1 Introduction & preliminaries

In recent decades, various publications have focused on generalizing the Hermite–Hadamard inequality and developing trapezoid- and midpoint-type inequalities that provide bounds for the right- and left-hand sides of the aforementioned inequality. The authors [11] demonstrated various similar trapezoid-type inequalities and developed the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals. Kara et al. [8] identified the following Hermite–Hadamard inequalities:

Let \(\psi :[a,b]\rightarrow \mathbb{R}\) be a monotone increasing function such that the derivative \(\psi ^{\prime }>0\) is continuous on \((a,b)\). If g is a convex function on \([a,b]\), then

$$ \begin{gathered} g \biggl( \frac{a+b}{2} \biggr) \leq \frac{\Gamma (\beta +1)}{2 A_{(\psi ,\beta )}(1)} \biggl[ {^{\beta } \mathcal{J}_{b^{-}}^{\psi }}G \biggl( \frac{a+b}{2} \biggr) +{^{\beta } \mathcal{J}_{a^{+}}^{\psi }}G \biggl( \frac{a+b}{2} \biggr) \biggr] \leq \frac{g ( a ) +g ( b ) }{2},\end{gathered} $$
(1.1)

where the ψ-Hilfer operators are defined as follows:

$$\begin{aligned} &{^{\beta }\mathcal{J}_{a^{+}}^{\psi }}g(x)= \frac{1}{\Gamma (\beta )} \int _{a}^{x}\psi ^{\prime }(t) \bigl(\psi (x)-\psi (t) \bigr)^{\beta -1}g(t) \,d t,\\ &{^{\beta }\mathcal{J}_{b^{-}}^{\psi }}g(x)= \frac{1}{\Gamma (\beta )} \int _{x}^{b}\psi ^{\prime }(t) \bigl(\psi (t)-\psi (x) \bigr)^{\beta -1}g(t) \,d t, \end{aligned}$$

and

$$\begin{aligned} &G(s)=g(s)+g(a+b-s),\\ &A_{(\psi ,\beta )}(1)= \biggl( \psi (b)-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta }+ \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (a) \biggr) ^{\beta }. \end{aligned}$$

See [3, 7, 9, 12] for further information on comparable results.

In [13], the author introduces a novel class of functions, called h-convex functions.

Definition 1

Let \(h : J \subseteq \mathbb{R} \rightarrow \mathbb{R}\), where \((0,1) \subseteq J \), be a nonnegative function, \(h \neq 0\). We say that \(f : I\subseteq \mathbb{R} \rightarrow \mathbb{R}\) is an h-convex function if f is nonnegative and for all \(x, y \in I\), \(\alpha \in (0, 1)\) we have

$$ f \bigl(\alpha x + (1 - \alpha )y\bigr) \leq h(\alpha )f (x) + h(1 - \alpha )f (y). $$
(1.2)

If the inequality in (1.2) is reversed, then f is said to be h-concave.

By setting

  • \(h(\lambda )=\lambda \), Definition 1 reduces to that of the classical convex function.

  • \(h(\lambda )=1\), Definition 1 reduces to that of P-functions [4, 10].

  • \(h(\lambda )=\lambda ^{s}\), Definition 1 reduces to that of s-convex functions [2].

  • \(h(\lambda )=\frac{1}{n}\sum_{k=1}^{n}\lambda ^{ \frac{1}{k}}\), Definition 1 reduces to that of polynomial n-fractional convex functions [5].

Recently, the authors of [1] presented a new class of function, called B-function.

Definition 2

Let \(a< b\) and \(g : (a, b)\subset \mathbb{R} \rightarrow \mathbb{R}\) be a nonnegative function. The function g is a B-function, or g belongs to the class \(B(a, b)\), if for all \(x\in (a, b)\), we have

$$ g(x-a) +g(b-x)\leq 2 g \biggl(\frac{a+b}{2} \biggr). $$
(1.3)

If the inequality (1.3) is reversed, g is called an A-function, or we say that g belongs to the class \(A(a, b)\).

If we have the equality in (1.3), then g is called an AB-function, or we say that g belongs to the class \(AB(a, b)\).

Corollary 1

Let \(h : (0, 1) \rightarrow \mathbb{R}\) be a nonnegative function. The function h is a B-function if and only if for all \(\lambda \in (0, 1)\), we have

$$ h(\lambda ) +h(1-\lambda )\leq 2 h \biggl(\frac{1}{2} \biggr). $$
(1.4)
  • The functions \(h(\lambda )=\lambda \) and \(h(\lambda )=1\) are AB-functions, B-functions, and A-functions.

  • The function \(h (\lambda )=\lambda ^{s}\), \(s\in (0, 1]\) is a B-function.

  • The function \(h(\lambda ) = \frac{1}{n}\sum _{k=1}^{n}\lambda ^{\frac{1}{k}}, n\), \(k\in \mathbb{N}\) is a B-function.

The weighted fractional integrals are defined as follows:

Definition 3

([6])

Let \([a,b]\subseteq {}[ 0,+\infty )\). Let \(\beta >0\) and ψ be a positive, increasing differentiable function such that \(\psi ^{\prime }(s)\neq 0\) for all \(s\in {}[ a,b]\). The left- and right-sided weighted fractional integrals of a function f with respect to the function ψ on \([a,b]\) are respectively defined as follows:

$$\begin{aligned} &{\mathrm{J}_{w, a^{+}}^{\beta ,\psi }}f(x)=\frac{1}{w(x) \Gamma (\beta )} \int _{a}^{x}\psi ^{\prime } ( t ) \bigl( \psi ( x ) -\psi ( t ) \bigr) ^{ \beta -1}w(t)f(t)\,dt,\quad a< x\leq b; \end{aligned}$$
(1.5)
$$\begin{aligned} &{\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}f(x)=\frac{1}{w(x) \Gamma _{k}(\beta )} \int _{x}^{b}\psi ^{\prime } ( t ) \bigl( \psi ( t ) -\psi ( x ) \bigr) ^{\beta -1}w(t)f(t)\,dt,\quad a\leq x< b, \end{aligned}$$
(1.6)

where w is a weighted function and the gamma function defined by

$$ \Gamma (\beta )= \int _{0}^{\infty }t^{\beta -1}e^{-t} \,dt \quad \text{and} \quad \beta \Gamma (\beta )=\Gamma (\beta +1). $$

For these operators, consider the following space:

$$ X[a, b]= \biggl\{ f: \parallel f\parallel _{X}= \biggl( \int _{a}^{b} \bigl\vert w(t) f(t) \bigr\vert \psi ^{\prime }(t)\,dt \biggr)< \infty \biggr\} . $$

For special choices of ψ, w, and β, we get already known results.

  1. (1)

    Taking \(w(t)=1\), the operators reduce to the ψ-Hilfer integral operators of order \(\beta >0\).

  2. (2)

    For \(\psi (t)=t \), we get the weighted Riemann–Liouville operators.

  3. (3)

    For \(\psi (t)=t \) and \(w(t)=1\), the operators are simplified to Riemann–Liouville integral operators.

  4. (4)

    Taking \(\psi (t)=t \), \(w(t)=1\), and \(\beta = 1 \), the operators reduce to classical Riemann integrals.

  5. (5)

    Setting \(\psi (t)= \ln (t) \) and \(a>1\), we get the weighted Hadamard operators of order \(\beta > 0\).

  6. (6)

    Setting \(\psi (t)= \ln (t) \), \(w(t)=1\), and \(a>1\), the operators are simplified to Hadamard operators of order \(\beta > 0\).

The purpose of this study is to generalize the Hermite–Hadamard inequality given in [8] for the h-convex function and weighted ψ-Hilfer operator with conditions. For this aim, we assume h is a B-function.

2 Hermite–Hadamard inequality

This section establishes Hermite–Hadamard-type inequalities for h-convex functions using ψ-Hilfer operators. Throughout this paper, we consider that \(0\leq a< b<\infty \), \(\beta >0\), and ψ is a positive differentiable increasing function on \((a,b)\).

