1 Introduction and main result

Consider the following second-order differential equation

$$ (\varphi _{p}(x'))'+a\varphi _{p}(x^{+})-b\varphi _{p}(x^{-})+z(t)f(x)=e(t), $$
(1.1)

where \(\varphi _{p}(s)=|s|^{p-2}s\) with constant \(p>2\). Variable \(x\in \mathbb{R}\), \(t\in \mathbb{R}\), \(x^{+}=max(x,0)\), \(x^{-}=max(-x,0)\). a and b are positive constants (\(a \neq b\)) satisfying \(a^{-\frac{1}{p}}+b^{-\frac{1}{p}}=2\omega ^{-1}\), ω is an irrational number, \(f(x)=o(|x|)\), \(z(t)\) and \(e(t)\) are \(2\pi _{p}\) periodic functions with \(\pi _{p}=\frac{2\pi (p-1)^{\frac{1}{p}}}{psin\frac{\pi}{p}}\).

When \(p=2\), Eq. (1.1) is turned into

$$ x''+ax^{+}-bx^{-}+z(t)f(x)=e(t),\quad \pi _{p}=\pi . $$
(1.2)

Provided that \(z(t)f(x)=0\), \(e(t)=1+\gamma h(t)\) in which \(h(t)\) is a suitable function, investigating the boundedness of solutions to Eq. (1.2) is very complicated. Ortega [1] proves that every solution to Eq. (1.2) is bounded if \(h\in C^{4}(\mathbb{S}^{1})\), where \(\mathbb{S}^{1}=\mathbb{R}/2\pi \mathbb{Z}\), and γ is sufficiently small. Under certain conditions on the initial data, Alonso and Ortega [2] obtain that there exists a function \(e(t)\) to ensure that all solutions to Eq. (1.2) are unbounded. Ambrosio [3] establishes the boundedness to solutions to fractional relativistic Schrödinger equations. A differential inclusion system involving the \(p(t)\)-Laplacian is investigated in [4]. Giacomoni et al. [5] utilize the bifurcation theory to discuss the multiplicity for a strongly singular quasi-linear problem. The asymptotic properties of solutions for a second-order nonlinear discrete equation of the Emden-Fowler type are acquired in [6]. Under appropriate restrictions, Jiao et al. [7] discuss the boundedness of all solutions to Eq. (1.2) (see also [810]).

For \(p\geq 2\), when \(a^{-\frac{1}{p}}+b^{-\frac{1}{p}}=2\omega ^{-1}\), where \(\omega ^{-1}\) is an irrational number, Yang [11] investigates Eq. (1.1) and obtains that all the solution to Eq. (1.1) are bounded under certain assumptions. Liu [12] discusses the bounded condition for Eq. (1.1) provided that f is smooth and \(\lim \limits _{x\rightarrow \pm \infty}f(x)\) is finite. Ma [13] discusses the bounded condition for Eq. (1.1) provided that f is unbounded and \(z(t)=1\).

When \(p=2\), without the assumption that \(\lim \limits _{x\rightarrow \pm \infty}f(x)\) is finite, Zhang [14] has acquired the conditions to ensure that each solution of Eq. (1.1) is bounded. In this work, we will extend the result in [14] to the case \(p>2\) under the following assumptions:

\((A_{1}): z(t), e(t)\in C^{6}(\mathbb{S}^{1})\), where \(\mathbb{S}^{1}=\mathbb{R}/2\pi _{p}\mathbb{Z}\).

\((A_{2})\): If \(f(x)\in C^{6}(\mathbb{R}\setminus \{0\})\cap \mathbb{C}^{0}( \mathbb{\mathbb{R}})\), then there are two positive constants C and \(\frac{1}{p-1}<\gamma <1\), such that \(|x^{k}f^{(k)}(x)|\leq C|x|^{\gamma}\), provided that \(x\in \mathbb{R}\setminus \{0\}\) and \(0\leq k\leq 6\).

\((A_{3})\): There exist positive constants \(\beta _{1}\) and \(\beta _{2}\) such that \(p\beta _{1}>q\beta _{2}>0\), where positive constants p and q satisfy \(\frac{1}{p}+\frac{1}{q}=1\) and

$$\begin{aligned} xf(x)\geq \beta _{1}|x|^{\gamma +1},\ \ x^{2}f'(x)\leq \beta _{2}|x|^{ \gamma +1}, \quad x\in \mathbb{R}\setminus \{0\}. \end{aligned}$$

Here, we mention that condition \((A_{1})\) does not require \(z(t)=1\), namely, condition \((A_{1})\) is different from \(z(t)=1\) in Ma [13]. Now, we state our main conclusion.

Theorem 1.1

Assume that \(p>2\) and \((A_{1})-(A_{3})\) hold and \(\hat{z}=\frac{1}{2\pi _{p}}\int _{0}^{2\pi _{p}}z(t)dt\neq 0\). Then every solution of Eq. (1.1) is bounded, namely, \(\sup \limits _{t\in \mathbb{R}}(|x(t)|+|x'(t)|)<\infty \).

We set \(F(x)=\int _{0}^{x}f(s)ds\). In this work, we utilize c and C to denote any positive constants (not concerning their quantity). k, l, m and n are nonnegative integers.

The structure of this work is the following: Sect. 2 presents action-angle variables, exchanging time and angle variables, and several lemmas. Section 3 provides the proof of Theorem 1.1.

2 Preliminaries

In this part, we provide several lemmas that help prove Theorem 1.1. Throughout Sect. 2, we assume that the hypotheses of Theorem 1.1 always hold.

