \bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s) \bigr\vert \bigr)\,ds \\ & \qquad {}+ \biggl[\frac{|1-\lambda_{1}|}{|(\lambda_{1}-1)+(\lambda _{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{1} \frac{(1-s)^{\alpha -1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta}u(s)\bigr\vert \bigr)\,ds \\ & \qquad {}+ \frac{|\lambda_{1}-\lambda_{2}|}{|(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|} \int_{0}^{\eta} \frac {(\eta-s)^{\alpha-1}}{\Gamma(\alpha)}L\bigl(1+\bigl\vert u(s)\bigr\vert +\bigl\vert {}^{\mathrm{C}}D^{\beta }u(s)\bigr\vert \bigr)\,ds\biggr] \\ & \qquad {}\times \frac{\Gamma(m)(t_{2}^{m-\beta-1}-t_{1}^{m-\beta -1})}{\Gamma{(m-\beta)}} \\ & \quad \leq \biggl[\frac{(t_{1}^{\alpha-\beta}-t_{2}^{\alpha-\beta })}{\Gamma(\alpha-\beta+1)}+\frac{(|1-\lambda_{1}|+|\lambda _{1}-\lambda_{2}|)\Gamma(m)(t_{2}^{m-\beta-1}-t_{1}^{m-\beta -1})}{|(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}|\Gamma (m-\beta)\Gamma(\alpha+1)} \biggr] L\bigl(1+ \Vert u\Vert _{\mathbb{X}}\bigr). \end{aligned}$$

Hence, we get

$$\begin{aligned} \begin{aligned} &\bigl\Vert (Fu) (t_{2})-(Fu) (t_{1})\bigr\Vert _{\mathbb{X}} \\ &\quad \leq \biggl[\frac{(t_{1}^{\alpha}-t_{2}^{\alpha})}{\Gamma(\alpha +1)}+\frac{\Lambda_{2}\Gamma(m-\beta)(t_{2}^{m-1}-t_{1}^{m-1})}{\Gamma (\alpha+1)\Gamma(m)}+\frac{(t_{1}^{\alpha-\beta}-t_{2}^{\alpha-\beta })}{\Gamma(\alpha-\beta+1)}+ \frac{\Lambda_{2}(t_{2}^{m-\beta -1}-t_{1}^{m-\beta-1})}{\Gamma(\alpha+1)} \biggr] \\ &\qquad {}\times L\bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr). \end{aligned} \end{aligned}$$

Now, using the fact that the functions \(t_{1}^{\alpha}-t_{2}^{\alpha }\), \(t_{2}^{m-1}-t_{1}^{m-1}\), \(t_{1}^{\alpha-\beta}-t_{2}^{\alpha -\beta}\), and \(t_{2}^{m-\beta-1}-t_{1}^{m-\beta-1}\) are uniformly continuous on J, we conclude that the right-hand side of the above inequality tends to zero as \(t_{2}\to t_{1}\), therefore F is equicontinuous. As a consequence of Steps 1-3 together with the Arzela-Ascoli theorem, we can conclude that F is continuous and completely continuous.

Step 4. A priori bounds.

Now it remains to show that the set \(E(F)=\{u\in C(J,\mathbb{X}): u=\lambda Fu\mbox{ for some }\lambda\in(0,1)\}\) is bounded. Let \(u\in E(F)\), then \(u = \lambda Fu\) for some \(\lambda\in(0,1)\). Thus, for each \(t\in J\), we have

$$\begin{aligned} u(t) =&\lambda\biggl[\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma (\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \\ &{}+\frac{\lambda_{1}\eta^{m-1}+(1-\lambda_{1})t^{m-1}}{(\lambda _{1}-1)+(\lambda_{2}-\lambda_{1})\eta^{m-1}}\int_{0}^{1} \frac {(1-s)^{\alpha-1}}{\Gamma(\alpha)}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \\ &{}-\frac{\lambda_{1}+(\lambda_{2}-\lambda _{1})t^{m-1}}{(\lambda_{1}-1)+(\lambda_{2}-\lambda_{1})\eta ^{m-1}}\int_{0}^{\eta} \frac{(\eta-s)^{\alpha-1}}{\Gamma(\alpha )}f\bigl(s,u(s),{}^{\mathrm{C}}D^{\beta}u(s)\bigr)\,ds \biggr]. \end{aligned}$$