Theorem 2.1

Let h be a B-function and w a nondecreasing function. If \(f\in X [a,b]\) is an h-convex function, then the following inequalities hold:

$$ \begin{aligned} \frac{ w(a)}{2 h (\frac{1}{2} )}f \biggl( \frac{a+b}{2} \biggr) & \leq \frac{\Gamma (\beta +1) w(\frac{a+b}{2})}{2 \Omega (\psi ,\beta )} \biggl[{ \mathrm{J} _{w, b^{-}}^{ \beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) + {\mathrm{J} _{w, a^{+}}^{ \beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \\ & \leq 2 h \biggl(\frac{1}{2} \biggr) w(b) \biggl( \frac{f(b)+f(a)}{2} \biggr),\end{aligned}$$
(2.1)

where

$$ F( \tau ) = f(\tau ) + f ( a + b - \tau ) $$
(2.2)

and

$$ \Omega ( \psi , \beta ) = \biggl(\psi (b) - \psi \biggl( \frac{a+b}{2} \biggr) \biggr)^{\beta} + \biggl(\psi \biggl( \frac{a+b}{2} \biggr) - \psi (a) \biggr)^{\beta}. $$
(2.3)

Proof

Since w is a positive nondecreasing function on \([a,b]\),

  1. (1)

    for all \(\tau \in [a,\frac{a+b}{2}]\), we have \(0 < w(a)\leq w(\tau )\leq w(\frac{a+b}{2})\leq w(b)\), and then

    $$\begin{aligned} \begin{aligned} \frac{w(a)}{\beta} \biggl(\psi \biggl( \frac{a+b}{2} \biggr)-\psi ( a) \biggr) ^{\beta} & \leq \int _{a}^{\frac{a+b}{2}} \biggl(\psi \biggl( \frac{a+b}{2} \biggr)-\psi (\tau ) \biggr)^{\beta -1}w(\tau ) \psi '( \tau )\,d\tau \\ & \leq \frac{w(b)}{\beta} \biggl(\psi \biggl( \frac{a+b}{2} \biggr)-\psi (a) \biggr) ^{\beta};\end{aligned} \end{aligned}$$
    (2.4)
  2. (2)

    for all \(\tau \in [\frac{a+b}{2},b]\), we have \(0 < w(a)\leq w(\frac{a+b}{2})\leq w(\tau )\leq w(b)\), and then

    $$ \begin{aligned} \frac{w(a)}{\beta} \biggl(\psi (b)- \psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta} & \leq \int _{\frac{a+b}{2}}^{b} \biggl(\psi (\tau )-\psi \biggl( \frac{a+b}{2} \biggr) \biggr)^{ \beta -1}w(\tau ) \psi '(\tau ) \,d\tau \\ & \leq \frac{w(b)}{\beta} \biggl(\psi (b)-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta}.\end{aligned}$$
    (2.5)

Letting f be an h-convex function, we have for any \(\tau \in {}[ a,b]\),

$$ \begin{aligned} f \biggl( \frac{a+b}{2} \biggr) & =f \biggl( \frac{1}{2}(a+b-\tau )+\frac{1}{2}\tau \biggr) \\ & \leq h \biggl( \frac{1}{2} \biggr) f ( a+b-\tau ) +h \biggl( \frac{1}{2} \biggr) f(\tau ),\end{aligned}$$

and then

$$ f \biggl( \frac{a+b}{2} \biggr) \leq h \biggl( \frac{1}{2} \biggr) F(\tau ). $$
(2.6)

Multiplying (2.6) by \(( \psi (\frac{a+b}{2})-\psi (\tau ) ) ^{\beta -1}\psi '( \tau )w(\tau )\) and integrating over \(\tau \in {}[ a,\frac{a+b}{2}]\), we obtain

$$ \begin{aligned}& f \biggl( \frac{a+b}{2} \biggr) \int _{a}^{\frac{a+b}{2}}\psi '(\tau ) \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi ( \tau ) \biggr) ^{\beta -1}w(\tau ) \,d\tau \\ &\quad \leq h \biggl( \frac{1}{2} \biggr) \int _{a}^{ \frac{a+b}{2}}\psi '(\tau ) \biggl( \psi \biggl( \frac{a+b}{2} \biggr) - \psi (\tau ) \biggr) ^{\beta -1}w(\tau )F(\tau ) \,d\tau .\end{aligned}$$

By using the left-hand side of (2.4), we deduce

$$ f \biggl( \frac{a+b}{2} \biggr) \biggl( \psi \biggl( \frac{a+b}{2} \biggr)-\psi (a) \biggr) ^{\beta }\leq \frac{h ( \frac{1}{2} ) \Gamma (\beta +1) w(\frac{a+b}{2})}{w(a)}{\mathrm{J} _{w, a^{+}}^{ \beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) . $$
(2.7)

Now, multiplying (2.6) by \(( \psi (\tau )-\psi ( \frac{a+b}{2} ) ) ^{ \beta -1}\psi '(\tau )w(\tau )\) and integrating over \(\tau \in [ \frac{a+b}{2},b ] \), we get

$$ \begin{aligned} &f \biggl( \frac{a+b}{2} \biggr) \int _{\frac{a+b}{2}}^{b} \biggl( \psi (\tau )-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{ \beta -1}\psi '(\tau )w(\tau ) \,d\tau \\ &\quad \leq h \biggl( \frac{1}{2} \biggr) \int _{ \frac{a+b}{2}}^{b} \biggl( \psi (\tau )-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{ \beta -1}\psi '(\tau )w(\tau )F(\tau ) \,d\tau .\end{aligned}$$

By using the left-hand side of (2.5), we deduce

$$ f \biggl( \frac{a+b}{2} \biggr) \biggl( \psi (b)-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta }\leq \frac{h ( \frac{1}{2} ) \Gamma (\beta +1) w(\frac{a+b}{2})}{w(a)}{ \mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) . $$
(2.8)

Adding the inequalities (2.7) and (2.8), we obtain

$$ \begin{gathered} \frac{w(a)}{2 h ( \frac{1}{2} ) }f \biggl( \frac{a+b}{2} \biggr) \leq \frac{\Gamma (\beta +1) w(\frac{a+b}{2})}{2 \Omega (\psi ,\beta )} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta , \psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta , \psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] .\end{gathered} $$
(2.9)

Let us prove the second inequality in (2.1). Since any \(\tau \in [ a,b ] \) can be written as \(\tau =(1-t)a+tb \) for \(t\in [ 0,1 ] \), we have

$$ F(\tau )=f \bigl( (1-t)a+tb \bigr) +f \bigl( ta+(1-t)b \bigr). $$

Applying the h-convexity of the function f, we get

$$ \begin{aligned} F(\tau ) & =f \bigl( (1-t) b+t a \bigr) +f \bigl( (1-t) a+t b \bigr) \\ & \leq h(1-t) \bigl[ f(b)+f(a) \bigr] +h(t) \bigl[ f(b)+f(a) \bigr] \\ & = \bigl( h(t)+h(1-t) \bigr) \bigl[ f(b)+f(a) \bigr] .\end{aligned}$$

Applying (1.4), we deduce

$$ F(\tau )\leq 2 h \biggl( \frac{1}{2} \biggr) \bigl[ f(b)+f(a) \bigr] . $$
(2.10)

Multiplying (2.10) by \(( \psi (\frac{a+b}{2})-\psi (\tau ) ) ^{\beta -1}\psi '( \tau )w(\tau )\) and integrating over \(\tau \in {}[ a,\frac{a+b}{2}]\), we obtain

$$ \begin{aligned} & \int _{a}^{\frac{a+b}{2}}\psi '(\tau ) \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (\tau ) \biggr) ^{ \beta -1}w(\tau )F(\tau ) \,d\tau \\ &\quad \leq 2 h \biggl( \frac{1}{2} \biggr) \bigl[ f(b)+f(a) \bigr] \int _{a}^{\frac{a+b}{2}}\psi '(\tau ) \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (\tau ) \biggr) ^{\beta -1}w(\tau ) \,d\tau .\end{aligned}$$

By using the right-hand side of (2.4), we deduce

$$ \Gamma (\beta +1){\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \leq \frac{2 h ( \frac{1}{2} ) w(b)}{w(\frac{a+b}{2})} \bigl[ f(b)+f(a) \bigr] \biggl( \psi \biggl(\frac{a+b}{2}\biggr)-\psi (a) \biggr) ^{\beta } .$$
(2.11)