2.1 Action-angle coordinates

Let \(x'=-\omega \varphi _{q}(y) \), then \(y=-\omega ^{1-p}\varphi _{p}(x')\), and the equivalent form of Eq. (1.1) is the following:

$$ x'=-\omega \varphi _{q}(y),\quad \quad y'=\omega [a_{1}\varphi _{p}(x^{+})-b_{1} \varphi _{p}(x^{-})]+\omega ^{1-p}[z(t)f(x)-e(t)] $$

with the Hamiltonian function

$$ H(x,y,t)=\frac{\omega}{q}|y|^{q}+\frac{\omega}{p}(a_{1}|x^{+}|^{p}+b_{1}|x^{-}|^{p})+ \omega ^{1-p} (z(t)F(x)-e(t)x), $$
(2.1)

where \(a_{1}=\omega ^{-p}a\), \(b_{1}=\omega ^{-p}b\), \(a_{1}\) and \(b_{1}\) satisfy \(a_{1}^{-\frac{1}{p}}+b_{1}^{-\frac{1}{p}}=2\).

Let \(sin_{p}(t)\) satisfy the problem

$$ (\varphi _{p}(C'(t)))'+\varphi _{p}(C(t))=0,\quad C(0)=0,\quad C'(0)=1. $$

From the conclusions in [1517], we confirm that \(sin_{p}(t)\) is a \(2\pi _{p}\)-periodic \(C^{2}\) odd function with \(sin_{p}(\pi _{p}-t)=sin_{p}(t)\) for \(t\in [0,\frac{\pi _{p}}{2}]\) and \(sin_{p}(2\pi _{p}-t)=-sin_{p}(t)\) for \(t\in [\pi _{p},2\pi _{p}]\). Moreover, for \(t\in [0,\frac{\pi _{p}}{2}]\) and \(sin_{p}'(t)>0\), \(sin_{p}(t)\in (0,(p-1)^{\frac{1}{p}})\) is implicitly given by

$$ \int _{0}^{sin_{p}(t)}\frac{ds}{(1-\frac{s^{p}}{p-1})^{\frac{1}{p}}}=t. $$

Suppose that \(v(t)\) satisfies the initial problem

$$ (\varphi _{p}(x'(t)))'+a_{1}\varphi _{p}(x^{+})-b_{1}\varphi _{p}(x^{-})=0, \quad x(0)=(p-1)^{\frac{1}{p}},\quad x'(0)=0. $$

Letting \(\varphi _{p}(v')=u\) and \(q=p/(p-1)>1\) yields

$$ \frac{|u|^{q}}{q}+\frac{a_{1}|v^{+}|^{p}+b_{1}|v^{-}|^{p}}{p}= \frac{a_{1}}{q}. $$
(2.2)

Using (2.2), we obtain that the action-angle coordinate transformation \(\psi _{0}\): \(x= (d_{1}r)^{\frac{1}{p}}v(\theta )\), \(y=(d_{1}r)^{\frac{1}{q}}u( \theta )\) with \(d_{1}=pa_{1}^{-1}\). \(\psi _{0}\) is a symplectic transformation since its value of the Jacobian determinant is 1. Under \(\psi _{0}\), Hamiltonian function (2.1) is transformed into

$$ h(r,\theta ,t)=\omega r+\omega ^{1-p}z(t)F((d_{1}r)^{\frac{1}{p}}v( \theta ))-\omega ^{1-p}e(t)(d_{1}r)^{\frac{1}{p}}v(\theta )\in \mathbb{C}^{1,1,6}(\mathbb{R^{+}}\times \mathbb{S}^{1}\times \mathbb{S}^{1}). $$
(2.3)

Let \(\Xi =\{\theta \in \mathbb{S}^{1}:v(\theta )=0\}\). When \(\theta \in \mathbb{S}^{1}\backslash \Xi \) (\(t\in \mathbb{S}^{1}\) is a parameter), we have \(h(r,t,\theta )\in \mathbb{C}^{6}\) with respect to r.

2.2 Lemmas

Utilizing the ideas in [13, 14, 18], from conditions \((A_{2})\) and \((A_{3})\), we obtain the following conclusions.

Lemma 2.1

For \(r\gg 1, k\leq 6\), it holds that

$$\begin{aligned}& |\partial _{r}^{k}F((d_{1}r)^{\frac{1}{p}}v(\theta ))|\leq Cr^{-k+ \frac{\gamma +1}{p}},\\& |\partial _{r}^{k}f((d_{1}r)^{\frac{1}{p}}v(\theta ))|\leq Cr^{-k+ \frac{\gamma}{p}}, \end{aligned}$$

in which \(\theta \in \mathbb{S}^{1}\) provided that \(k=1\); \(\theta \in \mathbb{S}^{1}\setminus \Xi \) if \(k\geq 2\).

Lemma 2.2

Let

$$ \bar{F}(r)=\int _{0}^{2\pi _{p}}F((d_{1}\omega ^{-1}r)^{\frac{1}{p}}v( \theta ))d\theta . $$
(2.4)

For \(r\gg 1\), the following conclusions hold

$$\begin{aligned}& |\bar{F}^{(k)}(r)|\leq Cr^{-k+\frac{\gamma +1}{p}},\quad k\leq 6,\\& \quad \bar{F}'(r)\geq cr^{-1+\frac{\gamma +1}{p}} \end{aligned}$$

and

$$ \bar{F}''(r) \leq -Cr^{-2+\frac{\gamma +1}{p}}. $$

Proof

For the sake of simplicity, we write \(x=(d_{1}\omega ^{-1}r)^{\frac{1}{p}}v(\theta )\). Using (2.4) and noticing that \(\Xi \bigcap [0,2\pi _{p}]\) is a finite set, we have

$$ \bar{F}'(r)=\frac{1}{pr}\int _{[0,2\pi _{p}]\setminus \Xi}f(x)xd \theta . $$

Using condition (A3) yields

$$ \bar{F}'(r)=\frac{1}{pr}\int _{[0,2\pi _{p}]\setminus \Xi}f(x)xd \theta \geq \frac{\beta _{1}}{pr}\int _{[0,2\pi _{p}]\setminus \Xi}|x|^{ \gamma +1}d\theta =cr^{-1+\frac{\gamma +1}{p}}. $$