For each \(t\in J\), we have

$$\bigl\vert u(t)\bigr\vert \leq\frac{L(1+\Lambda_{1})}{\Gamma(\alpha+1)}\bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr) $$

and

$$\bigl\vert {}^{\mathrm{C}}D^{\beta}u(t)\bigr\vert \leq L \biggl( \frac{1}{\Gamma(\alpha-\beta+1)}+\frac {\Lambda_{2}}{\Gamma(\alpha+1)} \biggr) \bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr). $$

Therefore,

$$\|u\|_{\mathbb{X}}\leq L \biggl(\frac{1}{\Gamma(\alpha-\beta +1)}+\frac{1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha+1)} \biggr) \bigl(1+\Vert u\Vert _{\mathbb{X}}\bigr). $$

Thus, for every \(t\in J\), we have

$$\|u\|_{\mathbb{X}}\leq\frac{L (\frac{1}{\Gamma(\alpha-\beta +1)}+\frac{1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha+1)} )}{1-L (\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{1+\Lambda _{1}+\Lambda_{2}}{\Gamma(\alpha+1)} )}\leq M^{*}. $$

This shows that the set \(E(F)\) is bounded.

As a consequence of Schaefer’s fixed point theorem, we deduce that F has a fixed point which is a solution of the fractional boundary value problem (1.1). The proof is complete. □

4 Example

In this section, we give two examples to illustrate the usefulness of our main results.

Example 4.1

Let us consider the following fractional boundary value problem:

$$ \left \{ \textstyle\begin{array}{l} {}^{\mathrm{C}}D^{\frac{5}{2}}x(t)=\frac{e^{-at}(x(t)+{}^{\mathrm{C}}D^{\frac {1}{2}}x(t))}{(1+9e^{t})(1+x(t)+{}^{\mathrm{C}}D^{\frac{1}{2}}x(t))}, \quad t\in J_{1}:=[0,1], \\ x(0)=\frac{1}{3}x(\frac{1}{5}),\qquad x'(0)=0, \qquad x(1)=\frac{1}{4}x(\frac{1}{5}), \end{array}\displaystyle \right . $$
(4.1)

where \(a>0\) is a constant.

Here, \(m=3\), \(\alpha=\frac{5}{2}\), \(\beta=\frac{1}{2}\), \(\lambda_{1}=\frac {1}{3}\), \(\lambda_{2}=\frac{1}{4}\), and \(\eta=\frac{1}{5}\).

Set

$$f(t,x,y)=\frac{e^{-at}(x+y)}{(1+9e^{t})(1+x+y)}, \quad (t,x,y)\in J_{1}\times [0,\infty) \times[0,\infty). $$

Let \(x_{1}\), \(x_{2}\), \(y_{1}\) and \(y_{2}\in[0,\infty)\) and \(t\in J_{1}\). Then we have

$$\begin{aligned}& \bigl\vert f(t,x_{2},y_{2})-f(t,x_{1},y_{1}) \bigr\vert \\& \quad = \frac{e^{-at}}{1+9e^{t}}\biggl\vert \frac {x_{2}+y_{2}}{1+x_{2}+y_{2}}- \frac{x_{1}+y_{1}}{1+x_{1}+y_{1}}\biggr\vert \\& \quad = \frac {e^{-at}(|x_{2}-x_{1}|+|y_{2}-y_{1}|)}{(1+9e^{t})(1+x_{2}+y_{2})(1+x_{1}+y_{1})} \\& \quad \leq \frac{e^{-at}}{1+9e^{t}}\bigl(\vert x_{2}-x_{1}\vert +|y_{2}-y_{1}|\bigr) \\& \quad \leq \frac{e^{-at}}{10}\bigl(\vert x_{2}-x_{1}\vert +|y_{2}-y_{1}|\bigr). \end{aligned}$$