Now, multiplying (2.10) by \(( \psi (\tau )-\psi ( \frac{a+b}{2} ) ) ^{ \beta -1}\psi '(\tau )w(\tau )\) and integrating over \(\tau \in [ \frac{a+b}{2},b ] \), we get

$$ \begin{aligned} & \int _{\frac{a+b}{2}}^{b} \biggl( \psi ( \tau )-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta -1}\psi '(\tau )w(\tau )F(\tau ) \,d \tau \\ &\quad \leq 2 h \biggl( \frac{1}{2} \biggr) \bigl[ f(b)+f(a) \bigr] \int _{\frac{a+b}{2}}^{b} \biggl( \psi (\tau )-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta -1}\psi '(\tau )w(\tau ) \,d \tau .\end{aligned}$$

By using the right-hand side of (2.5), we deduce

$$ \Gamma (\beta +1){\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \leq \frac{2 h ( \frac{1}{2} ) w(b)}{w(\frac{a+b}{2})} \bigl[ f(b)+f(a) \bigr] \biggl( \psi (b)-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta }. $$
(2.12)

Adding inequalities (2.11) and (2.12), we obtain

$$ \begin{aligned} &\frac{\Gamma (\beta +1) w(\frac{a+b}{2})}{2 \Omega (\psi ,\beta )} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \\ &\quad \leq 2 h \biggl( \frac{1}{2} \biggr) w(b) \biggl( \frac{f(b)+f(a)}{2} \biggr) . \end{aligned} $$
(2.13)

This finishes the proof. □

The following results are dependent on the function h presented in Theorem 2.1. First, assuming \(h(\alpha )=\alpha \), we get the following result using the weighted ψ-Hilfer operators for convex functions.

Corollary 2

Let \(f\in X [a,b]\) be a convex function. Then the following inequalities hold:

$$ \begin{aligned} w(a) f \biggl( \frac{a+b}{2} \biggr) & \leq \frac{\Gamma (\beta +1) w(\frac{a+b}{2})}{2 \Omega (\psi ,\beta )} \biggl[{\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) + {\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \\ & \leq w(b) \biggl(\frac{f(b)+f(a)}{2} \biggr),\end{aligned} $$
(2.14)

where \(F( t)\) and \(\Omega (\psi ,\beta ) \) are defined by (2.2) and (2.3), respectively.

By setting \(h(\alpha )=1\), we get the following result using the weighted ψ-Hilfer operators with an f being a P-function.

Corollary 3

Let \(\beta >0\) and \(f\in X [a,b]\) be a P-function. Then the following inequalities hold:

$$ \begin{aligned} w(a) f \biggl( \frac{a+b}{2} \biggr) & \leq \frac{\Gamma (\beta +1) w(\frac{a+b}{2})}{\Omega (\psi ,\beta )} \biggl[{ \mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) + { \mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \\ & \leq 2 w(b) \bigl(f(b)+f(a) \bigr),\end{aligned} $$
(2.15)

where \(F( t)\) and \(\Omega (\psi ,\beta ) \) are defined by (2.2) and (2.3), respectively.

Using \(h(\alpha )=\alpha ^{s}\), we obtain the following result through the weighted ψ-Hilfer operators and s-convex functions.

Corollary 4

Let \(\beta >0\), \(s\in (0, 1]\), and \(f\in X [a,b]\) be an s-convex function. Then the following inequalities hold:

$$ \begin{aligned} \frac{ w(a)}{2^{1-s}}f \biggl( \frac{a+b}{2} \biggr) & \leq \frac{\Gamma (\beta +1) w(\frac{a+b}{2})}{2 \Omega (\psi ,\beta )} \biggl[{\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) + {\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \\ & \leq 2^{1-s} w(b) \biggl(\frac{f(b)+f(a)}{2} \biggr).\end{aligned} $$
(2.16)

where \(F( t)\) and \(\Omega (\psi ,\beta ) \) are defined by (2.2) and (2.3), respectively.

Taking \(h(\alpha )=\frac{1}{n}\sum_{k=1}^{n}\alpha ^{\frac{1}{k}}\), we deduce the following result through the weighted ψ-Hilfer operators and n-fractional polynomial convex functions.

Corollary 5

Let \(\beta >0\) and \(f\in X [a,b]\) be an n-fractional polynomial convex function. Then the following inequalities hold:

$$ \begin{aligned} \frac{ w(a)}{C_{n}}f \biggl( \frac{a+b}{2} \biggr) & \leq \frac{\Gamma (\beta +1) w(\frac{a+b}{2})}{2 \Omega (\psi ,\beta )} \biggl[{\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) + {\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \\ & \leq C_{n} w(b) \biggl(\frac{f(b)+f(a)}{2} \biggr).\end{aligned} $$
(2.17)

where \(F( t)\), \(\Omega (\psi ,\beta ) \) are defined by (2.2), (2.3), respectively, and \(C_{n}=\frac{2}{n}\sum_{k=1}^{n} (\frac{1}{2} )^{\frac{1}{k}}\).

Remark 1

If we choose \(\psi (\tau )=\tau \) and \(\psi (\tau )=\ln \tau \) in Corollaries 3, 4, and 5, we obtain Hermite–Hadamard inequality for P-functions, s-convex functions, and n-fractional polynomial convex functions involving the weighted Riemann–Liouville fractional operator and the weighted Hadamard fractional operator, respectively.

3 Weighted trapezoid-type inequalities

This section presents weighted trapezoid inequalities and their particular results utilizing weighted ψ-Hilfer operators with w being symmetric with respect to \(\frac{a+b}{2}\) (i.e., \(w(t)=w(b+a-t)\)). To accomplish this, we must first establish an equality in the following lemma.

Lemma 3.1

Assume w is a differentiable and symmetric with respect to \(\frac{a+b}{2}\) function, and suppose h is a B-function. Let \(f:[a,b]\rightarrow \mathbb{R}\) be a function where \((wf)\) is a differentiable mapping on \((a,b)\). Then the following identity holds:

$$ \begin{aligned} &\frac{f(a)+f(b)}{2}-\frac{\Gamma (\beta +1) w (\frac{a+b}{2} )}{2 \Phi (\psi ,\beta , w)} \biggl[ { \mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{ \mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \\ &\quad =\frac{b-a}{4 \Phi (\psi ,\beta , w)} \int _{0}^{1}A_{ \psi ,\beta }(\tau )\\ &\qquad \times \biggl[ (wf)^{\prime } \biggl( \frac{1-\tau}{2}a+ \frac{1+\tau}{2}b \biggr) -(wf)^{\prime } \biggl( \frac{1+\tau}{2}a+ \frac{1-\tau}{2}b \biggr) \biggr] \,d\tau ,\end{aligned} $$
(3.1)

where

$$\begin{aligned} \Phi (\psi ,\beta , w) &= \biggl(\psi (b) - \psi \biggl( \frac{a+b}{2} \biggr) \biggr)^{\beta}w(b) + \biggl(\psi \biggl( \frac{a+b}{2} \biggr) - \psi (a) \biggr)^{\beta}w(a). \end{aligned}$$
(3.2)
$$\begin{aligned} A_{\psi , \beta}(\tau ) &= \biggl(\psi \biggl(\frac{a+b}{2} \biggr) - \psi \biggl( \frac{ 1+\tau }{2} a + \frac{ 1-\tau }{2}b \biggr) \biggr)^{\beta} \\ &\quad + \biggl(\psi \biggl( \frac{ 1-\tau }{2} a + \frac{ 1+\tau }{2}b \biggr) - \psi \biggl(\frac{a+b}{2} \biggr) \biggr)^{\beta} . \end{aligned}$$
(3.3)

Proof

Let

$$ J_{1}=\frac{2}{b-a} \int _{a}^{\frac{a+b}{2}} \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (\tau ) \biggr) ^{\beta }(wF)^{\prime }(\tau )\,d\tau . $$
(3.4)