Differentiating (2.4) with respect to variable r, from the above analysis and condition (A3), we have

$$\begin{aligned} & \bar{F}''(r)=\frac{1}{p^{2}r^{2}}\int _{[0,2\pi _{p}]\setminus \Xi}f(x)x^{2}d \theta -\frac{1}{qr}\bar{F}'(r) \\ &\,\;\;\quad \quad \quad \leq \frac{\beta _{2}}{p^{2}r^{2}}\int _{[0,2 \pi _{p}]\setminus \Xi}|x|^{\gamma +1}d\theta -\frac{1}{qr}\bar{F}'(r) \\ &\,\;\;\quad \quad \quad \leq \frac{\beta _{2}}{pr\beta _{1}}\bar{F}'(r)- \frac{1}{qr}\bar{F}'(r) \\ &\,\;\;\quad \quad \quad = \Big(\frac{\beta _{2}}{p\beta _{1}}- \frac{1}{q}\Big)\frac{\bar{F}'(r)}{r} \\ &\,\;\;\quad \quad \quad \leq \Big(\frac{\beta _{2}}{p\beta _{1}}- \frac{1}{q}\Big)cr^{-2+\frac{\gamma +1}{p}}, \end{aligned}$$

which finishes the proof. □

From Lemmas 2.1 and 2.2. combined with condition \((A_{1})\), we obtain that the following conclusion holds.

Lemma 2.3

Let \(h_{1}(r,\theta ,t)=\omega ^{1-p}z(t)F((d_{1}r)^{\frac{1}{p}}v( \theta ))-\omega ^{1-p}e(t)(d_{1}r)^{\frac{1}{p}}v(\theta )\). For \(r\gg 1,t\in \mathbb{S}^{1}\) then

$$ |\partial _{r}^{k}\partial _{t}^{l}h_{1}(r,\theta ,t)|\leq c r^{-k+ \frac{\gamma +1}{p}}, $$
(2.5)

in which \(\theta \in \mathbb{S}^{1}\) provided that \(k=1\); \(\theta \in \mathbb{S}^{1}\setminus \Xi \) if \(k\geq 2\).

Let

$$ g(r,\theta ,t)=r^{-\frac{1}{p}}h_{1}(r,\theta ,t). $$
(2.6)

From Lemma 2.3, for \(r\gg 1 \), we have

$$ |\partial _{r}^{k}\partial _{t}^{l}g(r,\theta ,t)|\leq cr^{-k+ \frac{\gamma}{p}}, \quad k+l\leq 6. $$
(2.7)

Lemma 2.4

For \(r\gg 1, k+l\leq 6\), then

$$\begin{aligned} \left \{ \textstyle\begin{array}{l} 0< cr\leq h(r,t,\theta )< Cr, \\ \partial _{r}h(r,t,\theta )>\frac{\omega}{2}, \\ |\partial _{r}^{k}\partial _{t}^{l}h(r,t,\theta )|\leq Cr^{-k+1}, \end{array}\displaystyle \right . \end{aligned}$$
(2.8)

in which \(\theta \in \mathbb{S}^{1}\) provided that \(k=1\); \(\theta \in \mathbb{S}^{1}\setminus \Xi \) if \(k\geq 2\).

Proof

From (2.3) and Lemma 2.1, we obtain

$$ \lim _{r\rightarrow +\infty}\frac{h}{r}=\omega >0, $$

and for \(r\gg 1\),

$$ \frac{\partial h}{\partial r}=\omega +\omega ^{1-p}z(t)\partial _{r}F((d_{1}r)^{ \frac{1}{p}}v(\theta ))-\frac{d_{1}}{p}\omega ^{1-p}e(t)(d_{1}r)^{ \frac{1}{p}-1}v(\theta )>\frac{\omega}{2}, $$

which together with (2.5)–(2.7) completes the proof of (2.8). □

Lemma 2.5

[15] Provided that function \(f(x,t)\) satisfies

$$ |\partial _{x}^{k}\partial _{t}^{l}f(x,t)|\leq Cx^{-k}|f(x,t)| $$

for all sufficiently large \(x>0\) and all \(k,l:k+l\leq N\), where \(N\in \mathbb{N}\). Suppose that

$$ \partial _{x}f(x,t)\geq c x^{-1}f(x,t)>0 $$

for all sufficiently large \(x>0\). Then, the inverse function \(g(y,t)\) of f in x satisfies

$$ |\partial _{y}^{k}\partial _{t}^{l}g(y,t)|\leq Cy^{-k}g(y,t) $$

for all \(K+l\leq N\) and all sufficiently large y.

Using Lemmas 2.3 and 2.4, for \(h\gg 1, t\in \mathbb{S}^{1}\), we have

$$ |\partial _{h}^{k}\partial _{t}^{l}r(h,t,\theta )|\leq Ch^{-k+1}, \quad k+l\leq 6,\quad \theta \in \mathbb{S}^{1}\setminus \Xi . $$
(2.9)

Thus, we write (2.3) as

$$ h(r,\theta ,t)=\omega r +r^{\frac{1}{p}}g(r,\theta ,t),\quad r=r(h,t, \theta ). $$
(2.10)

In fact,Footnote 1\(v(t)\in C^{2}(\mathbb{S}^{1})\) does not belong to \(C^{4}(\mathbb{S}^{1})\). We exchange the time and angle variables to prove Theorem 1.1.