Obviously, for all \(x,y\in[0,\infty)\) and each \(t\in J_{1}\),

$$ \bigl\vert f(t,x,y)\bigr\vert =\frac{e^{-at}}{1+9e^{t}}\biggl\vert \frac{x+y}{1+x+y}\biggr\vert \leq\frac{e^{-at}}{1+9e^{t}} \leq\frac{e^{-at}}{10}. $$

For \(t\in J_{1}\) and \(b\in(0,\alpha)\), let \(m(t)=h(t)=\frac {e^{-at}}{10}\in L^{\frac{1}{b}}(J_{1},\mathbb{R})\), \(M=\|\frac{e^{-at}}{10}\|_{L^{\frac{1}{b}}(J_{1},\mathbb{R})}\).

Choosing some \(a>0\) large enough and suitable \(b\in(0,\frac{5}{2})\) (\(b=\frac{1}{2}\) say), one can arrive at the following inequality:

$$\Omega= M \biggl[\frac{(1+\Lambda_{1})}{\Gamma(\frac{5}{2})(\frac {\frac{5}{2}-\frac{1}{2}}{1-\frac{1}{2}})^{1-\frac{1}{2}}}+ \biggl(\frac{1}{\Gamma(2)(\frac{2-\frac{1}{2}}{1-\frac{1}{2}})^{1-\frac {1}{2}}}+ \frac{\Lambda_{2}}{\Gamma(\frac{5}{2})(\frac{\frac {5}{2}-\frac{1}{2}}{1-\frac{1}{2}})^{1-\frac{1}{2}}} \biggr) \biggr]< 1, $$

where \(\Lambda_{1}\approx2.0731707\) and \(\Lambda_{2}\approx1.65128707\). Thus all the assumptions in Theorem 3.1 are satisfied, our results can be applied to problem (4.1).

Example 4.2

Let us consider the following fractional boundary value problem:

$$ \left \{ \textstyle\begin{array}{l} {}^{\mathrm{C}}D^{\frac{5}{2}}x(t)=\frac{1}{5+e^{t-1}}(1+x(t)+{}^{\mathrm{C}}D^{\frac {1}{2}}x(t)), \quad t\in J_{1}, \\ x(0)=\frac{1}{3}x(\frac{1}{5}),\qquad x'(0)=0,\qquad x(1)=\frac{1}{4}x(\frac{1}{5}). \end{array}\displaystyle \right . $$
(4.2)

Set

$$f(t,x,y)=\frac{1}{5+e^{t-1}}(1+x+y),\quad (t,x,y)\in J_{1}\times[0, \infty )\times[0,\infty). $$

Let \(x,y\in[0,\infty)\) and \(t\in J_{1}\). Then we have

$$ \bigl\vert f(t,x,y)\bigr\vert = \frac{1}{5+e^{t-1}}\vert 1+x+y\vert \leq \frac{1}{5+e^{t-1}}\bigl(1+\vert x\vert +|y|\bigr) \leq \frac{1}{6}\bigl(1+\vert x\vert +|y|\bigr). $$

According to (H5), \(L=\frac{1}{6}\). Then we have

$$\begin{aligned} L \biggl(\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{1+\Lambda _{1}+\Lambda_{2}}{\Gamma(\alpha+1)} \biggr) =&\frac{1}{6} \times \biggl(\frac{1}{\Gamma(3)}+\frac{1+2.0731707+1.65128707}{\Gamma(\frac {7}{2})} \biggr) \\ \approx&0.3202658\neq1. \end{aligned}$$

Finally, we can get

$$\begin{aligned} \frac{L (\frac{1}{\Gamma(\alpha-\beta+1)}+\frac{1+\Lambda _{1}+\Lambda_{2}}{\Gamma(\alpha+1)} )}{1-L (\frac{1}{\Gamma (\alpha-\beta+1)}+\frac{1+\Lambda_{1}+\Lambda_{2}}{\Gamma(\alpha +1)} )} =&\frac{0.3202658}{1-0.3202658} \\ \approx&0.47116328>0. \end{aligned}$$

This gives that \(M^{*}>0\). Thus all the assumptions in Theorem 3.2 are satisfied, our results can be applied to problem (4.2).