Integrating by parts (3.4) and using (2.2), we get

$$ \begin{aligned} \frac{b-a}{2}J_{1} & = \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (\tau ) \biggr) ^{\beta }w(\tau )F(\tau ) \big|_{a}^{\frac{a+b}{2}} \\ &\quad +\beta \int _{a}^{\frac{a+b}{2}} \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (\tau ) \biggr) ^{\beta -1}\psi ^{\prime }(\tau )w( \tau )F(\tau )\,d\tau .\end{aligned}$$

Therefore

$$ \frac{b-a}{2}J_{1}=- \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (a) \biggr) ^{\beta }w(a)F(a)+\Gamma ( \beta +1) w \biggl( \frac{a+b}{2} \biggr) {\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) . $$
(3.5)

Similarly, let

$$ J_{2}=\frac{2}{b-a} \int _{\frac{a+b}{2}}^{b} \biggl( \psi (\tau )- \psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta }(wF)^{\prime }( \tau )\,d\tau . $$
(3.6)

Integrating by parts (3.6), we obtain

$$ \frac{b-a}{2}J_{2}= \biggl( \psi (b)-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta }w(b)F(b)-\Gamma ( \beta +1) w \biggl( \frac{a+b}{2} \biggr) {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) . $$
(3.7)

Since \(F(a)=F(b)=f(a)+f(b)\), we conclude from (3.5) and (3.7) that

$$ \begin{aligned} \frac{b-a}{2} ( J_{2}-J_{1} ) &= \Phi (\psi ,\beta ,w) \bigl( f(a)+f(b) \bigr) \\ &\quad -\Gamma (\beta +1) w \biggl( \frac{a+b}{2} \biggr) \biggl[ { \mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] , \end{aligned} $$

thus

$$ \begin{aligned} &\frac{f(a)+f(b)}{2}-\frac{\Gamma (\beta +1) w ( \frac{a+b}{2} ) }{2 \Phi (\psi ,\beta ,w)} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{ \mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \\ &\quad =\frac{b-a}{4 \Phi (\psi ,\beta ,w)} ( J_{2}-J_{1} ) . \end{aligned} $$
(3.8)

On the other hand, since \(F^{\prime }(\tau )=f^{\prime }(\tau )-f^{\prime }(a+b-\tau )\) and \(w(\tau )=w(a+b-\tau )\), we get

$$ \begin{aligned} (wF)^{\prime }(\tau )&=w^{\prime }(\tau ) \bigl(f(\tau )+f(a+b- \tau )\bigr) + w(\tau ) \bigl(f^{\prime }(\tau )-f^{\prime}(a+b-\tau )\bigr) \\ &=w^{\prime }(\tau )f(\tau )+ w(\tau )f^{\prime }(\tau ) -w^{ \prime }(a+b-\tau )f(a+b-\tau ) \\ &\quad -w(a+b-\tau )f^{\prime}(a+b- \tau )) \\ &= (wf)^{\prime }(\tau )-(wf)^{\prime }(a+b-\tau ). \end{aligned}$$

From (3.4), we get

$$ J_{1}=\frac{2}{b-a} \int _{a}^{\frac{a+b}{2}} \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (\tau ) \biggr) ^{\beta } \bigl( (wf)^{\prime }(\tau )-(wf)^{ \prime }(a+b-\tau ) \bigr) \,d\tau . $$

By changing the variable \(\tau =\frac{1+s}{2}a+\frac{1-s}{2}b\), we obtain

$$ \begin{aligned} J_{1}&= \int _{0}^{1} \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi \biggl( \frac{1+s}{2}a+ \frac{1-s}{2}b \biggr) \biggr) ^{\beta } \\ &\quad \times \biggl[ (wf)^{\prime } \biggl( \frac{1+s}{2}a+ \frac{1-s}{2}b \biggr) -(wf)^{\prime } \biggl( \frac{1-s}{2}a+\frac{1+s}{2}b \biggr) \biggr] \,ds. \end{aligned} $$

Similarly, from (3.6) we deduce

$$ \begin{aligned} J_{2}&= \int _{0}^{1} \biggl( \psi \biggl( \frac{1-s}{2}a+ \frac{1+s}{2}b \biggr) -\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{ \beta } \\ &\quad \times \biggl[ (wf)^{\prime } \biggl( \frac{1-s}{2}a+ \frac{1+s}{2}b \biggr) -(wf)^{\prime } \biggl( \frac{1+s}{2}a+ \frac{1-s}{2}b \biggr) \biggr] \,ds. \end{aligned} $$

Consequently,

$$ J_{2}-J_{1}= \int _{0}^{1}A_{\psi ,\beta }(s) \biggl[ (wf)^{\prime } \biggl( \frac{1-s}{2}a+\frac{1+s}{2}b \biggr) -(wf)^{\prime } \biggl( \frac{1+s}{2}a+ \frac{1-s}{2}b \biggr) \biggr] \,ds. $$
(3.9)

Finally, we acquire the needed equality (3.1) by substituting (3.9) into (3.8). □

Remark 2

Putting \(w=1\) in Lemma 3.1, we get [8, Lemma 3.1].

Theorem 3.1

Under the hypotheses of Lemma 3.1, if \(|(wf)^{\prime }|\) is an h-convex mapping on \([a, b]\) and h is a B-function, then the trapezoid-type inequality holds, namely

$$ \begin{aligned} &\biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\beta +1) w (\frac{a+b}{2} )}{2 \Phi (\psi ,\beta , w)} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{ \mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{(b-a) h(\frac{1}{2})}{2 \Phi (\psi ,\beta , w)} \bigl[ \bigl\vert (wf)^{\prime}(a) \bigr\vert + \bigl\vert (wf)^{\prime }(b) \bigr\vert \bigr] \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert \,ds.\end{aligned}$$
(3.10)

Proof

Taking the absolute value of the identity (3.1) and using the h-convexity of the function \(|(wf)^{\prime }|\), we get

$$ \begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\beta +1) w ( \frac{a+b}{2} ) }{2 \Phi (\psi ,\beta ,w)} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{ \mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{b-a}{4 \Phi (\psi ,\beta ,w)} \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert \biggl[ \biggl\vert (wf)^{\prime } \biggl( \frac{1-s}{2}a+\frac{1+s}{2}b \biggr) \biggr\vert \\ &\qquad + \biggl\vert (wf)^{\prime } \biggl( \frac{1+s}{2}a+ \frac{1-s}{2}b \biggr) \biggr\vert \biggr] \,ds \\ &\quad \leq \frac{b-a}{4 \Phi (\psi ,\beta ,w)} \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert \biggl[ h \biggl( \frac{1-s}{2} \biggr) +h \biggl( \frac{1+s}{2} \biggr) \biggr] \bigl[ \bigl\vert (wf)^{\prime }(a) \bigr\vert + \bigl\vert (wf)^{\prime }(b) \bigr\vert \bigr] \,ds,\end{aligned}$$

Given that h is a B-function, setting \(\alpha =\frac{1-s}{2}\) and \(1-\alpha =\frac{1+s}{2}\) yields

$$ \begin{aligned} &\biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\beta +1) w ( \frac{a+b}{2} ) }{2 \Phi (\psi ,\beta ,w)} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{ \mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{(b-a) h(\frac{1}{2})}{2 \Phi (\psi ,\beta ,w)}\int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert \bigl[ \bigl\vert (wf)^{\prime }(a) \bigr\vert + \bigl\vert (wf)^{ \prime }(b) \bigr\vert \bigr]\,ds.\end{aligned}$$

 □

The following results are obtained via the weighted ψ-Hilfer operators and depend on the function h given in Theorem 3.1.

Corollary 6

  1. (1)

    If \(|(wf)^{\prime }|\) is a convex mapping on \([a,b]\), then

    $$ \begin{aligned} &\biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\beta +1) w ( \frac{a+b}{2} ) }{2 \Phi (\psi ,\beta ,w)} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{ \mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{b-a}{4 \Phi (\psi ,\beta ,w)} \bigl[ \bigl\vert (wf)^{ \prime }(a) \bigr\vert + \bigl\vert (wf)^{\prime }(b) \bigr\vert \bigr] \int _{0}^{1} \bigl\vert A_{\psi , \beta }(s) \bigr\vert \,ds.\end{aligned}$$

    Particularly, putting \(w=1\), we get [8, Corollary 3.4].