2.3 Exchange of time and angle variables

Based on the conclusions in [15], the identity \(rd\theta -hdt=-(hdt-rd\theta )\) guarantees that if we can solve \(r=r(h,t,\theta )\) from (2.3) as a function of h, t, θ, then

$$ \frac{dh}{d\theta}=-\frac{\partial r}{\partial t}r(h,t,\theta ), \quad \quad \frac{dt}{d\theta}=\frac{\partial r}{\partial h}r(h,t, \theta ), $$
(2.11)

i.e., Eq. (2.11) is a Hamiltonian system with a Hamiltonian function \(r=r(h,t,\theta )\) in which action, angle, and time variables are h, t, and θ, respectively. The following lemma gives a more detailed description of r in (2.10) according to the magnitude of h.

Lemma 2.6

Provided that \(h\gg 1, \theta \in \mathbb{S}^{1}\setminus \Xi \), \(t\in \mathbb{S}^{1}\), it holds that

$$ r(h,t,\theta )=\omega ^{-1}h-\omega ^{-p}z(t)F((d_{1}\omega ^{-1}h)^{ \frac{1}{p}}v(\theta ))+R(h,t,\theta ), $$
(2.12)

where

$$ |\partial _{h}^{k}\partial _{t}^{l}R(h,t,\theta )|\leq Ch^{-k+max\{ \gamma ,\frac{1}{p}\}},\quad k+l\leq 6. $$
(2.13)

Proof

Using the identity (2.10) yields

$$ r=\omega ^{-1}h-\omega ^{-1}r^{\frac{1}{p}}g(r,t,\theta ). $$
(2.14)

Utilizing the identity (2.6) and the Taylor formula, we obtain that function \(g=g(r,\theta ,t)\) satisfies

$$\begin{aligned} & g(r,\theta ,t)=g(\omega ^{-1}h-\omega ^{-1}r^{\frac{1}{p}}g, \theta ,t) \\ &\quad \quad = g(\omega ^{-1}h,\theta ,t)+R_{0}(h,t,\theta ) \\ &\quad \quad =(\omega ^{-1}h)^{-\frac{1}{p}}\omega ^{1-p}z(t)F((d_{1} \omega ^{-1}h)^{\frac{1}{p}}v(\theta ))-d_{1}^{\frac{1}{p}}\omega ^{1-p} e(t)v(\theta )+R_{0}(h,t,\theta ), \end{aligned}$$
(2.15)

in which \(R_{0}(h,t,\theta )=-\int _{0}^{1}g_{r}^{\prime }(\omega ^{-1}h-s\omega ^{-1}r^{ \frac{1}{p}}g,\theta ,t))\omega ^{-1}r^{\frac{1}{p}}gds\).

Substituting (2.14) into (2.15), we have

$$\begin{aligned} & r=\omega ^{-1}h-\omega ^{-1}g(r,t,\theta )(\omega ^{-1}h)^{ \frac{1}{p}}(1-h^{-1}r^{\frac{1}{p}}g)^{\frac{1}{p}} \\ &\quad =\omega ^{-1}h-\omega ^{-1}g(r,t,\theta )(\omega ^{-1}h)^{ \frac{1}{p}} \\ &\quad \quad \quad \quad \quad \quad +\frac{1}{p}\omega ^{-1}g(r,t, \theta ) (\omega ^{-1}h)^{\frac{1}{p}}\int _{0}^{1}(1-sh^{-1}r^{ \frac{1}{p}}g)^{\frac{1}{p}-1}h^{-1}r^{\frac{1}{p}}gds \\ &\quad =\omega ^{-1}h-\omega ^{-p}z(t)F((d_{1}\omega ^{-1}h)^{ \frac{1}{p}}v(\theta ))+R_{1}(h,t,\theta )+R_{2}(h,t,\theta )+R_{3}(h,t, \theta ), \end{aligned}$$

where

$$\begin{aligned} &R_{1}(h,t,\theta )=\omega ^{-(2+\frac{1}{p})}h^{\frac{1}{p}}\int _{0}^{1}g_{r}( \omega ^{-1}h-s\omega ^{-1}r^{\frac{1}{p}}g,\theta ,t)r^{\frac{1}{p}}gds, \\ &R_{2}(h,t,\theta )=\frac{1}{p}\omega ^{-(1+\frac{1}{p})}h^{ \frac{1}{p}-1}\int _{0}^{1}(1-sh^{-1}r^{\frac{1}{p}}g)^{\frac{1}{p}-1}r^{ \frac{1}{p}}g^{2}ds, \\ &R_{3}(h,t,\theta )=d_{1}^{\frac{1}{p}}\omega ^{-(p+\frac{1}{p})}v( \theta )e(t)h^{\frac{1}{p}}. \end{aligned}$$

Direct computation gives

$$ \partial _{h}^{k}\partial _{t}^{l}r^{\frac{1}{p}}(h,t,\theta )=\sum r^{ \frac{1}{p}-m}\partial _{h}^{k_{1}}\partial _{t}^{l_{1}}r(h,t,\theta ) \partial _{h}^{k_{2}}\partial _{t}^{l_{2}}r(h,t,\theta )\cdot \cdot \cdot \partial _{h}^{k_{m}}\partial _{t}^{l_{m}}r(h,t,\theta ) $$

with \(1\leq m\leq k+l\), \(k_{1}+k_{2}\cdot \cdot \cdot +k_{m}=k\) and \(l_{1}+l_{2}+\cdots +l_{m}=l\). Using (2.9) yields

$$ |\partial _{h}^{k}\partial _{t}^{l}r^{\frac{1}{p}}(h,t,\theta )|\leq Ch^{-k+ \frac{1}{p}}. $$

Similarly, we acquire

$$\begin{aligned}& |\partial _{h}^{k}\partial _{t}^{l}g(h,t,\theta )|\leq Ch^{-k+ \frac{\gamma}{p}},\\& |\partial _{h}^{k}\partial _{t}^{l}g_{r}(\omega ^{-1}h-s\omega ^{-1}r^{ \frac{1}{p}}g,t,\theta )|\leq C^{-k-1+\frac{\gamma}{p}}. \end{aligned}$$

Using \(p>2\) and the expression of \(R_{1}\) yields

$$ |\partial _{h}^{k}\partial _{t}^{l}R_{1}(h,t,\theta )|\leq Ch^{-k-1+ \frac{2+2\gamma}{p}}\leq C h^{-k+\gamma}. $$

Analogously, we obtain

$$\begin{aligned}& |\partial _{h}^{k}\partial _{t}^{l}R_{2}(h,t,\theta )|\leq Ch^{-k+ \gamma},\\& |\partial _{h}^{k}\partial _{t}^{l}R_{3}(h,t,\theta )|\leq Ch^{-k+ \frac{1}{p}}. \end{aligned}$$

Letting \(R(h,t,\theta )=R_{1}(h,t,\theta )+R_{2}(h,t,\theta )+R_{3}(h,t, \theta )\), we obtain that inequality (2.13) holds. □

2.4 Canonical transformation

In this part, two lemmas are established to make sure that the Poincare map of the new system is close to a twist map.

Lemma 2.7

There exists a canonical transformation \(\psi _{1}\) of the form: \(\psi _{1}:(\lambda ,\varphi )\rightarrow (h,t)\)

$$ h=\lambda +U(\lambda ,t,\theta ),\quad \varphi =t+V(\lambda ,t, \theta ), $$

where U and V are \(2\pi _{p}\) periodic about θ. Under \(\psi _{1}\), the Hamiltonian function (2.12) is transformed into

$$ r_{1}(\lambda ,\varphi ,\theta )=\omega ^{-1}\lambda -\omega ^{-p} \hat{z}F((d_{1} \lambda \omega ^{-1})^{\frac{1}{p}}v(\theta ))+ \bar{R}_{1}(\lambda ,\varphi ,\theta ). $$
(2.16)

Moreover, for \(\lambda \gg 1, \theta \in \mathbb{S}^{1}\setminus \Xi \), \(t\in \mathbb{S}^{1}\), it holds that

$$ |\partial _{\lambda}^{k}\partial _{\varphi}^{l}\bar{R}_{1}(\lambda , \varphi ,\theta )|\leq C\lambda ^{-k+max\{\gamma ,\frac{\gamma +1}{p} \}},\quad k+l\leq 5. $$
(2.17)

Proof

We make a transformation \(\psi _{1}:(\lambda ,\varphi )\rightarrow (h,t)\) implicitly given by

$$ h=\lambda +\partial _{t}S_{1}(\lambda ,t,\theta ),\quad \varphi =t+ \partial _{\lambda}S_{1}(\lambda ,t,\theta ) $$
(2.18)

with

$$ S_{1}(\lambda ,t,\theta )=\int _{0}^{t}\omega ^{1-p}z_{1}(t)F\Big((d_{1} \lambda \omega ^{-1})^{\frac{1}{p}}v(\theta )\Big)dt. $$

Under \(\psi _{1}\), Hamiltonian (2.12) becomes

$$\begin{aligned} &r_{1}(\lambda ,\varphi ,\theta )=\omega ^{-1}(\lambda +\partial _{t}S_{1})- \omega ^{-p}\hat{z}F\Big((d_{1}\omega ^{-1}(\lambda +\partial _{t}S_{1}))^{ \frac{1}{p}}v(\theta )\Big)+\partial _{\theta}S_{1} \\ &\quad \quad \quad \quad \quad \quad -\omega ^{-p}z_{1}(t)F\Big((d_{1} \omega ^{-1}(\lambda +\partial _{t}S_{1}))^{\frac{1}{p}}v(\theta ) \Big)+R(\lambda +\partial _{t}S_{1},t,\theta ) \\ &\quad \quad \quad \quad =\omega ^{-1}\lambda -\omega ^{-p}\hat{z}F \Big((d_{1}\lambda \omega ^{-1})^{\frac{1}{p}}v(\theta )\Big)+R_{4}( \lambda ,\varphi ,\theta ) \\ &\quad \quad \quad \quad \quad \quad \quad +R_{5}(\lambda ,\varphi , \theta )+R_{6}(\lambda ,\varphi ,\theta )+R_{7}(\lambda ,\varphi , \theta ), \end{aligned}$$

where \(z_{1}(t)=z(t)-\hat{z}\) and

$$\begin{aligned} &R_{4}=-\omega ^{p}\hat{z}\int _{0}^{1}\partial _{\lambda}F\Big((d_{1} \omega ^{-1}(\lambda +\mu \partial _{t}S_{1}))^{\frac{1}{p}}v(\theta ) \Big)\partial _{t}S_{1}d\mu \\ &\quad =-\frac{\hat{z}\omega ^{p}}{p}\int _{0}^{1}f\Big((d_{1} \omega ^{-1}(\lambda +\mu \partial _{t}S_{1}))^{\frac{1}{p}}v(\theta ) \Big)v(\theta )d_{1}\omega ^{-1} (\lambda +\mu \partial _{t}S_{1})^{- \frac{1}{q}}\partial _{t}S_{1}d\mu , \end{aligned}$$
(2.19)
$$\begin{aligned} &R_{5}=-\int _{0}^{1}\omega ^{-p}z_{1}(t)\partial _{d_{1}\omega ^{-1} \lambda}F\Big((d_{1}\omega ^{-1} (\lambda +\mu \partial _{t}S_{1}))^{ \frac{1}{p}}v(\theta )\Big)d_{1}\omega ^{-1}\partial _{t}S_{1}d\mu , \\ &R_{6}=\partial _{\theta}S_{1}(\lambda ,t,\theta ), \\ &R_{7}=R(\lambda +\partial _{t}S_{1},t,\theta ). \end{aligned}$$