  2. (2)

    If \(|(wf)^{\prime }|\) is a P-function on \([a, b]\), then

    $$ \begin{aligned} &\biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\beta +1) w (\frac{a+b}{2} )}{2 \Phi (\psi ,\beta , w)} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{ \mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{b-a}{2 \Phi (\psi ,\beta , w)} \bigl[ \bigl\vert (wf)^{\prime}(a) \bigr\vert + \bigl\vert (wf)^{\prime }(b) \bigr\vert \bigr] \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert \,ds.\end{aligned}$$
  3. (3)

    If \(|(wf)^{\prime }|\) is an s-convex mapping on \([a, b]\), then

    $$ \begin{aligned} &\biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\beta +1) w (\frac{a+b}{2} )}{2 \Phi (\psi ,\beta , w)} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{ \mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{b-a}{2^{s+1} \Phi (\psi ,\beta , w)} \bigl[ \bigl\vert (wf)^{\prime}(a) \bigr\vert + \bigl\vert (wf)^{\prime }(b) \bigr\vert \bigr] \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert \,ds.\end{aligned}$$
  4. (4)

    If \(|(wf)^{\prime }|\) is an n-fractional polynomial convex mapping on \([a, b]\), then

    $$ \begin{aligned}& \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\beta +1) w (\frac{a+b}{2} )}{2 \Phi (\psi ,\beta , w)} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{ \mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{(b-a) C_{n}}{4 \Phi (\psi ,\beta , w)} \bigl[ \bigl\vert (wf)^{\prime}(a) \bigr\vert + \bigl\vert (wf)^{\prime }(b) \bigr\vert \bigr] \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert \,ds,\end{aligned}$$

    where \(\Phi (\psi ,\beta , w)\), \(A_{\psi ,\beta }(s)\) are defined by (3.2), (3.3), respectively, and \(C_{n}=\frac{2}{n}\sum_{k=1}^{n} (\frac{1}{2} )^{\frac{1}{k}}\).

Theorem 3.2

Let \(p>1\) and \(\frac{1}{p'}+\frac{1}{p}=1\). If \(|(wf)^{\prime} |^{p}\) is an h-convex mapping on \([a,b]\), then

$$ \begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\beta +1) w (\frac{a+b}{2} )}{2 \Phi (\psi ,\beta , w)} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{ \mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{(b-a) (2h(\frac{1}{2}))^{\frac{1}{p}}}{4 \Phi (\psi ,\beta , w)} \biggl(2 \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert ^{p'}\,ds \biggr) ^{ \frac{1}{p^{\prime }}} \bigl( \bigl\vert (wf)^{\prime}(a) \bigr\vert ^{p}+ \bigl\vert (wf)^{\prime }(b) \bigr\vert ^{p} \bigr) ^{\frac{1}{p}} \\ &\quad \leq \frac{(b-a) (2h(\frac{1}{2}))^{\frac{1}{p}}}{4 \Phi (\psi ,\beta , w)} \biggl(2 \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert ^{p'}\,ds \biggr) ^{ \frac{1}{p^{\prime }}} \bigl( \bigl\vert (wf)^{\prime}(a) \bigr\vert + \bigl\vert (wf)^{\prime }(b) \bigr\vert \bigr).\end{aligned} $$
(3.11)

Proof

Taking absolute value of (3.1) and using the well-known Hölder’s inequality, we obtain

$$ \begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\beta +1) w ( \frac{a+b}{2} ) }{2 \Phi (\psi ,\beta ,w)} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{ \mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{b-a}{4 \Phi (\psi ,\beta ,w)} \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert \biggl\vert (wf)^{\prime } \biggl( \frac{1-s}{2}a+ \frac{1+s}{2}b \biggr) \biggr\vert \,ds \\ &\qquad +\frac{b-a}{4 \Phi (\psi ,\beta ,w)} \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert \biggl\vert (wf)^{\prime } \biggl( \frac{1+s}{2}a+ \frac{1-s}{2}b \biggr) \biggr\vert \,ds \\ &\quad \leq \frac{b-a}{4 \Phi (\psi ,\beta ,w)} \biggl( \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{ \frac{1}{p^{\prime }}}\times \biggl( \int _{0}^{1} \biggl\vert (wf)^{\prime } \biggl( \frac{1-s}{2}a+\frac{1+s}{2}b \biggr) \biggr\vert ^{p}\,ds \biggr) ^{\frac{1}{p}} \\ &\qquad +\frac{b-a}{4 \Phi (\psi ,\beta ,w)} \biggl( \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{ \frac{1}{p^{\prime }}}\times \biggl( \int _{0}^{1} \biggl\vert (wf)^{\prime } \biggl( \frac{1+s}{2}a+\frac{1-s}{2}b \biggr) \biggr\vert ^{p}\,ds \biggr) ^{\frac{1}{p}}.\end{aligned}$$

Notice that for \(p>1\), \(A,B\geq 0\), \(A^{\frac{1}{p}}+B^{\frac{1}{p}}\leq 2^{1-\frac{1}{p}}(A+B)^{\frac{1}{p}}\), and \(|(wf)^{\prime } |^{p}\) an h-convex function, we get

$$\begin{aligned} & \biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\beta +1) w ( \frac{a+b}{2} ) }{2 \Phi (\psi ,\beta ,w)} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{ \mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{b-a}{4 \Phi (\psi ,\beta ,w)} \biggl( \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{ \frac{1}{p^{\prime }}} 2^{1-\frac{1}{p}} \\ &\qquad \times \biggl[ \int _{0}^{1} \biggl\vert (wf)^{\prime } \biggl( \frac{1-s}{2}a+\frac{1+s}{2} \biggr) \biggr\vert ^{p}\,ds+ \int _{0}^{1} \biggl\vert (wf)^{ \prime } \biggl( \frac{1+s}{2}a+\frac{1-s}{2} \biggr) \biggr\vert ^{p}\,ds \biggr] ^{\frac{1}{p}} \\ &\quad \leq \frac{b-a}{4 \Phi (\psi ,\beta ,w)} \biggl( 2 \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{ \frac{1}{p^{\prime }}} \\ &\qquad \times \biggl( \int _{0}^{1} \biggl[ h \biggl( \frac{1-s}{2} \biggr) +h \biggl( \frac{1+s}{2} \biggr) \biggr] \bigl[ \bigl\vert (wf)^{ \prime }(a) \bigr\vert ^{p}+ \bigl\vert (wf)^{\prime }(b) \bigr\vert ^{p} \bigr]\,ds \biggr) ^{\frac{1}{p}}. \end{aligned}$$

Since h is a B-function, we get

$$ \begin{aligned} &\biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\beta +1) w ( \frac{a+b}{2} ) }{2 \Phi (\psi ,\beta ,w)} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{ \mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{(b-a) (2h(\frac{1}{2}))^{\frac{1}{p}}}{4 \Phi (\psi ,\beta ,w)} \biggl( 2 \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{\frac{1}{p^{\prime }}} \bigl( \bigl\vert (wf)^{ \prime }(a) \bigr\vert ^{p}+ \bigl\vert (wf)^{\prime }(b) \bigr\vert ^{p} \bigr) ^{\frac{1}{p}}.\end{aligned}$$

This proves the first inequality in (3.11).

Notice that the inequality \(A^{p}+B^{p}\leq (A+B)^{p}\) yields the second inequality in (3.11). □

Setting \(w=1\) and \(h(s)=s\) in Theorem 3.2, we get the following corollary.