From Lemma 2.1, for \(\lambda \gg 1\) and \(k+l\leq 6\), we have

$$ |\partial _{\lambda}^{k}\partial _{t}^{l}S_{1}(\lambda ,t,\theta )| \leq C\lambda ^{-k+\frac{\gamma +1}{p}}, $$
(2.20)

which together with (2.18) yields

$$\begin{aligned} \left \{ \textstyle\begin{array}{l} \frac{1}{2}< \partial _{\varphi}t(\lambda ,\varphi ,\theta )< \frac{3}{2},\quad |\partial _{\lambda}t(\lambda ,\varphi ,\theta )|< \lambda ^{-2+\frac{\gamma +1}{p}}, \\ |\partial _{\lambda}h(\lambda ,\varphi ,\theta )|\leq C,\quad | \partial _{\varphi}h(\lambda ,\varphi ,\theta )|\leq C\lambda ^{ \frac{\gamma +1}{p}}. \end{array}\displaystyle \right . \end{aligned}$$
(2.21)

For \(2\leq k+l\leq 5\), utilizing direct calculations gives rise to

$$ |\partial _{\lambda}^{k}\partial _{\varphi}^{l}h(\lambda ,\varphi , \theta )|\leq C \lambda ^{-k+\frac{\gamma +1}{p}},\quad |\partial _{ \lambda}^{k}\partial _{\varphi}^{l}t(\lambda ,\varphi ,\theta )|\leq C \lambda ^{-k-1+\frac{\gamma +1}{p}}. $$
(2.22)

First, we prove \(|\partial _{\lambda}^{k}\partial _{\varphi}^{l}R_{4}|\leq C \lambda ^{-k+ \frac{\gamma +1}{p}}\). Direct computation gives

$$ \partial _{\lambda}^{k}\partial _{\varphi}^{l}\partial _{t}S_{1}( \lambda ,t,\theta )=\sum \partial _{\lambda}^{m}\partial _{t}^{n+1}S_{1}( \lambda ,t,\theta ) \partial _{\lambda}^{k_{1}}\partial _{\varphi}^{l_{1}} t\partial _{\lambda}^{k_{2}}\partial _{\varphi}^{l_{2}}t\cdot \cdot \cdot \partial _{\lambda}^{k_{n}}\partial _{\varphi}^{l_{n}}t $$

with \(1\leq m+n\leq k+l\), \(m+k_{1}+k_{2}\cdot \cdot \cdot +k_{m}=k\) and \(l_{1}+l_{2}+\cdots +l_{n}=l\). Using (2.20), (2.21), and (2.22) yields

$$ |\partial _{\lambda}^{k}\partial _{\varphi}^{l}\partial _{t}S_{1}| \leq C\lambda ^{-k+\frac{\gamma +1}{p}}. $$

In the same way, we obtain

$$ |\partial _{\lambda}^{k}\partial _{\varphi}^{l}(\lambda +\mu \partial _{t}S_{1})^{-\frac{1}{q}}|\leq C\lambda ^{-k-\frac{1}{q}} $$

and

$$ \Bigg|\partial _{\lambda}^{k}\partial _{\varphi}^{l}f\Big((d_{1} \omega ^{-1}(\lambda +\mu \partial _{t}S_{1}))^{\frac{1}{p}}v(\theta ) \Big)\Bigg|\leq C\lambda ^{-k+\frac{\gamma}{p}}. $$

Noticing \(0<\frac{1}{p-1}<\gamma <1\), from (2.19), we have \(|\partial _{\lambda}^{k}\partial _{\varphi}^{l}R_{4}|\leq C \lambda ^{-k+ \frac{\gamma}{p}}\). Similarly, we obtain

$$ |\partial _{\lambda}^{k}\partial _{\varphi}^{l}R_{i}|\leq C \lambda ^{-k+ \frac{\gamma +1}{p}},\quad i=5,6. $$

Applying (2.13), (2.21), and (2.22) gives rise to

$$ |\partial _{\lambda}^{k}\partial _{\varphi}^{l}R_{7}|\leq C \lambda ^{-k+max \{\gamma ,\frac{1}{p}\}}. $$

Set \(\bar{R}_{1}(\lambda ,\varphi ,\theta )=R_{4}(\lambda ,\varphi , \theta )+R_{5}(\lambda ,\varphi ,\theta ) +R_{6}(\lambda ,\varphi , \theta )+R_{7}(\lambda ,\varphi ,\theta )\). Hence, inequality (2.17) holds. □

Next, we eliminate the new time variable θ at the first time by constructing the transformation.

Lemma 2.8

There exists a canonical transformation \(\psi _{2}: (\lambda ,\varphi )\rightarrow (\lambda ,\tau )\):

$$ \psi _{2}:\lambda =\lambda ,\quad \varphi =\tau +\partial _{\lambda}S_{2}( \lambda ,\theta )). $$

Under \(\psi _{2}\), the Hamiltonian (2.16) is transformed into

$$ r_{2}(\lambda ,\tau ,\theta )=\omega ^{-1}\lambda -\omega ^{-p} \hat{z}\bar{F}(\lambda )+\bar{R}_{2}(\lambda ,\tau ,\theta ). $$
(2.23)

The new disturbance term \(\bar{R}_{2}\) satisfies

$$ |\partial _{\lambda}^{k}\partial _{\tau}^{l}\bar{R}_{2}(\lambda , \tau ,\theta )|\leq C\lambda ^{-k+max\{\gamma ,\frac{\gamma +1}{p}\}} $$
(2.24)

for \(k+l\leq 5, \lambda \gg 1\), \(\theta \in \mathbb{S}^{1}\setminus \Xi \) and \(t\in \mathbb{S}^{1}\).

Proof

We choose generating function

$$ S_{2}(\lambda ,\theta )=\int _{0}^{\theta}\omega ^{-p}\hat{z}[F((d_{1} \omega ^{-1}\lambda )^{\frac{1}{p}}v(\theta ))-\bar{F} (\lambda )]d \theta . $$

Under \(\psi _{2}\), then the Hamiltonian (2.16) is transformed into

$$ r_{2}(\lambda ,\tau ,\theta )=r_{1}(\lambda ,\varphi ,\theta )+ \partial _{\theta}S_{2}=\omega ^{-1}\lambda -\omega ^{-p}\hat{z} \bar{F}(\lambda )+\bar{R}_{2}(\lambda ,\tau ,\theta ), $$

where

$$ \bar{R}_{2}(\lambda ,\tau ,\theta )=\bar{R}_{1}(\lambda ,\tau + \partial _{\lambda}S_{2},\theta ). $$
(2.25)

Thus, inequality (2.24) is obtained from (2.17), (2.23), (2.25) and Lemma 2.2. The proof of Lemma 2.8 is finished. □

3 Proof of main result

Without loss of generality, we only need to prove Theorem 1.1 for the case \(\hat{e}>0\). For \(\hat{e}<0\), the proof is similar. For given \(0<\delta <1\), define transformation \(\psi _{3}:(\lambda ,\tau )\rightarrow (v,\tau )\) by

$$ \bar{F}'(\lambda )=\delta v\omega ^{p}(\hat{z})^{-1},\quad \tau = \tau ,\quad 1\leq v \leq 4. $$
(3.1)

Due to \(\lambda \rightarrow +\infty \), \(\bar{F}'(\lambda )\rightarrow 0\), thus \(\lambda \rightarrow +\infty \Leftrightarrow \delta \rightarrow 0\). For \(\lambda =\lambda (\delta v)\), the following estimates hold.

Lemma 3.1

\(c\delta ^{\frac{p}{\gamma +1-p}}\leq \lambda (\delta v)\leq C\delta ^{ \frac{p}{\gamma +1-p}}\), \(|\partial _{v}^{k}\lambda (\delta v)| \leq C \lambda (\delta v)\quad k\leq 4\).

Proof

From Lemma 2.2 and (3.1), we have \(c\delta ^{\frac{p}{\gamma +1-p}}\leq \lambda (\delta v)\leq C\delta ^{ \frac{p}{\gamma +1-p}}\).

Differentiating (3.1) with respect to v, we have \(\bar{F}''(\lambda )=\omega ^{p}\delta \hat{z}^{-1}\). Using Lemma 2.2 yields

$$ |\partial _{v}\lambda |=| \frac{\omega ^{p}\delta \hat{z}^{-1}}{\bar{F}''(\lambda )}|=| \frac{\omega ^{p}\delta \hat{z}^{-1}\lambda}{\bar{F}''(\lambda )\lambda}| \leq |\frac{\delta \lambda}{\lambda ^{-1+\frac{\gamma +1}{p}}}|=| \frac{c\delta \lambda}{\bar{F}'(\lambda )}|= \frac{c\delta \lambda}{\delta v}\leq C\lambda . $$

Taking \(k(k>1)\) order derivative about v on both sides of (3.1), we obtain

$$ \bar{F}''(\lambda )\partial _{v}^{k}\lambda +\sum _{s=2}^{s=k}\bar{F}^{(s+1)} \partial _{v}^{k_{1}}\lambda \partial _{v}^{k_{2}}\cdot \cdot \cdot \partial _{v}^{k_{s}}\lambda =0 $$

with \(k_{1}+k_{2}+\cdots +k_{s}=k\). Thus,

$$ \partial _{v}^{k}\lambda =\sum _{s=2}^{s=k} \frac{\bar{F}^{(s+1)}\partial _{v}^{k_{1}} \lambda \partial _{v}^{k_{2}}\cdot \cdot \cdot \partial _{v}^{k_{s}}\lambda}{\bar{F}''(\lambda )}. $$

From Lemma 2.2, using the induction methods yields

$$\begin{aligned} |\partial _{v}^{k}\lambda |\leq C \lambda , \quad k=2,3,4, \end{aligned}$$

which completes the proof of Lemma 3.1. □

From the definition \(\psi _{3}\), we have

$$ \frac{dv}{d\theta}=\delta ^{-1}\omega ^{-p}\hat{z}\bar{F}''(\lambda ) \frac{d\lambda}{d\theta}=\delta ^{-1}\omega ^{-p}\hat{z} \bar{F}''( \lambda )\partial _{\tau}\bar{R}_{2}(\lambda ,\tau ,\theta ). $$