Corollary 7

Let \(p>1\) and \(\frac{1}{p^{\prime }}+\frac{1}{p}=1\). If \(|f^{\prime} |^{p}\) is a convex mapping on \([a,b]\), then

$$ \begin{aligned} &\biggl\vert \frac{f(a)+f(b)}{2}- \frac{\Gamma (\beta +1)}{2 \Omega (\psi , \beta )} \biggl[ { ^{\beta }\mathcal{J}_{b^{-}}^{ \psi }}F \biggl( \frac{a+b}{2} \biggr) +{ ^{\beta }\mathcal{J}_{a^{+}}^{ \psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{b-a}{4 \Omega (\psi , \beta )} \biggl(2 \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{ \frac{1}{p^{\prime }}} \bigl( \bigl\vert f^{\prime}(a) \bigr\vert ^{p}+ \bigl\vert f^{ \prime }(b) \bigr\vert ^{p} \bigr) ^{\frac{1}{p}} \\ &\quad \leq \frac{b-a}{4 \Omega (\psi , \beta )} \biggl(2 \int _{0}^{1} \bigl\vert A_{\psi ,\beta }(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{ \frac{1}{p^{\prime }}} \bigl( \bigl\vert f^{\prime}(a) \bigr\vert + \bigl\vert f^{ \prime }(b) \bigr\vert \bigr),\end{aligned}$$
(3.12)

which is a better estimate compared with [8, Theorem 3.5].

4 Weighted midpoint-type inequalities

This section establishes some weighted midpoint inequalities for weighted ψ-Hilfer operators using the identity in the following lemma.

Lemma 4.1

Under the hypothesis of Lemma 3.1, the following identity holds:

$$ \begin{aligned} &\frac{\Gamma (\beta +1)}{2 \Omega (\psi ,\beta )} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr]-f \biggl( \frac{a+b}{2} \biggr) \\ &\quad =\frac{b-a}{4 \Omega (\psi ,\beta ) w (\frac{a+b}{2} )} \\ &\qquad \times \int _{0}^{1} \bigl( \Omega (\psi ,\beta )\\ &\qquad -A_{ \psi ,\beta }(s) \bigr) \biggl[ (wf)^{\prime } \biggl( \frac{1-s}{2}a+ \frac{1+s}{2}b \biggr) -(wf)^{\prime } \biggl( \frac{1+s}{2}a+ \frac{1-s}{2}b \biggr) \biggr] \,ds,\end{aligned} $$
(4.1)

where \(\Omega (\psi ,\beta )\) and \(A_{\psi , \beta}(\tau )\) are defined in (2.3) and (3.3), respectively.

Proof

Let

$$ R_{1}=\frac{2}{b-a} \int _{a}^{\frac{a+b}{2}} \biggl[ \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (a) \biggr) ^{\beta }- \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (\tau ) \biggr) ^{ \beta } \biggr] (wF)^{\prime }(\tau )\,d\tau . $$
(4.2)

By using (3.4), we get

$$\begin{aligned} \frac{b-a}{2}R_{1} & = \int _{a}^{ \frac{a+b}{2}} \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (a) \biggr) ^{ \beta }(wF)^{\prime }( \tau )\,d\tau \\ &\quad - \int _{a}^{\frac{a+b}{2}} \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (\tau ) \biggr) ^{\beta }(wF)^{\prime }( \tau )\,d\tau \\ & = \biggl( \psi \biggl(\frac{a+b}{2}\biggr)-\psi (a) \biggr) ^{ \beta }(wF) (\tau )\big|_{a}^{\frac{a+b}{2}}- \frac{2}{b-a}J_{1} \\ & = \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (a) \biggr) ^{\beta }2(wf) \biggl( \frac{a+b}{2} \biggr) \\ &\quad - \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (a) \biggr) ^{\beta }(wF) (a)-\frac{2}{b-a}J_{1}. \end{aligned}$$

Applying (3.5), we obtain

$$ \begin{aligned} \frac{b-a}{2}R_{1}&=2 \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (a) \biggr) ^{\beta }(wf) \biggl( \frac{a+b}{2} \biggr) \\ &\quad - \Gamma (\beta +1) w \biggl( \frac{a+b}{2} \biggr) {\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) . \end{aligned} $$
(4.3)

Similarly, let

$$ R_{2}=\frac{2}{b-a} \int _{\frac{a+b}{2}}^{b} \biggl[ \biggl( \psi (b)-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta }- \biggl( \psi (\tau )-\psi \biggl(\frac{a+b}{2} \biggr) \biggr) ^{ \beta } \biggr] (wF)^{\prime }(\tau )\,d\tau . $$
(4.4)

Using (3.6), then we have

$$ \begin{aligned} \frac{b-a}{2}R_{2} & = \int _{ \frac{a+b}{2}}^{b} \biggl( \psi (b)-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{ \beta }(wF)^{\prime }(\tau ) \,d\tau \\ &\quad - \int _{\frac{a+b}{2}}^{b} \biggl( \psi (\tau )-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{ \beta }(wF)^{\prime }(\tau ) \,d\tau \\ & = \biggl( \psi (b)-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta }(wF) (\tau )\big|_{\frac{a+b}{2}}^{b} - \frac{2}{b-a}J_{2} \\ & = \biggl( \psi (b)-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta }(wF) (b)\\ &\quad -2 \biggl( \psi (b)-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta }(wf) \biggl( \frac{a+b}{2} \biggr) - \frac{2}{b-a}J_{2},\end{aligned}$$

and applying (3.7), we get

$$ \begin{aligned} \frac{b-a}{2}R_{2}&=\Gamma (\beta +1) w \biggl( \frac{a+b}{2} \biggr) {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \\ &\quad -2 \biggl( \psi (b)-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta }(wf) \biggl( \frac{a+b}{2} \biggr) . \end{aligned} $$
(4.5)

From (4.3) and (4.5), we have

$$ \begin{aligned} &\frac{b-a}{4 \Omega (\psi ,\beta ) w ( \frac{a+b}{2} ) } ( R_{2}-R_{1} )\\ &\quad = \frac{\Gamma (\beta +1)}{2 \Omega (\psi ,\beta )} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta , \psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta , \psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] -f \biggl( \frac{a+b}{2} \biggr) . \end{aligned} $$
(4.6)

In addition, according to (4.2),

$$ \begin{aligned} R_{1} &=\frac{2}{b-a} \int _{a}^{ \frac{a+b}{2}} \biggl[ \biggl( \psi \biggl( \frac{a+b}{2} \biggr) - \psi (a) \biggr) ^{\beta }- \biggl( \psi \biggl( \frac{a+b}{2} \biggr) - \psi (\tau ) \biggr) ^{\beta } \biggr] \\ &\quad \times \bigl( (wf)^{\prime }(\tau )-(wf)^{ \prime }(a+b-\tau ) \bigr) \,d\tau \\ &= \int _{0}^{1} \biggl[ \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi (a) \biggr) ^{\beta }- \biggl( \psi \biggl( \frac{a+b}{2} \biggr) -\psi \biggl( \frac{1+s}{2}a+ \frac{1-s}{2}b \biggr) \biggr) ^{\beta } \biggr] \\ &\quad \times \biggl[ (wf)^{\prime } \biggl( \frac{1+s}{2}a+ \frac{1-s}{2}b \biggr) -(wf)^{\prime } \biggl( \frac{1-s}{2}a+ \frac{1+s}{2}b \biggr) \biggr] \,ds. \end{aligned} $$

Similarly, from (4.4) we get

$$ \begin{aligned} R_{2} &=\frac{2}{b-a} \int _{\frac{a+b}{2}}^{b} \biggl[ \biggl( \psi (b)-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{ \beta }- \biggl( \psi ( \tau )-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta } \biggr] \\ &\quad \times \bigl( (wf)^{\prime }(\tau )-(wf)^{ \prime }(a+b-\tau ) \bigr) \,d\tau \\ &= \int _{0}^{1} \biggl[ \biggl( \psi (b)-\psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta }- \biggl( \psi \biggl( \frac{1-s}{2}a+ \frac{1+s}{2}b \biggr) - \psi \biggl( \frac{a+b}{2} \biggr) \biggr) ^{\beta } \biggr] \\ &\quad \times \biggl[ (wf)^{\prime } \biggl( \frac{1-s}{2}a+ \frac{1+s}{2}b \biggr) -(wf)^{\prime } \biggl( \frac{1+s}{2}a+ \frac{1-s}{2}b \biggr) \biggr] \,ds. \end{aligned} $$

As a result,

$$ \begin{aligned} R_{2}-R_{1}&= \int _{0}^{1} \bigl( \Omega (\psi ,\beta )-A_{\psi , \beta }(s) \bigr) \\ &\quad \times\biggl[ (wf)^{\prime } \biggl( \frac{1-s}{2}a+ \frac{1+s}{2}b \biggr) -(wf)^{\prime } \biggl( \frac{1+s}{2}a+ \frac{1-s}{2}b \biggr) \biggr] \,ds. \end{aligned} $$
(4.7)

To obtain the desired equality (4.1), substitute (4.7) into (4.6). □

Remark 3

Put \(w=1\) in Lemma 4.1, we get [8, Lemma 4.1].

Theorem 4.1

If \(|(wf)^{\prime }|\) is an h-convex mapping on \([a, b]\) and h is a B-function, then

$$ \begin{aligned} & \biggl\vert \frac{\Gamma (\beta +1)}{2 \Omega (\psi ,\beta )} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] -f \biggl( \frac{a+b}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{(b-a) h(\frac{1}{2})}{2 \Omega (\psi ,\beta ) w (\frac{a+b}{2} )} \bigl[ \bigl\vert (wf)^{\prime}(a) \bigr\vert + \bigl\vert (wf)^{\prime }(b) \bigr\vert \bigr] \int _{0}^{1} \bigl\vert \Omega (\psi ,\beta )-A_{\psi , \beta}(s) \bigr\vert \,ds.\end{aligned}$$
(4.8)

Proof

Taking the absolute value of the identity (4.1) and using the h-convexity of \(|(wf)^{\prime }|\) and inequality (1.4), we deduce

$$ \begin{aligned} & \biggl\vert \frac{\Gamma (\beta +1)}{2 \Omega (\psi ,\beta )} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] -f \biggl( \frac{a+b}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{b-a}{4 \Omega (\psi ,\beta ) w ( \frac{a+b}{2} ) } \int _{0}^{1} \bigl\vert \Omega (\psi ,\beta )-A_{\psi ,\beta }(s) \bigr\vert \\ &\qquad \times \biggl[ \biggl\vert (wf)^{ \prime } \biggl( \frac{1-s}{2}a+\frac{1+s}{2}b \biggr) \biggr\vert + \biggl\vert (wf)^{\prime } \biggl( \frac{1+s}{2}a+\frac{1-s}{2}b \biggr) \biggr\vert \biggr] \,ds \\ &\quad \leq \frac{b-a}{4 \Omega (\psi ,\beta ) w ( \frac{a+b}{2} ) } \int _{0}^{1} \bigl\vert \Omega (\psi ,\beta )-A_{\psi ,\beta }(s) \bigr\vert \\ &\qquad \times \biggl[ \biggl( h \biggl( \frac{1-s}{2} \biggr) +h \biggl( \frac{1+s}{2} \biggr) \biggr) \bigl( \bigl\vert (wf)^{\prime }(a) \bigr\vert + \bigl\vert (wf)^{\prime }(b) \bigr\vert \bigr) \biggr] \,ds \\ &\quad =\frac{(b-a) h ( \frac{1}{2} ) }{2 \Omega (\psi ,\beta ) w ( \frac{a+b}{2} ) } \bigl[ \bigl\vert (wf)^{\prime }(a) \bigr\vert + \bigl\vert (wf)^{\prime }(b) \bigr\vert \bigr] \int _{0}^{1} \bigl\vert \Omega (\psi ,\beta )-A_{\psi ,\beta }(s) \bigr\vert \,ds.\end{aligned}$$

This ends the proof. □

The following results are obtained using the weighted ψ-Hilfer operators and depend on the function h given in Theorem 4.1.

Corollary 8

  1. (1)

    If \(|(wf)^{\prime }|\) is a convex mapping on \([a,b]\), then

    $$ \begin{aligned} & \biggl\vert \frac{\Gamma (\beta +1)}{2 \Omega (\psi ,\beta )} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] -f \biggl( \frac{a+b}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{b-a}{4 \Omega (\psi ,\beta ) w ( \frac{a+b}{2} ) } \bigl[ \bigl\vert (wf)^{\prime }(a) \bigr\vert + \bigl\vert (wf)^{\prime }(b) \bigr\vert \bigr] \int _{0}^{1} \bigl\vert \Omega ( \psi ,\beta )-A_{\psi ,\beta }(s) \bigr\vert \,ds.\end{aligned}$$

    Particularly, putting \(w=1\), we get [8, Theorem 4.2].

  2. (2)

    If \(|(wf)^{\prime }|\) is a P-function on \([a, b]\), then

    $$ \begin{aligned} & \biggl\vert \frac{\Gamma (\beta +1)}{2 \Omega (\psi ,\beta )} \biggl[ { \mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] -f \biggl( \frac{a+b}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{b-a}{2 \Omega (\psi ,\beta ) w (\frac{a+b}{2} )} \bigl[ \bigl\vert (wf)^{\prime}(a) \bigr\vert + \bigl\vert (wf)^{\prime }(b) \bigr\vert \bigr] \int _{0}^{1} \bigl\vert \Omega ( \psi ,\beta )-A_{\psi , \beta}(s) \bigr\vert \,ds.\end{aligned}$$
  3. (3)

    If \(|(wf)^{\prime }|\) is an s-convex mapping on \([a, b]\), then

    $$ \begin{aligned} & \biggl\vert \frac{\Gamma (\beta +1)}{2 \Omega (\psi ,\beta )} \biggl[ { \mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] -f \biggl( \frac{a+b}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{b-a}{2^{s+1} \Omega (\psi ,\beta ) w (\frac{a+b}{2} )} \bigl[ \bigl\vert (wf)^{\prime}(a) \bigr\vert + \bigl\vert (wf)^{\prime }(b) \bigr\vert \bigr] \int _{0}^{1} \bigl\vert \Omega ( \psi ,\beta )-A_{\psi , \beta}(s) \bigr\vert \,ds.\end{aligned}$$
  4. (4)

    If \(|(wf)^{\prime }|\) is an n-fractional polynomial convex mapping on \([a,b]\), then

    $$ \begin{aligned} & \biggl\vert \frac{\Gamma (\beta +1)}{2 \Omega (\psi ,\beta )} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] -f \biggl( \frac{a+b}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{(b-a) C_{n}}{4 \Omega (\psi ,\beta ) w ( \frac{a+b}{2} ) } \bigl[ \bigl\vert (wf)^{\prime }(a) \bigr\vert + \bigl\vert (wf)^{\prime }(b) \bigr\vert \bigr]\int _{0}^{1} \bigl\vert \Omega (\psi ,\beta )-A_{\psi ,\beta }(s) \bigr\vert \,ds,\end{aligned}$$

    where \(\Omega (\psi ,\beta )\), \(A_{\psi ,\beta }(s)\) are defined by (2.3), (3.3), respectively, and \(C_{n}=\frac{2}{n}\sum_{k=1}^{n} ( \frac{1}{2} ) ^{\frac{1}{k}}\).