Introducing a new time variable ϑ by \(\theta =-\vartheta \) yields

$$ \frac{dv}{d\vartheta}=l_{1}(v,\tau ,\vartheta ,\delta ),\quad \frac{d\tau}{d\vartheta}=-\omega ^{-1}+\delta v+l_{2}(v,\tau , \vartheta ,\delta ), $$
(3.2)

where

$$\begin{aligned}& l_{1}(v,\tau ,\vartheta ,\delta )=\delta ^{-1}\omega ^{-p}\hat{z} \bar{F}''(\lambda )\partial _{\tau}\bar{R}_{2}(\lambda ,\tau ,- \vartheta ),\\& l_{2}(v,\tau ,\vartheta ,\delta )=-\partial _{\lambda}\bar{R}_{2}( \lambda ,\tau ,-\vartheta ). \end{aligned}$$

Lemma 3.2

Provided that \(p>2\), \(\frac{1}{p-1}<\gamma <1\), \(0<\delta \ll 1\), \(k+l\leq 4\) and \(\tau \in \mathbb{S}^{1}\setminus \Xi (i=1,2)\), it holds that

$$ |\partial _{v}^{k}\partial _{\tau}^{l}l_{i}(v,\tau ,\vartheta , \delta )|\leq C \delta ^{\sigma}, $$
(3.3)

where \(\sigma =\frac{p}{\gamma +1-p}(-1+\gamma )>0\).

Proof

For \(k=0\), we have

$$ |\partial _{\tau}^{l}l_{2}|=|\partial _{\lambda}\partial _{\tau}^{l} \bar{R}_{2}(\lambda ,\tau ,-\vartheta )|\leq C\lambda ^{-1+max\{ \frac{\gamma +1}{p},\gamma \}}\leq C\delta ^{\frac{p}{\gamma +1-p}(-1+max \{\frac{\gamma +1}{p},\gamma \})}\leq C\delta ^{\sigma}. $$

Using the assumption \(\gamma >\frac{1}{p-1}\) derives \(\frac{1+\gamma}{p}<\gamma \). We have \(|\partial _{\tau}^{l}l_{2}|\leq C\delta ^{\sigma}\).

For \(k>0\), we obtain

$$\begin{aligned} &|\partial _{v}^{k}\partial _{\tau}^{l}l_{2}|=|\partial _{v}^{k} \partial _{\tau}^{l}\partial _{\lambda}\bar{R}_{2}(\lambda ,\tau ,- \vartheta )| \\ &\quad \quad \quad \quad \leq C\lambda ^{-1+max\{\frac{\gamma +1}{p}, \gamma \}} \\ &\quad \quad \quad \quad \leq C\delta ^{\frac{p}{\gamma +1-p}(-1+max \{\frac{\gamma +1}{p},\gamma \})} \\ &\quad \quad \quad \quad \leq C\delta ^{\sigma}. \end{aligned}$$

For \(l_{1}\), we have the same estimate. The proof of Lemma 3.2 is completed. □

From Lemmas 3.13.2 and (3.3), we see that the solutions of (3.2) with initial value \(v(0)=v_{0}\in [1,2]\), \(\tau (0)=\tau _{0}\) do exist for \(0\leq \vartheta \leq 4\pi _{p}\) if \(\delta \ll 1\). Integrating (3.2) from 0 to \(2\pi _{p}\), we derive that Poincaré map P in (3.2) takes the following form

$$\begin{aligned} P:\left \{ \textstyle\begin{array}{l} \tau _{2\pi _{p}}=\tau _{0}-\omega ^{-1}2\pi _{p}+\delta (v_{0}+P_{2}(v_{0}, \tau _{0},\delta )), \\ v_{2\pi _{p}}=v_{0}+\delta P_{1}(v_{0},\tau _{0},\delta ), \end{array}\displaystyle \right . \end{aligned}$$

where \(|\partial _{v_{0}}^{k}\partial _{\tau _{0}}^{l}P_{i}|\leq C\delta ^{ \sigma -1}\) for \(k+l\leq 4\), \(i=1,2\).

Since P is a Poincarè map in (3.2), it is an area-preserving, and thus it possesses the intersection property in the annulus \([1,2]\times \mathbb{S}^{1}\). Namely, if Γ is an embedded circle in \([1,2]\times \mathbb{S}^{1}\) homotopic to a circle v= constant, then \(P(\Gamma )\cap \Gamma \neq \emptyset \) (see [18]). Now, we have verified that the mapping P satisfies all the conditions of Moser’s twist theorem. Hence, there exists an invariant curve \(\Gamma _{\delta}\) of P surrounding \(v_{0}=1\) if \(\delta \ll 1\). The \(\Gamma _{\delta}\) is located in ring domain \(\{(v,\tau )|\delta < v<2\delta \}\). Note that \(\delta \rightarrow 0\Leftrightarrow \lambda \rightarrow \infty \). The points \((\lambda ,\varphi ,\theta )\) satisfying \(r_{1}(\lambda ,\varphi ,\theta )=r_{1}(\lambda ,\varphi ,\theta )|_{( \lambda ,\varphi )\in \Gamma _{\delta}}\) form an invariant torus \(\mathbf{T}_{\delta}^{2}\) in the extended phase space \((\lambda ,\varphi ,\theta )\). Thus, \(\psi ^{-1}(\Gamma _{\delta})\) is an invariant torus for Eq. (2.1) in \((x,y,t)\in \mathbb{R}^{2}\times \mathbb{S}^{1}\), which is far away from \((0,0)\), where \(\psi =\psi _{1}\psi _{0}\). The solution of Eq. (2.1) starting from inside of \(\psi ^{-1}(\Gamma _{\delta})\) is contained inside of \(\psi ^{-1}(\Gamma _{\delta})\). Thus, the solution of Eq. (2.1) is bounded. The proof of Theorem 1.1 is finished.