Theorem 4.2

Let \(p>1\) and \(\frac{1}{p^{\prime }}+\frac{1}{p}=1\). If \(|(wf)^{\prime} |^{p}\) is an h-convex mapping on \([a,b]\), then

$$\begin{aligned} \begin{aligned} & \biggl\vert \frac{\Gamma (\beta +1)}{2 \Omega (\psi ,\beta )} \biggl[ { \mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] -f \biggl( \frac{a+b}{2} \biggr) \biggr\vert \\ & \quad \leq \frac{(b-a) (2h(\frac{1}{2}))^{\frac{1}{p}}}{4 \Omega (\psi ,\beta ) w (\frac{a+b}{2} )} \biggl(2 \int _{0}^{1} \bigl\vert \Omega ( \psi ,\beta )-A_{\psi , \beta}(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{\frac{1}{p^{\prime }}} \\ &\qquad \times\bigl( \bigl\vert (wf)^{\prime}(a) \bigr\vert ^{p}+ \bigl\vert (wf)^{ \prime }(b) \bigr\vert ^{p} \bigr) ^{\frac{1}{p}} \\ &\quad \leq \frac{(b-a) (2h(\frac{1}{2}))^{\frac{1}{p}}}{4 \Omega (\psi ,\beta ) w (\frac{a+b}{2} )} \biggl(2 \int _{0}^{1} \bigl\vert \Omega ( \psi ,\beta )-A_{\psi , \beta}(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{\frac{1}{p^{\prime }}} \bigl( \bigl\vert (wf)^{\prime}(a) \bigr\vert + \bigl\vert (wf)^{ \prime }(b) \bigr\vert \bigr).\end{aligned} \end{aligned}$$
(4.9)

Proof

Taking the absolute value of (4.1) and using the well-known Hölder’s inequality, we obtain

$$ \begin{aligned} & \biggl\vert \frac{\Gamma (\beta +1)}{2 \Omega (\psi ,\beta )} \biggl[ { \mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] -f \biggl( \frac{a+b}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{b-a}{4 \Omega (\psi ,\beta ) w (\frac{a+b}{2} )} \int _{0}^{1} \bigl\vert \Omega (\psi ,\beta )-A_{\psi , \beta}(s) \bigr\vert \biggl\vert (wf)^{\prime } \biggl( \frac{1-s}{2}a+\frac{1+s}{2}b \biggr) \biggr\vert \,ds \\ &\qquad +\frac{b-a}{4 \Omega (\psi ,\beta ) w (\frac{a+b}{2} )} \int _{0}^{1} \bigl\vert \Omega (\psi ,\beta )-A_{\psi , \beta}(s) \bigr\vert \biggl\vert (wf)^{\prime } \biggl( \frac{1+s}{2}a+\frac{1-s}{2}b \biggr) \biggr\vert \,ds \\ &\quad \leq \frac{b-a}{4 \Omega (\psi ,\beta ) w (\frac{a+b}{2} )} \biggl( \int _{0}^{1} \bigl\vert \Omega (\psi ,\beta )-A_{\psi , \beta}(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{\frac{1}{p^{\prime }}}\\ &\qquad \times\biggl( \int _{0}^{1} \biggl\vert (wf)^{\prime } \biggl( \frac{1-s}{2}a+ \frac{1+s}{2} \biggr) \biggr\vert ^{p}\,ds \biggr) ^{\frac{1}{p}} \\ &\qquad +\frac{b-a}{4 \Omega (\psi ,\beta ) w (\frac{a+b}{2} )} \biggl( \int _{0}^{1} \bigl\vert \Omega (\psi ,\beta )-A_{\psi , \beta}(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{\frac{1}{p^{\prime }}} \\ &\qquad \times\biggl( \int _{0}^{1} \biggl\vert (wf)^{\prime } \biggl( \frac{1+s}{2}a+ \frac{1-s}{2} \biggr) \biggr\vert ^{p}\,ds \biggr) ^{\frac{1}{p}}.\end{aligned}$$

Noticing that \(A^{\frac{1}{p}}+B^{\frac{1}{p}}\leq 2^{1-\frac{1}{p}}(A+B)^{\frac{1}{p}}\) and \(|(wf)^{\prime } |^{p}\) is an h-convex function, we conclude

$$ \begin{aligned} & \biggl\vert \frac{\Gamma (\beta +1)}{2 \Omega (\psi ,\beta )} \biggl[ { \mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] -f \biggl( \frac{a+b}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{b-a}{4 \Omega (\psi ,\beta ) w (\frac{a+b}{2} )} \biggl( \int _{0}^{1} \bigl\vert \Omega (\psi ,\beta )-A_{\psi , \beta}(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{\frac{1}{p^{\prime }}} 2 ^{1-\frac{1}{p}} \\ &\qquad \times \biggl[ \int _{0}^{1} \biggl\vert (wf)^{\prime } \biggl( \frac{1-s}{2}a+\frac{1+s}{2} \biggr) \biggr\vert ^{p}\,ds+ \int _{0}^{1} \biggl\vert (wf)^{ \prime } \biggl( \frac{1+s}{2}a+\frac{1-s}{2} \biggr) \biggr\vert ^{p}\,ds \biggr] ^{\frac{1}{p}} \\ &\quad \leq \frac{b-a}{4 \Omega (\psi ,\beta ) w (\frac{a+b}{2} )} \biggl(2 \int _{0}^{1} \bigl\vert \Omega (\psi ,\beta )-A_{\psi , \beta}(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{\frac{1}{p^{\prime }}} \\ &\qquad \times \biggl( \int _{0}^{1} \biggl[h \biggl( \frac{1-s}{2} \biggr)+ h \biggl(\frac{1+s}{2} \biggr) \biggr] \bigl[ \bigl\vert (wf)^{ \prime}(a) \bigr\vert ^{p}+ \bigl\vert (wf)^{\prime }(b) \bigr\vert ^{p} \bigr]\,ds \biggr) ^{\frac{1}{p}}.\end{aligned}$$

Putting \(\alpha =\frac{1-s}{2}\) and \(1-\alpha =\frac{1+s}{2}\) yields

$$ \begin{aligned} & \biggl\vert \frac{\Gamma (\beta +1)}{2 \Omega (\psi ,\beta )} \biggl[ { \mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] -f \biggl( \frac{a+b}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{(b-a) (2h(\frac{1}{2}))^{\frac{1}{p}}}{4 \Omega (\psi ,\beta ) w (\frac{a+b}{2} )} \biggl(2 \int _{0}^{1} \bigl\vert \Omega ( \psi ,\beta )-A_{\psi , \beta}(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{\frac{1}{p^{\prime }}} \bigl( \bigl\vert (wf)^{\prime}(a) \bigr\vert ^{p}+ \bigl\vert (wf)^{ \prime }(b) \bigr\vert ^{p} \bigr) ^{\frac{1}{p}}.\end{aligned}$$

This proves the first inequality in (4.9).

The second inequality in (4.9) is clear from the inequality \(A^{p}+B^{p}\leq (A+B)^{p}\). □

Setting \(w=1\) and \(h(s)=s\) in Theorem 4.2, we get the following corollary.

Corollary 9

Let \(p>1\) and \(\frac{1}{p^{\prime }}+\frac{1}{p}=1\). If \(|f^{\prime} |^{p}\) is a convex mapping on \([a,b]\), then

$$ \begin{aligned} & \biggl\vert \frac{\Gamma (\beta +1)}{2 \Omega (\psi ,\beta )} \biggl[ {\mathrm{J} _{w, b^{-}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) +{\mathrm{J} _{w, a^{+}}^{\beta ,\psi }}F \biggl( \frac{a+b}{2} \biggr) \biggr] -f \biggl( \frac{a+b}{2} \biggr) \biggr\vert \\ & \quad \leq \frac{b-a}{4 \Omega (\psi , \beta )} \biggl(2 \int _{0}^{1} \bigl\vert \Omega ( \psi ,\beta )-A_{\psi , \beta}(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{\frac{1}{p^{\prime }}} \bigl( \bigl\vert f^{\prime}(a) \bigr\vert ^{p}+ \bigl\vert f^{ \prime }(b) \bigr\vert ^{p} \bigr) ^{\frac{1}{p}} \\ & \quad \leq \frac{b-a}{4 \Omega (\psi , \beta )} \biggl(2 \int _{0}^{1} \bigl\vert \Omega ( \psi ,\beta )-A_{\psi , \beta}(s) \bigr\vert ^{p^{\prime }}\,ds \biggr) ^{\frac{1}{p^{\prime }}} \bigl( \bigl\vert f^{\prime}(a) \bigr\vert + \bigl\vert f^{ \prime }(b) \bigr\vert \bigr),\end{aligned}$$
(4.10)

which is a better estimate compared with [8, Theorem 4.5].

5 Conclusions

In this study, we recalled a new function class, namely that of B-functions, and utilized it to derive a novel version of the Hermite–Hadamard inequality for weighted ψ-Hilfer operators. We also established two new identities involving weighted ψ-Hilfer operators for differentiable functions. By combining these identities and the properties of the B-function, we obtained several trapezoid- and midpoint-type inequalities for h-convex functions. Our results not only extend the existing literature on inequalities involving fractional operators but also provide new insights into the behavior of h-convex functions under these operators. Additionally, our methods can be applied to other fractional integral operators by using B-functions.